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Basking in the sun on an Australian beach, I began to feel
a burning sensation from excessive UV irradiation and
decided not to wait for the ozone layer to return. As first
aid I scraped some algae and cyanobacteria from the
blistering rocks and smeared them on my exposed skin.
Why? Because these organisms contain sunscreen com-
pounds to protect themselves from harmful doses of UV-B
(280–315 nm) and UV-A (315–400 nm) radiation. Cyano-
bacteria are prominent in many superficial habitats
exposed to high solar irradiance, including deserts, polar
regions and intertidal marine flats. On rocky marine sub-
strates, many cyanobacteria form crusts or small cushions
in the high intertidal or supratidal zone. In response to
intense solar radiation, cyanobacteria and some other
microorganisms have evolved a variety of defence
mechanisms including the biosynthesis of UV-absorbing/
screening compounds such as mycosporine-like amino
acids (MAAs) and scytonemin. So far, scytonemin has
been found to be produced mainly by cyanobacteria
(Fig. 1), while mycosporine and MAAs are widespread
and are accumulated by a range of microorganisms,
prokaryotic (cyanobacteria) as well as eukaryotic
(microalgae, yeasts and fungi), and a variety of marine
macroalgae, corals and other marine life forms. Excellent
reviews on this topic can be found in Klisch and Hader
(2008), Sinha and Hader (2008), Rastogi and Sinha
(2009), Rastogi et al. (2010) and Singh et al. (2010a).

The very recent elucidation of biosynthetic pathways
and identification of associated genes now allows data

mining of microbial genomes to assess their potential for
producing sunscreen compounds. A brief overview is
given here to wet your appetite.

Mycosporines and MAAs

Mycosporines and MAAs are colourless compounds
found intracellularly in many marine and freshwater
organisms (Sinha et al., 2007; Klisch and Hader, 2008;
Llewellyn and Airs, 2010). These natural products are
characterized by a cyclohexenone or cyclohexenimine
chromophore core conjugated with amino acids or imino
alcohol substituents (Fig. 2). These are attached to the
core through imine linkages, leading to a combination of
resonance tautomers which facilitates absorption of UV
light. Differences in the absorption spectra of MAAs, with
maxima ranging from 310 to 360 nm (Fig. 3C), are due to
variations in the attached side groups and nitrogen
substituent. Figure 2A shows chemical structures of
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Fig. 1. Filaments of the cyanobacterium Lyngbya sp. with sheaths
coloured by the yellow to red-brown UV protectant scytonemin (see
arrow); bar = 10 mm. Reprinted from Sinha and Hader (2008) with
permission from Elsevier.
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representative MAAs, and many more structures are
described in Sinha and Hader (2008) and Rastogi and
Sinha (2009) and in the database of mycosporine-like
amino acids (Sinha et al., 2007). Cyanobacteria make
primarily mycosporine-glycine, shinorine, porphyra-334
and palythinol, while fungi make mainly mycosporine-
glutaminol/glutamicol-glucoside and macroalgae make
various other MAAs (Sinha et al., 2007). MAAs found in
higher animals are derived from their algal diet (Newman
et al., 2000).

Recently, the initial steps in the biosynthesis of
mycosporines and MAAs in Anabaena variabilis were
elegantly elucidated (Balskus and Walsh, 2010). A cluster
of four genes (Fig. 3A) was found to be responsible for
conversion of the common pentose phosphate pathway
intermediate sedoheptulose 7-phosphate into shinorine
(Fig. 3B). In the first steps, a dehydroquinate synthase
(DHQS) homologue 2-epi-5-epi-valiolone synthase and
an O-methyltransferase convert the precursor into
4-deoxygadusol, after which an ATP-grasp homologue

and an (NR)peptide synthetase homologue attach
glycine and serine to generate mycosporine-glycine and
shinorine.

Genome data mining subsequently identified this gene
cluster in several cyanobacteria, fungi, dinoflagellates and
even in an actinobacterium (Table 1) (Balskus and Walsh,
2010; Singh et al., 2010b). In cyanobacteria, all gene
clusters contain the first three genes to generate the main
intermediate mycosporine-glycine, while additional genes
vary. Most clusters encode a conserved D-Ala D-Ala ligase
homologue, presumably also to couple amino acids to the
mycosporine core, while others encode a (NR)peptide
synthetase and/or conserved transporter, or combinations
of these.

Scytonemins

Cyanobacteria produce the indole alkaloid scytonemin as
part of their response strategy for survival in environmen-
tally stressed conditions, particularly in pulsed-irradiation

Fig. 2. Chemical structures of representative (A) mycosporines and MAAs from fungi (mycosporine serinol) and cyanobacteria
(mycosporine-glycine, shinorine and porphyra-334); from Balskus and Walsh (2010), reprinted with permission from American Association for
the Advancement of Sciences; and (B) scytonemin and derivatives; reprinted from Sinha and Hader (2008) with permission from Elsevier.

2 Genomics update

© 2010 The Author
Journal compilation © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd, Microbial Biotechnology, 4, 1–7



conditions such as in hot and cold deserts. It is found as
a yellow (oxidized) to red-brown (reduced), lipid-soluble
pigment in the extracellular sheaths or other polysaccha-
ride structures (Fig. 1). Its structure consists of a dimeric
carbon skeleton composed of fused symmetric heterocy-

clic units with a conjugated double-bond distribution that
allows strong absorption of UV-A radiation with a
maximum absorption at 384 nm (Fig. 2).

The scytonemin biosynthesis pathway and associated
genes have been partially elucidated in the cyanobacte-

Fig. 3. A. The shinorine biosynthesis gene
cluster from Anabaena variabilis.
B. Biosynthetic pathways for the assembly of
mycosporine and MAAs from sedoheptulose
7-phosphate.
C. Absorption spectra of some MAAs.
Adapted from Sinha et al. (2007), Balskus and
Walsh (2010) and Rastogi et al. (2010), with
kind permission from Springer
Science+Business Media.
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rium Nostoc punctiforme ATCC29133 (Soule et al., 2007;
Balskus and Walsh, 2008; 2009; Soule et al., 2009a). An
18-gene cluster responsible for biosynthesis was identi-
fied and shown to be specifically induced by UV-A radia-
tion (Fig. 4) (Soule et al., 2007; 2009a). Six consecutive
genes coined scyA–scyF with no previously known func-
tion are likely involved in assembly of scytonemin. In
this gene cluster there is a redundant set of genes
coding for shikimic acid and aromatic acid biosynthesis
enzymes, leading to the production of tryptophan and
p-hydroxyphenylpyruvate, which are the likely precursors
of scytonemin (Fig. 4). A tentative scheme of biosynthesis
steps and a working model for the cellular localization of
gene products have been proposed (Soule et al., 2009b;
Rastogi et al., 2010). Genome data mining subsequently
identified highly similar gene clusters in the cyanobacteria
Anabaena, Lyngbya, Nodularia, Cyanothece and Chloro-
gleopsis, and two linked smaller gene clusters probably
also involved in biosynthesis and regulation, based on
synteny and sequence conservation (Fig. 5) (Soule et al.,
2009b). Scytonemin biosynthesis could not be induced by
UV-A in all these strains, suggesting that some gene
clusters have become inactive, possibly due to long labo-
ratory cultivation (Soule et al., 2009b).

Scytonemin production has not been observed in other
organisms, but aquatic animals presumably accumulate
scytonemins via the food chain or from symbiotic bacterial
partners, as they lack the shikimate pathway for synthe-
sizing precursors. Some derivatives of scytonemin have

been discovered (Fig. 2B) suggesting that scytonemin
may be the parent for a whole family of related molecules
with subtle changes in radiation absorption.

Combinations of sunscreen compounds

In Nosctoc flagelliforme, a terrestrial cyanobacterium from
arid environments exposed to intense solar radiation and
known by Chinese for centuries for its edible and medici-
nal values, a combination was found of compounds
having complementary absorption of UV-B by MAAs and
UV-A by scytonemin, thereby providing protection over
the whole UV radiation range from 280 to 400 nm (Ferroni
et al., 2010). The fact that gene clusters for both scytone-
min and MAAs biosynthesis are present in the sequenced
genomes of Nostoc, Anabaena, Cyanothece, Nodularia
and Lyngbya strains (Soule et al., 2009b; Balskus and
Walsh, 2010) (Table 1) suggests that it is common for
cyanobacteria to produce both sunscreen compounds,
giving full protection over a wide UV radiation range.

Future

The ability of MAAs to prevent UV-induced damage in vivo
in mice (de la Coba et al., 2009) and in human fibroblast
cells (Oyamada et al., 2008) has been demonstrated.
MAAs like shinorine and porphyra-334 from macroalgae
are already used in commercial sunscreen products
Helioguard 365 and Helionori to protect against UV-A

Table 1. Putative mycosporine/MAA gene clusters in cyanobacteria (adapted from Balskus and Walsh, 2010).

DHQS
homologue

O-methyl-
transferase

ATP-grasp
homologue

D-Ala D-Ala
ligase
homologue

(NR)peptide
synthetase Transporter

Genome accession
code

Cyanobacteria
Anabaena variabilis

ATCC29413
+ + + + NC_007413

Nostoc punctiforme
ATCC29133/PCC73102

+ + + + NC_010628

Nodularia spumigena
CCY9414

+ + + + NZ_AAVW00000000

Cyanothece sp. PCC7424 + + + + + NC_011729
Cyanothece sp.

PCC51142
+ + + + + NC_010546

Cyanothece sp. CCY0110 + + + + + NZ_AAXW00000000
Lyngbya sp. PCC8106 + + + + + NZ_AAVU00000000
Microcystis aeruginosa

PCC7806
+ + + +

Microcoleus
chthonoplastes
PCC7420

+ + + + NZ_ABRS00000000

Crocosphaera watsonii
WH 8501

+ + + + + NZ_AADV00000000

Trichodesmium
erythraeum IMS101

+ + + ++ ++ + NC_008312

Actinobacteria
Actinosynnema mirum

DSM43827
+ + + + NC_013093

+: one gene; ++: two genes; gene accession codes can be found in Balskus and Walsh (2010) supplemental material.
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Fig. 4. A. Working model of scytonemin biosynthesis based on genomic analyses. UV-A is absorbed and activates the proposed gene cluster
to produce the corresponding protein products localized according to putative protein domains. UV-A is blocked by scytonemin accumulated in
the cyanobacterial sheath, which ultimately deactivates the transcription of the gene cluster and eliminates the need for the putative protein
products.
B. Proposed biosynthetic pathway for scytonemin and associated gene cluster in Nostoc punctiforme ATCC29133. Green genes are predicted
to be involved in the biosynthesis of (precursors of) aromatic amino acids, while most of the red genes (e.g. scyA–scyF) are predicted to be
involved in scytonemin biosynthesis. Continuous arrows signify gene products that are functionally characterized, whereas broken arrows
indicate the gene products that are still to be functionally characterized.
Adapted from Soule et al. (2009b) and Rastogi et al. (2010), with kind permission from Springer Science+Business Media.
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radiation. In addition to its UV-A absorbing properties,
scytonemin also has strong anti-proliferative and anti-
inflammatory activities (Stevenson et al., 2002a,b). Given
the ever-increasing UV radiation on earth due to depletion
of the ozone layer, there is clearly a great need to discover
more of these natural sunscreen compounds and to iden-
tify the producing microbes. The biotechnological and
commercial application of microbial sunscreen com-
pounds appears to have a huge potential and a sunny
future.
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