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Quantitative susceptibility mapping (QSM) has shown its potential for anatomical and functional MRI, as it can quantify, for
in vivo tissues, magnetic biomarkers and contrast agents which have differential susceptibilities to the surroundings substances.
For reconstructing the QSM with a single orientation, various methods have been proposed to identify a unique solution for the
susceptibilitymap. BayesianQSMapproach is themajor typewhich uses various regularization terms, such as a piece-wise constant,
a smooth, a sparse, or a morphological prior. Six QSM algorithms with or without structure prior are systematically discussed to
address the structure prior effects.Themethods are evaluated using simulations, phantom experiments with the given susceptibility,
and human brain data. The accuracy and image quality of QSM were increased when using structure prior in the simulation and
phantom compared to same regularization term without it, respectively. The image quality of QSM method using the structure
prior is better comparing, respectively, to the method without it by either sharpening the image or reducing streaking artifacts in
vivo. The structure priors improve the performance of the various QSMs using regularized minimization including L1, L2, and TV
norm.

1. Introduction

Quantitative susceptibility mapping (QSM) generates tissue
magnetic susceptibility property image from susceptibility-
sensitive MRI data [1–4]. QSM can reduce blooming artifacts
in susceptibility weighted imaging [5], is clinically useful for
quantifying magnetic biomarkers that have susceptibilities
different from their surroundings [6–9], and promises to
probe oxygenmetabolism [10–12] and inflammation [13].The
basic QSM physics includes estimating the local magnetic
field 𝛿𝑏(r) (measured main magnetic field B0) from the MRI
signal phase [14, 15] and modeling the field as from dipole
sources in tissue: 𝛿𝑏 = d ⊗ 𝜒 + n in image space (referred

to as r-space) or Δ𝑏 = DX + N in k-space, where d is a unit
dipole in r-space (referred as dipole kernel), 𝜒 is the tissue
susceptibility distribution in r-space, n is the observed noise
in r-space, andΔ𝑏,X, D, andN are corresponding to 𝛿𝑏, d,𝜒,
and n in k-space, respectively [16–18].The fundamental QSM
algorithm is to solve the inverse problem from the field 𝛿𝑏 to
the susceptibility source 𝜒.

Because the dipole kernel has a pair of opposing zero
cone surfaces at the magic angle (54.7∘) with respect to
the B0 direction, the inversion from field to susceptibility
is fundamentally ill-posed, and QSM requires additional
information to select a unique susceptibility map from many
possibilities [19]. For clinical data acquired using a single
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orientation, various regularization methods have been pro-
posed for QSM [17]. The Bayesian formulation provides the
main QSM approach to identify a susceptibility distribution
of minimal streaking artifacts [20–22].

Bayesian QSM requires constructing a data fidelity term
according to data noise property and a prior information
term. Previously, we examine the importance of noisewhiten-
ing in constructing the data fidelity term [17]. Here, we exam-
ine the importance of including structure information in the
prior term. Specifically, we analyze the effects of the choice of
prior in QSM based on three published methods in literature
and several new algorithms with different regularization
terms. All QSM methods are evaluated using simulations
and phantom experiments where the susceptibility is known.
Further, clinical applicability of QSM was evaluated with
human brain data to investigate image quality.

2. Material and Methods

In Bayesian approach, the regularization prior is expressed as
a cost functionR that favors a solution of the desired property,
and the degree to which it is favored is typically characterized
by a regularization parameter 𝛼. The maximum a posterior
solution [17, 23] is

𝜒 = argmin
𝜒

[E + 𝛼R] , (1)

where E constitutes the data fidelity term. Since Gaussian
noise in the complex MR signal domain should be accounted
for in the data fidelity term and with proper noise weighting,
noise effects in QSM can be reduced using Bayesian methods
[17]. In the following section, we use E = ‖wz‖22, with z =
d ⊗ 𝜒 − 𝛿𝑏 and w as noise weighting.

2.1. Priors Used in Various Algorithms. The following exam-
ples of regularization terms have been explored [17]:

(i) The gradient (𝐺) L2 norm (GL2)

𝑅 = 𝐺𝜒22 = 
𝜕𝜒𝜕𝑥
2
2 + 

𝜕𝜒𝜕𝑦
2
2 + 

𝜕𝜒𝜕𝑧
2
2

(2)

(ii) The gradient L1 norm (GL1)

𝑅 = 𝐺𝜒1 = 
𝜕𝜒𝜕𝑥
1 +

𝜕𝜒𝜕𝑦
1 +

𝜕𝜒𝜕𝑧
1 (3)

(iii) The total variation norm (TV)

𝑅 = TV (𝜒) = ∑
r
√
𝜕𝜒𝜕𝑥 (r)


2 + 
𝜕𝜒𝜕𝑦 (r)


2 + 
𝜕𝜒𝜕𝑧 (r)


2

(4)

(iv) A wavelet domain such as a Daubechies wavelet (Φ)
L1 norm

𝑅 = Φ𝜒1 (5)

Table 1: Comparison of various regularization schemes for QSM.

Methods Equation Image quality
Group 1 Group 2

GL2 𝜒∗ = argmin
𝜒
[𝐸 + 𝛼𝐺𝜒22] 1.72 ± 0.43 1.37 ± 0.47

TV 𝜒∗ = argmin
𝜒
[𝐸 + 𝛼TV (𝜒)] 2.53 ± 0.40 2.13 ± 0.44

GL1 𝜒∗ = argmin
𝜒
[𝐸 + 𝛼 𝐺𝜒1] 3.44 ± 0.47 2.96 ± 0.59

MGL2 𝜒∗ = argmin
𝜒
[𝐸 + 𝛼m𝐺𝜒22] 2.01 ± 0.08 1.70 ± 0.43

MTV 𝜒∗ = argmin
𝜒
[𝐸 + 𝛼TV (m𝜒)] 3.39 ± 0.46 3.15 ± 0.56

MEDI 𝜒∗ = argmin
𝜒
[𝐸 + 𝛼 m𝐺𝜒1] 4.01 ± 0.53 3.74 ± 0.60

𝐸 = ‖wz‖22, with z = d ⊗ 𝜒 − 𝛿𝑏.
TV(m𝜒) = ∑r𝑚√(𝜕𝜒/𝜕𝑥)2 + (𝜕𝜒/𝜕𝑦)2 + (𝜕𝜒/𝜕𝑧)2.

(v) A combination of two sparsity terms such as total
variation and wavelet [24]

𝛼𝑅 → 𝛼 Φ𝜒1 + 𝛽TV (𝜒) (6)

(vi) An L1 norm with structural consistency term m
(MEDI) [25–28]

𝑅 = m𝐺𝜒1 (7)

We evaluated the quantification accuracy and image
quality of various QSM algorithms using numerical and
experimental phantom data and image quality in clinical
applications with in vivo patient data.

2.2. QSM Algorithms in This Paper. Six representative algo-
rithms are summarized in Table 1 and in pseudocodes in
the Appendix for reference: MGL2 (GL2 with structural
consistency prior m), MTV (TV with m), and MEDI (GL1
withm). The equations of the GL2 and MGL2 methods were
solved using the conjugate gradientmethod (CG).TheMEDI,
TV, MTV, and GL1 methods were solved using a lagged
diffusivity fixed point method (LDFP). In methods involving
a structure prior,m was estimated by setting the gradients of
magnitude image greater than a certain threshold to 0 and to
1 otherwise [28]. The threshold was adjusted iteratively such
that approximately 30% of the voxels within the interested
brain regionwere 0, that is, considered to have gradients.This
threshold was determined from a previous theoretical study
where the threshold was varied and a global minimum was
empirically found at 30% [19].

We applied a one-dimensional temporal phase unwrap-
ping and a linear least squares fitting to estimate the rate of
phase evolution to get field map. The noise weightingw was
estimated as the SNR alongwith the fieldmap estimation [17].
The PDFmethod [14] was used for removing the background
field. The local field outside the brain parenchyma was
cropped by a mask, which was manually segmented in the
numerical and phantom experiments and was obtained using
a Robust Brain Extraction (ROBEX) tool for in vivo brain data
[29]. Voxels in the background region or within 3mm to the
background region were set to zero.
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2.3. Numerical Simulation. A 256 × 256 × 128 Zubal-type
[30] numerical susceptibility phantom (Figure 1) was built
containing a spherical lesion of 5-pixel radius to simulate
a low SNR region within the T2∗ magnitude image of the
brain parenchyma. The simulated susceptibility values were−0.05, 0.07, 0.09, 0.09, 0.19, 0.30, 0.90, and 0.00 ppm for white
matter, thalamus, caudate nucleus, putamen, globus pallidus,
veins, lesion, and other parenchyma, respectively. Complex
Gaussian zero-mean noise with standard deviation ranging
from 0.01 to 0.05 was added to the simulated complex MRI
signal.

2.4. Phantom Experiments. A Gd phantom was constructed
consisting of six spherical balloons filled with solutions
of various concentrations of Gd-DTPA (Magnevist; Berlex
Laboratories, Wayne, NJ) and immersed in water within a
cylindrical container with dimensions of 12.5 cm diameter
and 30 cm height. The Gd concentrations ranged from 0.5%
to 3.0% (using a 0.5% increment) with susceptibilities ranging
from 0.81 to 4.89 ppm, corresponding to the Gd concentra-
tion in aortic arch measured in the first pass of a dynamic
contrast enhanced MRI [18]. This phantom was scanned on
a 1.5T MRI scanner (HDx, GE Healthcare, Waukesha, WI)
with a body coil. A T2∗ weighted multiecho gradient echo
sequencewas performedwith the following parameters: FA =30∘; TR = 30ms; number of TEs = 3; first TE = 3.05ms;
uniform TE spacing (ΔTE) = 1.0ms; BW = ±31.2 kHz;
FOV = 12.8 cm; and acquired resolution = 2 × 2 × 2mm3.

2.5. In Vivo Brain Imaging. The human study was approved
by our Institutional Review Board. Thirty-six patients who
underwent brain MRI examination from January to Septem-
ber in 2015 were retrospectively included in this study
including 18 consecutive cases without hemorrhagic lesions
(group 1) and 18 consecutive cases with hemorrhages (group
2). All MR examinations were performed on a 3.0T MR
system (Signa HDxt, GE, USA), using an 8 channel head
coil. A 3D T2∗ weighted multiecho gradient echo sequence
was used with the following parameters: FA = 20∘; BW =±41.67 kHz; field of view (FOV) = 24 cm; TR = 57ms;
number of echoes = 8; first TE = 5.7ms; uniform TE spacing(ΔTE) = 6.7ms; and acquired resolution 0.57 × 0.75 × 2 (𝑛 =34) and 0.5 × 0.7 × 0.7 (𝑛 = 2)mm3.

2.6. Implementation Details for Algorithms. The regulariza-
tion parameter (𝛼) was searched from 10−5 to 101(13 log-
arithmically spaced steps) for all QSM methods. The best
parameter of every method for noisy numerical simulation
and phantom was chosen according to the least error with
respect to the true susceptibility [17, 31] and to the prepared
susceptibility in each balloon. Because the true susceptibility
is not available in the real human brain, the best parameter of
each method is chosen according to the balance of artifacts
and contrast among brain components in one representative
case by the 13-year experienced neuroradiologist (W. C.) with
inspecting all the varying parameter’s results reconstructed by
the method. And all real cases use the chosen parameters.

2.7. Data Analysis. The normalized root mean square error
(NRMSE) (normalized by root mean square of true suscep-
tibility) of the whole volume and the linear regression of
the measured versus known susceptibility was calculated for
every method. This NRMSE is used to assess the accuracy of
the numerical phantom reconstruction. In the Gd phantom,
a linear regression between the measured and prepared
susceptibilities of the various balloons was performed for
each of the methods.

To assess difference between two QSM algorithms in
numerical and experimental phantoms, the values of suscep-
tibilities are measured and compared to their known values.
Their differences between two methods were assessed using
paired 𝑡-test based on comparing linear regressions, and the
method with the smaller error was reported as improvement
when 𝑝 < 0.05.

To assess the quality of patient images reconstructed by
different QSM methods, three neuroradiologists (W. C., C.
P., and K. M.) reviewed images simultaneously in a ran-
dom order blinded to the reconstruction methods. Overall
image quality was scored with a 5-point scale based on
radiological impression of smoothness and artifacts, where
5 is the highest quality and 1 is the lowest quality [17].
The radiologist (W. C.) assessed the image quality again 6
months later to assess intraobserver variability. Interobserver
and intraobserver variabilities of image quality scores were
assessed by using the intraclass correlation coefficient [32].
The following criteria for clinically relevant agreement were
used to assess the calculated intraclass correlation coefficient:
less than 0.40was considered poor; 0.40–0.59, fair; 0.60–0.74,
good; and greater than 0.74, excellent [33].The significance of
image score differences between reconstructed susceptibility
maps assessed by the Wilcoxon rank sum test. Statistically
significant with the higher image score was reported as an
improvement when 𝑝 < 0.05.
3. Results

3.1. Numerical Simulation. The structural prior m markedly
reduced streaking artifacts originating from the simulated
lesion for GL2 (𝑝 = 9.22×10−7), TV (𝑝 = 0.02), andGL1 (𝑝 =0.04) as seen in Figure 1(a), which was also reflected in the
reducedNRMSE (Figure 1(b)) and in the increased regression
slopes more closely approaching 1 as seen in Figure 1(c). The
QSM reconstruction accuracy was improved from MGL2 to
MTV (𝑝 = 3.49 × 10−3) and fromMTV to MEDI (𝑝 = 0.03).
3.2. Phantom Experiments. The slopes of the regression
analysis for GL2,MGL2, TV,MTV,GL1, andMEDIwere 0.83,
0.92, 0.89, 0.94, 0.89, and 0.96, respectively.With the addition
of the structure priorm the reconstructions showed increased
regression slopes (𝑝 = 0.03, 0.02, 0.02 for GL2, TV, and GL1,
resp.) approaching 1. The QSM reconstruction accuracy was
improved fromMGL2 to MTV (𝑝 = 0.03) and fromMTV to
MEDI (𝑝 = 1.63 × 10−3).
3.3. In Vivo Brain Imaging. The average overall image quality
scores (mean ± standard deviation) of QSMs are shown in
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Figure 1: Regularization effects on QSM reconstructions demonstrated in a noisy Zubal lesion phantom: (a) T2∗ magnitude and local field,
without (top) or with structure prior m (bottom). The structural consistency reduced artifacts in susceptibility reconstructions for GL2, TV,
and MEDI. This is supported with the quantitative measurements of (b) the relative errors and (c) regression slopes (all with 𝑅2 > 0.98). The
image quality of MEDI is also superior to MGL2 and MTV.

Table 1 for everymethod, respectively.The spatial prior either
sharpened the image or reduced streaking artifacts (Figure 2
black arrows). The overall image quality scores were higher
when using structural consistency (m) prior compared to the
samemethodwithout a structural consistency prior observed
in the reconstructions of group 1. Compared to the method
withoutm, the artifact from vessels (black arrow in Figure 2)
is reduced and the appearance of small veins (dot boxes in
Figure 2) is improved in the method with m, respectively.
The difference is statistically significant (𝑝 = 6.37 × 10−3,9.38 × 10−6, 2.52 × 10−3 for GL2, TV, and GL1, resp.) between
methodswith andwithoutm.TheQSMreconstruction image
quality was improved (Table 1 score for group 1) from MGL2
toMTV (𝑝 = 4.98×10−8), MGL2 toMEDI (𝑝 = 5.44×10−8),
and MTV to MEDI (𝑝 = 1.16 × 10−3).

The spatial prior either sharpened the image or reduced
streaking artifacts (Figure 3).The differences in overall image
quality (Table 1 score for group 2) were statistically significant
(𝑝 = 4.66×10−2, 1.89×10−5, 1.80×10−4 for GL2, TV, andGL1,
resp.) between reconstructions with and without structural
consistency prior method when they are performed in group
2. The QSM reconstruction image quality improved from
MGL2 to MTV (𝑝 = 9.47 × 10−7), MGL2 to MEDI (𝑝 =3.19 × 10−7), and MTV to MEDI (𝑝 = 7.21 × 10−4).

Table 2: Inter- and intraobserver variability.

Method Interobserver variabilitya Intraobserver variability
GL2 0.85 (0.76, 0.92) 0.89 (0.79, 0.94)
TV 0.64 (0.47, 0.78) 0.79 (0.62, 0.88)
GL1 0.73 (0.59, 0.84) 0.86 (0.74, 0.92)
MGL2 0.74 (0.60, 0.85) 0.84 (0.71, 0.91)
MTV 0.66 (0.49, 0.79) 0.76 (0.58, 0.87)
MEDI 0.65 (0.49, 0.79) 0.84 (0.70, 0.91)
Data are intraclass correlation coefficients, with 95% confidence intervals in
parentheses.
aData are from the first reading of observer 1.

The inter- and intraobserver results are shown in Table 2.
These agreements ranged between good and excellent re-
ferred to the clinically relevant agreement.

4. Discussion

Our results of the various QSM methods indicate that QSM
quality improves using a physical prior specific to the imaging
situation. Investigations with a numerical Zubal lesion phan-
tom, a Gd phantom, and 36 consecutive patients consistently
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Figure 2: Structure regularization effects on a healthy subject in group 1. (a) magnitude, local field, and (b) reconstructed QSM images
without (left) or with structure prior (right) in a sagittal section. The dashed boxes in (b) are zoomed in on (c). The structure consistencym
reduces overall streaking artifacts comparing QSM methods with and without it. The streaking artifacts were seen originating from vessels
(black arrows) in GL2 and MGL2 in (c). This artifact was reduced to some extent in TV and MTV and even further in GL1 and MEDI. The
appearance of small veins (dot boxes in (c)) is also improved in the method with m compared to the method without it, respectively. The
averaging image quality scores of this subject were 1, 2, 2.7, 3.3, 3.7, and 5 for GL2, MGL2, TV, MTV, GL1, and MEDI, respectively.
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Figure 3: Structure regularization effects on a patient with hemorrhages in group 2. (a) magnitude, local field, and (b) reconstructed QSM
images without (left) or with structure prior (right) in a sagittal section. The dashed boxes in (b) are zoomed in on (c). Similar to healthy
subject images, the structure consistencym reduces overall streaking artifacts comparing QSM methods with and without it. The streaking
artifacts were seen originating from vessels (black arrows) and the hemorrhage (hollow arrow heads) in GL2 and MGL in (c). This artifact
was reduced to some extent in TV and MTV and even further in GL1 and MEDI.The averaging image quality scores of this patient were 1, 2,
2, 3.3, 3.3, and 4 for GL2, MGL2, TV, MTV, GL1, and MEDI, respectively.
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corroborated this observation.These experimental results are
concordant with the theoretical error analysis in QSM that
the error in the reconstructed susceptibility comes fromnoise
in the data and error in the prior [1, 19].

The ill-posedness of the dipole inversion sets up a very
challenging problem for QSM.The iterative solvers employed
in more accurate QSM algorithms make it difficult to under-
stand the contributions from various terms and parameters.
The systematic comparison of various methods presented
in this study tends to suggest the structure prior is useful
to QSM methods using the regularized minimization. This
observation is established in the comparisons in Table 1.
The structural matching between the magnitude image and
susceptibility map by matching their gradients tends to
improve the QSM image quality and accuracy as seen in the
paired comparison with and without using the magnitude
gradient in Figures 1–3. It should be pointed that the new
simulationwith the different brain components’ susceptibility
has been run and the real caseswere also particularly acquired
with slightly different parameters in different time compared
to our previous simulation and real cases in [17].

The value of the phantom experiment may be limited for
assessing the performance of QSM algorithms, because the
phantom was made of sphere of uniform [Gd] with perfectly
identifiable edges. According to the above observation on
QSM algorithms, structural information as defined by tissue
contrast is a very important determinant for QSM perfor-
mance. The tissue contrast of a human brain is much more
subtle and complex than that of the phantommade of spheres.
So what is learned from the phantom experiment is only
the accuracies that various QSM methods can achieve under
an ideal contrast situation. It should be pointed out that the
susceptibility range of phantom experiment wasmuch higher
than that of in vivo human brain and the measurements
were consistent with our simulation at similar susceptibility
values. QSM algorithm comparison behaves similarly at a
wide range of susceptibility values, which may be explainable
with dimension analysis. When susceptibility is scaled and
the regularization parameter is also scaled correspondingly
(unchanged for L2 and scaled by the same factor for L1 and
TV), the performances of the QSM algorithms remain the
same.

It is also observed that GL1 is better than GL2 for
structural matching (Figures 1–3), which is consistent with
previous observations that the sparsity in the prior term can
be achieved more effectively with the L1 norm than the L2
norm [28, 34]. A recent publication also reached a similar
conclusion that the L1 norm promoting the sparsity of spatial
gradient is a better fit for QSM problem than the L2 norm
[23, 35]. GL1 and TV based methods both can be categorized
into L1 norm QSM algorithm. It was also noted that GL1 is
better than TV methods (Figures 1–3). This may be due to
the fact that the cost of a particular edge in the objective
function is the same regardless of its orientation in the TV
norm, whereas the cost in the GL1 norm is dependent on the
edge orientation. When there is no strong streaking artifacts
as in Figure 2, the difference between GL1 and TV or between
MEDI and MTV is small. When there is a large amount of
streaking artifacts as in the hemorrhage case in Figure 3,

the edge orientation sensitivity in GL1 and MEDI becomes
obviously advantageous over theTVandMTV in suppressing
the streaking artifacts.

The results by different solvers used in this paper, that is,
LDFP and CG, show the consistency improvement of using
structure prior. There are other solvers available including
interior point methods or split Bregman method [36]. The
reconstructed QSM image may be affected by the solver used
in a given algorithm. However, in order to obtain reasonable
answers to the concerning question on solver effects, the error
propagation and accumulation in each solver may require
detailed quantitative and analytic evaluation; other well-
known solvers may need to be implemented for all major
QSM algorithms and included for comparison. However, this
important work is beyond the scope of this paper.

Some folds in cortex in Figures 2 and 3 seem to be
smoothed inMEDI; this may be interpreted as that the gradi-
ent consistency between magnitude image and susceptibility
map used in current MEDI is still imperfect. Indeed, recent
studies have suggested that the structure prior in current
MEDI may be improved with more sophisticated identifi-
cation and matching of structures for more accurate QSM,
such as incorporating edges derived from the local field map
[37, 38]. It is also theoretically proven that a comprehensive
detection of all the edges in the true susceptibility distribution
will reduce the error in the reconstructedQSM [19]. However,
the perfect prior as footstone of accurate regularization QSM
method is still an ongoing research.

Based on its intrinsic characters, QSMs have found
its power in differentiating diamagnetic calcification from
paramagnetic materials [7, 39], quantifying the deoxyhe-
moglobin concentration [9, 12], depicting the deep brain
structure [40], quantifying contrast agent concentration [41],
characterizing white matter fiber tracks, and so forth [1–
4, 42]. The potential clinical usefulness of QSM also has
been shown in multiple sclerosis [6, 43], lupus erythemato-
sus [44], Alzheimer’s disease [45], Parkinson’s disease [46],
multifocal leukoencephalopathy [47], cerebral perfusion [41],
hemorrhage [9, 48], functionMRI [12, 42] in brain, and some
applications in aorta, breast, extremity, kidney, and so forth
[1–4, 42, 49]. Improving accuracy of QSM will profit these
approaches.

5. Conclusions

In summary, the structure prior with an effective match can
improve the accuracy of QSM. Among compared methods,
the MEDI method appears to be the most robust for quan-
titative susceptibility mapping. The more accurate priors or
more physically meaningful priors should be studied in the
future.

Appendix

For ease of reproduction of all algorithms in this study,
the pseudocode of each implementation is specified in this
appendix.
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A. Implementation of MGL2

function MGL2(𝛼)
𝑊 ← diag(w)
𝑀 ← diag(m)
𝐴 ← 2real[(𝑊𝐹−1𝐷𝐹)𝐻𝑊𝐹−1𝐷𝐹] + 𝛼(𝑀𝐺)𝐻𝑀𝐺
𝑏 ← 2real[(𝑊𝐹−1𝐷𝐹)𝐻𝑊𝛿𝑏]
𝜒 ← ConjugateGradient (𝐴, 𝑏)
return 𝜒
end function

B. Implementation of MEDI&MTV

function MEDI&MTV(𝛼, Ψ)
𝜒(0) ← 0
𝑛 ← 0
switch method

case MTV

Ψ𝑥 = TV (𝑥) (B.1)

case MEDI

Ψ𝑥 = 𝐺 (𝑥) (B.2)

end switch
𝑊← diag(w)
𝑀 ← diag(m)
𝜇 ← 1𝑒 − 8
𝑉(𝑥) = diag(1/√𝑥∗𝑥 + 𝜇)
while ‖𝑝(𝑛)‖2/‖𝜒(𝑛)‖2 ≥ 1𝑒 − 2 or 𝑛 ≤ 10

𝐴 ← 2real[(𝑊𝐹−1𝐷𝐹)𝐻𝑊𝐹−1𝐷𝐹] + 𝛼(𝑀Ψ)𝐻 ⋅𝑉(𝑀Ψ𝜒(𝑛))𝑀Ψ
𝑏 ← 2real[(𝑊𝐹−1𝐷𝐹)𝐻𝑊𝛿𝑏] − 𝐴𝜒(𝑛)𝑝(𝑛) ← ConjugateGradient (A, b)
𝜒(𝑛+1) ← 𝜒(𝑛) + 𝑝(𝑛)𝑛 ← 𝑛 + 1

end while
return 𝜒(𝑛)
end function
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