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Abstract

There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes
governing foetal development. Mice deleted for the Wilms’ tumour gene, Wt1, lack kidneys, gonads, and spleen and die at
mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal–epithelial balance in
these tissues and is required for the epithelial-to-mesenchyme transition (EMT) that generates coronary vascular
progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone
marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we
deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis,
atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and
culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and
suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in
part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there
was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in
circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result
from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1)
suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2)
highlight the differences between foetal and adult tissue regulation; 3) point to the importance of adult mesenchyme in
tissue turnover.
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Introduction

Although much is known about the mechanisms that govern

cellular differentiation during development, we know less about

the processes that regulate cell turnover and homeostasis in the

adult. Perhaps the exceptions to this rule are rapidly turning over

tissues such as intestine, skin and haematopoietic tissue. Recently it

has been shown that genes required for regulating differentiation

during foetal development may not be used in regulating turnover

of the same tissues in the adult [1,2].

Mutation of the Wilms tumour gene, WT1, in humans may lead

to the eponymous paediatric kidney cancer, glomerulosclerosis of

the kidney and gonadal dysgenesis, which can manifest as male to

female sex reversal [3]. During foetal development, Wt1 is

expressed in the kidney, gonads, spleen, the mesothelium which

surrounds most organs as well as ill-defined body mesenchyme.

Knockout mice lack kidneys, gonads, and spleen and the animals

die at mid-gestation through the lack of coronary vasculature

formation [4]. There are no apparent defects of the skeletal,

haematopoietic, digestive, or metabolic systems.

Recently we have shown that Wt1 is a key regulator of the

balance between the epithelial and mesenchymal states in a

number of developing organs. Whereas it is required for the

mesenchymal to epithelial transition (MET) underlying the

formation of kidney nephrons, in the heart it is essential for the

reverse process, the epithelial to mesenchyme transition (EMT)

required for the production of proliferating cardiovascular

progenitors from the epicardium (a mesothelium) [5]. In a similar

vein Wt1 expressing mesothelial cells in the intestine and lung

produce mesenchymal progenitors for vascular smooth muscle

[6,7]. Furthermore, very recent evidence proves that, in the

developing liver, Wt1 expressing mesothelial cells provide the
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precursors for stellate cells [8,9,10]. Stellate cells in the liver and

the pancreas have aroused much interest through their ability to

regulate tissue fibrosis, via the production of cytokines [11,12].

They are also important for the progression of pancreatic cancer

[13].

In the adult, Wt1 is expressed in very few tissues in a small

percent of cells. These include the mesothelium surrounding a

number of visceral organs [14], the glomerular podocyte cells of

the kidney, Sertoli/granulosa cells in the testes/ovaries [15,16,17]

and 1% of bone marrow (BM) cells (with properties of restricted

haematopoietic progenitors) [18]. Nothern Blot analysis has shown

that Wt1 is also expressed in a variety of epithelial cells including

spleen, lung and heart. Our own data, including those provided in

this paper suggest that this mainly reflects expression in the

mesothelial lining of these tissues. We speculated that the

expression of Wt1 in these rare sites in the adult could have

functional significance, for the following reasons. Firstly, given the

importance of the mesothelium as a source of progenitor cells,

requiring Wt1 function during development, we hypothesised that

mesothelia might perform a similar function in the adult and this

might require Wt1.

Secondly, Wt1 is essential for the formation and maturation of

podocytes [19]. We hypothesised that continued expression of Wt1

in the adult would reflect a role in kidney maintenance.

Thirdly, WT1 is mutated or overexpressed in acute myeloid

leukaemia (AML) [20]. However, Wt1 is not required for foetal

haematopoiesis [21]. Given Wt1 expression in adult bone marrow

and association with leukaemia, we surmised that Wt1 might play

a role in adult haematopoiesis.

Finally, WT1 is expressed at high levels in most adult cancers

studied [22], though expression has not been detected in the

normal tissue counterparts. It has been proposed that WT1 might

be an oncogene in adult cancer in contrast to its function as a

tumour suppressor in paediatric kidney cancer [3]. As a prelude to

testing this, it was necessary first to determine whether the gene is

essential for normal development or maintenance of the epithelia

from which these tumours arise.

To address these propositions, we deleted the Wt1 gene

ubiquitously in adult mice. While our findings inform on these

issues, the results far exceeded our expectations. The range, severity,

and rapidity of the phenotypes observed were dramatic and

unexpected and raise major questions about adult tissue homeostasis.

Results

Tamoxifen-mediated deletion of Wt1
To enable inducible deletion of Wt1 in the adult, we generated

tamoxifen inducible Wt1 KOs by crossing CAGG promoter driven

Cre-ERTM mice with our homozygous Wt1 conditional mice,

where the first exon of Wt1 is flanked by loxP sites [5]. Successful

Wt1 deletion was demonstrated by recombination PCR and the

depletion of Wt1 expression in mesothelia (Figure S1 and Figure

S2). Deletion of Wt1 in the mesothelium did not affect the integrity

of the tissue (Figure S3). The health status of the mutant animals

deteriorated quickly and all the mice had to be culled by 10 days

post-induction (p.i.). Prior to death, the mutant mice presented

dramatic phenotypes; they were less active and oedemic. Upon

dissection, fluid was sometimes found in the abdominal cavity and

in the subcutaneous tissues. Detailed gravimetric analysis showed

that there was a reduction in the spleen to body weight ratio as

well as in the heart to body weight ratio (Table 1). Subsequent

histological analysis of internal organs revealed pale kidneys,

severe spleen and pancreas atrophy, and deficiency of fat tissues.

For most tissues, mice treated at 3, 10, or 13 weeks of age

developed the same phenotypes. The only exception to this

involved fat, as we discuss in more detail later. Before considering

each phenotype, it is important to emphasise that not all tissues

showed overt signs of damage. For example, we observed no

obvious macroscopic changes to the lung, liver or intestine- three

tissues often involved in systemic inflammatory responses.

Furthermore, although there was a 30% reduction in the heart/

body weight ratio there was no obvious cardiovascular pathology

(Table 1).

Author Summary

It is important to understand the cellular and molecular
pathways that regulate the maintenance and turnover of
adult tissues. These processes often go awry in diseases
and are likely to deteriorate with ageing. Here we show
that removal of a single gene, the Wilms’ Tumour gene,
Wt1, in the adult mouse leads to the extremely rapid
deterioration of multiple tissues. Within 7–9 days after
gene removal kidneys fail, the pancreas and spleen suffer
severe atrophy, there is widespread loss of bone and body
fat, and red blood cells are no longer produced. Our
findings reveal the vulnerability of adult tissues, while
opening up avenues for dissecting the pathways control-
ling tissue turnover. Further experiments showed that the
tissue failure we observed is due both to local defects of
stem/progenitor cell activities and to significant changes in
the serum levels of some key master regulators. In
particular there is a dramatic reduction in the levels of
IGF-1, a key regulator of homeostasis and aging. Our
studies also show that the control of adult tissue turnover
may be different from that during foetal development.
These findings have important implications for under-
standing and treating common human diseases.

Table 1. Summary of the gravemetrics of adult mice deleted for Wt1.

Mature mice

Weight Spleen/BW % Kidney/BW % Heart/BW % Liver/BW % Testes/BW %

Mutant 20.07 0.26060.026 1.67360.085 0.50960.027 7.10360.55 0.64060.60

n = 9 n = 9 n = 9 n = 9 n = 6

Control 20.87 0.58660.033 1.54860.053 0.71460.093 6.78060.34 0.79360.053

n = 12 n = 9 n = 10 n = 11 n = 7

P-value 0.563 0.000* 0.239 0.003* 0.849 0.073

doi:10.1371/journal.pgen.1002404.t001

Wt1–A Major Regulator of Adult Homeostasis
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Deletion of Wt1 leads to acute glomerulosclerosis
Wt1 is crucial for kidney development as the conventional Wt1-

null embryos suffer from renal agenesis [4]. Upon induction of

Wt1 deletion in our model, expression of Wt1 in the podocytes was

completely depleted (Figure 1B) and the mutant mice were shown

to have severe proteinuria (Table 2). H&E staining showed that

the tubules were filled with protein casts (Figure 1A, arrow). The

mutant kidneys had well developed glomerulopathy with cyto-

pathic changes in podocytes and parietal epithelium. There was

almost complete loss of synaptopodin and nephrin expression in

the podocytes in the mutant kidneys (Figure 1C and 1D). EM

studies showed that the foot processes of the podocytes were

completely lost in the mutant kidneys (Figure 1E, day 10 post-

injection). The development of the kidney phenotype in our model

was extremely rapid. Five days post-tamoxifen injection, H&E

stained kidney sections showed normal histology while podocyte

effacement started to appear (Figure 1F). At day 7 post-injection,

protein casts in the tubules were already present and the glomeruli

started showing signs of degeneration (Figure S4a). Finally, plasma

levels of urea and creatinine were normal at day 5 p.i., started to

rise at day 7 p.i., and were significantly elevated at day 10 p.i

(Table 2). In our model, mice that were heterozygous for the Wt1

conditional allele (CAGG-CreERTM; Wt1loxP/+) did not exhibit any

kidney abnormalities after tamoxifen-mediated deletion of Wt1. In

addition, tamoxifen treated mice that were only positive for the

CAGG-CreERTM allele and wild type for the Wt1 loxP sites (i.e.

CAGG-CreERTM positive; Wt1+/+) were also included as controls

and did not demonstrate any phenotypes. The kidney phenotype

in our model is similar to other nephrotic syndrome mice where

podocytes are damaged [23,24,25,26]. However, none of these

other mouse models presented any of the other phenotypes we

describe below apart from the kidney defects. Most importantly,

Wt1 has been deleted specifically in adult podocytes. These

animals develop glomeruloscelosis similar to that described here

but did not develop the other phenotypes we report below.

Furthermore, the mice survived well beyond the timeframe

reported here [27].

Wt1 is expressed at E9 in the urogenital ridge and subsequently

in the sex cords of the genital ridge in mice and it is a crucial factor

for gonad development and sex determination [28]. In adult mice,

Wt1 is expressed in Sertoli cells in the testes and granulosa cells in

the ovaries [15]. We observed a reduction in the size of the testes

and ovaries; however the difference was not statistically significant

(Table 1). None of the testis markers studied showed any difference

in expression patterns (Figure S5).

Deletion of Wt1 leads to an aberrant haematopoietic
system

Asplenia in the conventional Wt1-null mice correlates with

enhanced apoptosis in the primordial spleen cells [29]. In the adult

Wt1 KO model, the mutant spleen was much paler and smaller in

size compared with the control spleen (Figure 2A, arrow). There

was a reduction in the number of proliferating cells in the mutant

spleen; however the number of cells expressing an apoptotic

marker (active caspase 3) remained unchanged (Figure S8A–S8D).

The spleen to body weight ratio was reduced by 60% in the

mutants of both the young (Figure 2D, 3 week old, p-value = 0.003;

8 controls and 5 mutants were analysed) and mature groups

(Figure 2D, p-value = 0.000, 9 controls and 12 mutants were

analysed).

The mutant mice had diminished extramedullary haematopoi-

esis within the red pulp compartment while white pulp remained

largely unaffected (Figure 2B, 2C). FACS analysis showed an

almost complete absence of erythrocytes (Ter-119 positive) in the

mutant spleens (Figure 2E, 0.6960.17% in the mutant c.f.

55.763.9% in the control spleen, p-value = 0.024; five controls

and three mutants were analysed) and in Wt1-mutant bone

marrow (Figure 2E, 7.363.1% in the mutant c.f. 30.364.0% in

the control bone marrow, p-value = 0.025; five controls and three

mutants were analysed).

An intrinsic defect in the mutant haematopoietic system
Maturation of red blood cells requires erythropoietin (EPO)

[30], which is synthesised mainly in the kidney. Furthermore, Wt1

has been shown to transcriptionally activate the EPO gene [31]. To

determine whether the defect in erythropoiesis is intrinsic to the

haematopoietic system, we cultured the mutant bone marrow cells

in a methylcellulose-based system where a complete set of factors

for supporting haematopoietic differentiation is provided in the

medium. After two weeks in culture, despite the presence of all the

required growth factors, the Wt1-mutant bone marrow cells failed

to differentiate into the erythrocyte lineage, while the control bone

marrow cells, as expected, did form red blood cells (Figure 2F,

5.0%61.87% in the mutant compared with 31.3%69.6% in the

control; five controls and three mutants were analysed, p-

value = 0.05).

To address whether this defect in erythropoiesis reflects a cell

autonomous role for Wt1 in haematopoiesis, we set out to

characterise the 1% of bone marrow cells that express Wt1. Using

the Wt1-GFP knockin mouse (Wt1GFP/+), we FACS sorted GFP

positive cells from the bone marrow of Wt1GFP/+ mice and

cultured them in a methylcellulose-based system. It has been

shown previously that some Wt1-expressing cells in the bone

marrow express markers characteristic of short-term haematopoi-

etic stem cells (Ter1192CD45+Mac-1loc-kit+Sca-1+) [18] but the

differentiation potential of these cells was not investigated. Hence

we investigated the potential of these Wt1-GFP cells to

differentiate to different haematopoietic lineages in culture. First

we stained the GFP positive BM cells with a set of haematopoietic

stem cell markers (CD150, CD48, and CD244) [32] and showed

that approximately 50% of GFP positive BM cells were in the

population of oligolineage-restricted progenitors (CD1502CD48+-

CD2442). Before culturing, no GFP-positive cells were positive for

Ter-119 or Cd11b and only a few percent of the cells expressed

CD45. After two weeks in culture, the GFP-positive cells were able

to form Ter119 (red blood cells), CD45 (white blood cells), and

CD11b (granulocytes) positive cells (Figure 2G). From this we can

conclude that the Wt1-expressing cells are oligolineage-restricted

progenitors.

We then set out to test if the reduction of erythrocytes reflected

a decrease in the number of erythrocyte progenitors (Pre CFU-E)

using the high resolution myeloerythroid progenitor cell staging

method described by Pronk et al [33]. Representative flow

cytometric profiles are shown in Figure 3. We saw a significant

reduction in the % of Pre CFU-E in the mutant spleen (Figure 3,

0.2760.06 in the controls and 0.0360.008 in the mutants, p-

value = 0.001; 7 control and 8 mutant mice were analysed).

Erythrocyte progenitor cells branch from megakaryocyte-erythro-

cyte progenitors (PreMegE). Another progenitor that branches

from PreMegE is the Megakaryocyte progenitor (MkP) which

produces platelets. Both MkP and Pre MegE were reduced

significantly in the mutant spleen (Figure 3) However, the number

of platelets in the circulation was not affected (control platelet

number is 880.5689.9 K/mL and mutant platelet number is

817.56164 K/mL). Mutant mice did not show any obvious

bleeding tendencies. The half life of platelets is about 35 hours

[34]. Platelet deficiency may have developed if the mice had

survived longer.

Wt1–A Major Regulator of Adult Homeostasis
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Deletion of Wt1 leads to rapid bone loss
We observed abnormalities of the growth plate in both the tibias

and femurs of Wt1-mutant mice. The vascular invasion zones were

irregular and anaemic (Figure 4A, indicated by arrow). The

proliferative zone chondrocytes of the mutant mice were irregular

with less surrounding territorial matrix than control mice

(Figure 4A). The inner (marrow) surface of the long bone from

the mutant mice was ragged compared with control mice

(Figure 4B, arrows), suggesting increased bone resorption. We

then analysed the bone architecture of femurs, tibias, and spine 9

days after induction of Wt1 deletion using mCT (Figure 4C). The

3D movie of the trabecular bone loss is shown in Videos S1 and

S2. Trabecular bone volume was reduced by 30% in the mutants

(Figure 4D), mostly due to a reduction in trabecular number and a

small reduction in trabecular thickness. Furthermore, trabecular

connectivity was also reduced. Taken together, these changes in

bone architecture would be expected to lead to a substantial

reduction in bone strength (Figure 4D). The bone loss observed

could be due to either reduced bone growth or increased bone

absorption. However, bone formation is a relatively slow process,

and in view of the rapidity of the phenotype observed here it

seemed that increased bone resorption was the more likely cause.

We therefore stained sections of the long bones for the osteoclast

marker TRAcP and observed dramatically increased numbers of

osteoclasts on the bone surface of the Wt1-mutant bones

(Figure 4E). To test if these bone phenotypes might reflect an

intrinsic role for Wt1 in the osteoclast and osteoblast lineages, we

harvested fresh bone marrow cells from the mutant mice, induced

Wt1 deletion by treating the bone marrow cells with 4-OH

tamoxifen for three days and cultured the cells in media

supplemented with M-CSF and RANKL to induce osteoclast

differentiation. Surprisingly and in contrast to the in vivo study,

mutant bone marrow cells in which Wt1 had been deleted by

tamoxifen treatment were less capable of forming osteoclasts in vitro

(Figure 4F, p-value = 0.05 and 0.029 at 10 and 30 mg/ml of

RANKL respectively; three separate experiments were performed

each using bone marrow pooled from 2–3 control or mutant mice).

When we used a similar in vitro approach using culture medium

inducing osteoblastic differentiation, we observed that Wt1-mutant

osteoblasts had reduced bone differentiation ability as levels of the

osteoblast marker enzyme alkaline phosphatase were reduced

(Figure 4G, p-value = 0.037; three separate experiments were

performed). These results suggest that Wt1 plays an intrinsic role

in both osteoclast and osteoblast differentiation, and that the loss

of Wt1 is likely to disturb bone homeostasis.

Fat reduction following Wt1 deletion
The Wt1-mutant mice also displayed reduction in the size of fat

pads. In addition to the abdominal fat pads which mainly

comprise white adipocytes, interscapular brown adipocytes were

also atrophic and had fewer lipid cytoplasmic vacuoles than

controls (Figure 5A–5J). Although the trend of fat loss was

consistent in mutant mice, the reduction of fat pad size seemed to

be more variable in the older group of animals (13 weeks,

Figure 5K, arrows). In some mutant animals, the reduction in the

size of fat pads was observed in both the interscapular and

abdominal fat pads, while in other mutants the lipid vacuole size

reduction was seen in the abdominal fat pads but not in the

interscapular fat pads. The weight of fat pads in the mutant mice

did not reflect their actual size because of the oedema (data not

shown), and we therefore analysed fat pad volume using whole

body mCT scans. Mice were scanned at the start (before tamoxifen

injection) and the end of the experiment (9 days after induction).

Results from the mCT scan confirmed the substantial fat loss in the

mutants (Figure S7, arrows). There was no difference in the

number of apoptotic and proliferating cells in the fat pads between

mutant and control mice. Histological analysis of the adipose

tissues showed that the reduction in the size of fat pads reflected a

decrease in the vacuole size of the adipose tissues, as seen in the

abdominal fat pads (Figure 5L–5M, p,0.05; three controls and

three mutant mice were analysed). Consistent with this loss of fat,

there was a significant reduction in the level of AP2 expression in

mutant abdominal fat pads (Figure 5N, p-value = 0.05; three

controls and three mutants were analysed).

Wt1 expression in fat has not been reported previously.

However, here we show that Wt1 is expressed in the mesentery,

Figure 1. Severe kidney phenotype in the adult conditional Wt1 KOs. A, At day 10 post-injection, H&E staining of paraffin sections showing
accumulation of protein cast in the mutant kidney (right) c.f. control (left). B, Kidney sections stained with a Wt1-specific antibody in the mutant
kidney (right) c.f. control (left); scale bar, 20 mm. C, Immunostaining of a podocyte marker synaptopodin; scale bar, 10 mm. D, Immunostaining of
nephrin in the control and mutant kidney (right); scale bar, 10 mm. E, EM studies show the presence of foot process (arrows) of the podocytes in
control mice (left) while the foot process is completely abolished in the mutants (right) at day 10 postinjection. F, At day 5 post-injection, effacement
of foot process starts to show in the mutants c.f. the normal controls; scale bar, 2 mm.
doi:10.1371/journal.pgen.1002404.g001

Table 2. Urine and serum biochemistry analysis of adult mice deleted for Wt1.

N Urine protein (mg/dl) Serum urea (mmol/l) Serum Creatinine (mol/l) Serum albumin (g/l) Serum amylase (U/l)

Day 5 Control 4 561.81 9.6361.13 25.9861.78 560.7664.7

Mutant 3 4.660.26 8.161.56 22.462.55 597.3641.5

P-value 0.857 0.533 0.267 0.533

Day 7 Control 6 5.6260.88 11.8261.08 21.4262.23 427.3696.3

Mutant 5 11.0864.22 15.2563.51 Not detected 367634.6

P-value 0.021* 0.127 n/a 0.289

Day 10 Control 5 65.1615.2 6.6660.78 12.0860.76 25.8561.27 6486117

Mutant 3 1503.76137.3 30.1768.47 58.6651.33 15.460.57 3926172

P-value 0.05* 0.025* 0.064 0.083 0.165

doi:10.1371/journal.pgen.1002404.t002

Wt1–A Major Regulator of Adult Homeostasis
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epididymal, and retroperitoneal fat pads, but not at detectable

levels in the abdominal fat pad nor in the interscapular brown

adipose tissue (Figure 5O, 5P). Given the fact that adipocytes and

osteoblasts have a common origin in the bone marrow, we

examined whether there was any alteration in the number of

adipocytes in the bone marrow. Labelling adipocytes using

AdipoRed, we found a reduction in the number of adipocytes in

the mutant bone marrow (Figure 5Q, p-value = 0.021; four

controls and four mutants were analysed).

As adipocytes and osteoblasts arise from the stromal mesenchy-

mal population in the bone marrow, we speculated that Wt1 loss

might lead to a disturbance in this population which can be

quantified using an antibody to Stro-1. We did in fact find a

significant (five fold) increase in this population of cells following

Wt1 loss (Figure 4H, p-value = 0.02; four controls and four

mutants were analysed).

Deletion of Wt1 leads to atrophy in the exocrine pancreas
Figure 6G–6J (arrows) shows the successful depletion of Wt1

expression in the pancreatic mesothelium. The pancreas from the

mutant mice was severely atrophied. H&E staining demonstrated

that there was a substantial amount of cell loss in the exocrine

tissues while the endocrine pancreas remained largely unaffected

(Figure 6A, 6B). Acini in the mutant pancreas were loosely packed

and acinar cells appeared atrophied and presented less eosino-

philic cytoplasmic staining, suggesting a reduced zymogen content.

Residual acinar epithelial cells were rounded and less cohesive

with neighbouring cells. Similar aberrant histology started to

appear at day 7 after Cre activation (Figure S4B). We saw an

increase in the number of apoptotic cells in the mutant pancreas

(Figure 6C, 6D) while the number of proliferating cells remained

unchanged (Figure 6E, 6F). Although the pathology of our model

shares many similarities to pancreatitis mouse models, there was

no elevation of serum amylase level in the Wt1-mutant mice

(Table 2). Given the severity of the pancreas phenotype, it is

surprising to see the lack of any elevation of serum amylase.

However, this probably reflects the short space of time between

the onset of the phenotype and death of the mice. Pancreatitis

involves inflammation of the pancreatic tissues and in Wt1-mutant

mice we observed a low-grade inflammation in much of the

pancreas and scattered foci of more severe active inflammation. In

the Wt1-mutant pancreas, the presence of infiltrating macrophages

was confirmed by staining with macrophage marker F4/80 (Figure

S6E, S6F); however, staining of CD11b, Gr1, and CD3 were

absent (data not shown). Both insulin and amylase expression were

normal in the mutant pancreas sections (Figure S6A–S6D).

To try to gain more insight into the origin of the pancreatic

phenotype, we examined more closely the cell types that express

Wt1 in the exocrine pancreas. Pancreatic stellate cells (PSCs) have

been implicated in pancreatitis and pancreatic cancer. We show

Wt1 is expressed in the mesothelial lining of the pancreas as well as

in PSCs. Desmin is a marker for PSCs [35]. The interstitial cells

that express Wt1 also express desmin, and this was demonstrated

in sectioned pancreata (Figure 6K–6M) and in cultured PSCs

(Figure 6N).

Serum protein profiling reveals no systemic inflammatory
or nutritional response but dramatic reduction in IGF-1
levels

One possible explanation for the dramatic and acute nature of

the phenotypes observed in these mice is a systemic inflammatory

response, even though analysis of the diseased pancreas did not

suggest this. Furthermore, even though the animals appeared to

show no signs of distress and their stomachs were full at 9–10

days, it is possible that the bone and fat defects were due to

nutritional deprivation. To assess these possibilities, we carried

out quantitative analysis of 40 cytokines and 38 adipokines in

mutant versus wildtype serum using antibody arrays. Perhaps

surprisingly, given the severity of the phenotypes there was no

statistically significant change in the levels of any inflammatory

cytokines (Figure 7A; three controls and three mutants were

analysed), arguing that the phenotypes were not due to a systemic

inflammatory response. As a positive control to test that the

arrays were working, we treated the mice with LPS and then

assayed cytokine levels. There was a 23 fold induction in MIP-2,

an 11 fold induction of JE, a 6 fold induction of KC, and a 3 fold

induction of TNFa (Figure 7B). These findings demonstrate that

the assays work and are able to measure an acute systemic

inflammatory response. Similarly, there was no indication of

nutritional deprivation. Following calorific restriction, there is

reported to be a 60–80% reduction in serum leptin levels [36,37],

a 65% reduction in TNFa [38], a 100% increase in AgRP/FIAF

[39], and a 75% increase in the levels of adiponectin [40]. We

saw no significant changes in any of these molecules (Table 3 and

Figure 7C), supporting the idea that the mice were not suffering

nutritional deprivation and, in turn, this was not causing any of

the phenotypes. However, we did observe a dramatic 85%

reduction in the levels of IGF-1 and 3.5 fold increase in the levels

of FGF21 (Figure 7C). This could in part account for the bone

and fat phenotypes respectively. To investigate if the reduction of

IGF-1 levels could due to global growth hormone deficiency, we

measured circulating growth hormone (GH) using ELISA. We

observed a slight elevation of GH levels in the mutant serum

(Figure 7J; three controls and five mutants were analysed, p-

value = 0.025). Histology analysis showed absence of any

pathological abnormalities in the pituitary and adrenal glands

(Figure 7D–7I).

Discussion

The multiple organ disturbance observed in adult mice deleted

for Wt1 is striking, and, we believe, unprecedented in terms of

severity and rapidity of onset. There is perhaps no need to point

out that most of these phenotypes have relevance for diseases

common in adults, even though our starting point was a gene more

or less defined for its role in the development of several organs.

Our study shows that Wt1 plays a key role in regulating the

production or turnover of red blood cells, bone and fat in the

adult. Despite intensive analysis of Wt1-null foetuses, including

those surviving to 18 days gestation, no developmental defects in

these tissues were found previously [4,29]. Thus our study

Figure 2. Deletion of Wt1 leads to an aberrant haematopoietic system. A, Images of mutant spleen (arrow) compared with control spleen
(injected at 3 week old); scale bar, 10 mm. (B,C) H&E staining show depletion of the red pulp compartment in the mutant spleen (C, arrow) c.f. in the
control spleen (B; injected at 10 week old);scale bar, 400 mm. D, Analysis of the spleen to body weight ratio (control, black; mutant, white box). E,
FACS analysis of spleen and bone marrow cells with CD-45 APC(y-axis) and Ter-119 PE(x-axis, red circles). The percentage of CD45 and Ter119 positive
cells is summarised in the table. F, FACS analysis of Ter119-PE and CD45-APC on control and mutant bone marrow cells grown in a methylcelluose
based medium, where Wt1 is deleted in vitro by culturing with 4-OH tamoxifen (1 mM). G, FACS analysis of Ter119, CD45, and CD11b on FACS-sorted
GFP positive bone marrow cells (from Wt1-GFP knockin mice) before and after grown in a methylcellulose-based system.
doi:10.1371/journal.pgen.1002404.g002
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contributes to the growing body of evidence that adult tissues may

employ different or additional players compared to foetal

development. Wt1 is among a list of genes whose methylation

increases with age in a genome-wide CpG island methylation

profiling study [41]. Therefore Wt1 expression levels may well

decrease with age. It will be important to determine whether Wt1

levels in these key cell populations reduce during aging or under

different environmental influences. If so, this could contribute to

disease-related phenotypes described here.

Although there is much future work needed to elucidate the

mechanisms underlying these phenotypes, there are several

conclusions we can draw at present. Perhaps, surprisingly, we

could detect no significant changes in serum cytokine levels,

arguing that the phenotypes we observe are unlikely to be due to a

systemic inflammatory response, even though this is often

associated with damage to the tissues that are affected in the

Wt1 mutant mice. As we argue below, the phenotypes involving

the kidney and erythrocytes reflect an intrinsic function of Wt1 in

Figure 3. High-resolution fractionation of erythroid progenitors in mutant spleen. Spleen cells were stained with antibodies against Sca-1,
c-kit, CD41, CD150, FcgR, CD105, and a cocktail mixture of mature blood cell lineage markers (Lineage). Cells were also stained with 7-AAD and only
live cells are displayed. Representative flow cytometric profiles are illustrated. The percentage of MkP, Pro Ery+CFU-E, Pre MegE, and Pre CFU-E in
control and mutant spleens is listed.
doi:10.1371/journal.pgen.1002404.g003
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Figure 4. Deletion of Wt1 leads to rapid bone loss. A, H&E staining show defects in the Wt1-mutant growth plates (arrows; injected at 3 week
old). B, H&E sections of long bone from control and mutant mice (injected at 3 week old). C, uCT images of trabecular bone of femurs from mutant
(right) and control mice (left) injected at 10 weeks old. D, Bone histomorphometry analysis on tibia, femur, and spine. Values are expressed as % of
change from control mice (8 mutants and 8 control mice were analysed). BV/TV: percentage trabecular bone volume; Tb.Th: Trabecular thickness;
Tb.Sp: Trabecular spacing; Tb.N: Trabecular number; Conn.Dn: Connectivity density. *:p,0.05; **:p,0.01; ***:p,0.001. E, TRAcP staining (red)
showing osteoclasts in the bone section. F, Analysis of in vitro osteoclast formation ability from control and mutant bone marrow cells in the presence
of RANKL at various concentrations (10 and 30 mg/ml). G, Analysis of alkaline phosphatase activity in osteoblasts, differentiated from bone marrow
cells. H, FACS analysis of % of Stro-1 positive cells in control and mutant bone marrow.
doi:10.1371/journal.pgen.1002404.g004
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Figure 5. Fat reduction following Wt1 deletion. Skin pulps from control (A) and mutant (B) mice (injected at 3 week old); scale bar, 1 cm. (C,D)
Images of abdominal fat pads. (E,F) Images of interscapular brown adipose tissue; scale bar, 5 mm. H&E staining of the corresponding fat pads is
shown in G–J, respectively; scale bar, 25 mm. K, H&E sections of abdominal fat pads from mice injected at 13 week old (arrows indicate lipid vacuoles).
Box plot of lipid vacuole size measurement of adipocytes in the abdominal fat pads from the younger group of mice (L) and from the matured group
of mice (M). N, Quantitative PCR analysis of AP2 expression in the abdominal fat pads in control and mutant mice. O, Quantitative PCR analysis of
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these tissues or their progenitors. On the other hand, we believe

loss of fat and bone is likely to be a combination of systemic and

local factors.

The phenotypes involving the haematopoietic system and bone,

have their origins wholly or partly within the bone marrow itself.

Wt1 is expressed in a restricted haematopoietic progenitor

relative level of Wt1 expression in different fat pads. P, RT-PCR showing Wt1 and 18s rRNA expression in fat pads. SC, subcutaneous; BAT, brown
adipose tissue (interscapular brown adipose tissue); RP, retroperitoneal; EPI, epididymal; MES, mesenteric; M15, murine embryonic mesonephros-
derived cell line (positive control for Wt1 expression). Q, FACS analysis of number of adipocytes positive for AdipoRed in control and mutant bone
marrow (p-value = 0.018).
doi:10.1371/journal.pgen.1002404.g005

Figure 6. Deletion of Wt1 leads to atrophy in the exocrine pancreas. (A, B) H&E staining show massive atrophy in the exocrine pancreas.
Immunohistochemistry analysis show active caspase 3 (C,D; scale bar, 40 mm); Ki67 (E,F; scale bar, 100 mm) and Wt1-antibody (G,H). Nuclei are stained
with DAPI (blue); scale bar, 100 mm. Higher magnification images are shown in I&J scale bar, 20 mm. K, Double immunofluorescence staining of
pancreas sections with Wt1-antibody (green)and desmin antibody (red). Nuclei are stained with DAPI (blue); scale bar, 25 mm. Area circled in (K) is
shown in a higher magnification in L&M; scale bar,10 mm. N, Double immunofluorescence of Wt1(green) and desmin (red) in cultured PSCs; scale bar
50 mm.
doi:10.1371/journal.pgen.1002404.g006
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population and its loss leads to disturbance in red blood cell and

osteoclast production. This is consistent with the previous finding

that Wt1 expression is upregulated during early myeloid

differentiation (particularly in the common myeloid progenitors

and megakaryocyte-erythroid progenitors) [18]. In keeping with

this, we found the levels of PreMegE, MkP, and Pre CFU-E were

significantly decreased in mutant spleen, Given the association of

Wt1 with AML, we might have expected an imbalance in the

myeloid compartment. Preliminary analysis has not demonstrated

a reduction in the absolute number of monocytes and granulocytes

in the circulation of Wt1 mutant mice. However, this may have

only become evident if the mice had survived longer.

The bone loss in most part is likely to result from the increase in

osteoclasts that we observed in the bone marrow. Paradoxically,

mutant mice showed a reduction in osteoclast formation ability in

vitro. The bone marrow compartment in which we saw an increase

in the number of osteoclasts consists of a mixed population of cells.

The mesenchymal stromal cells and haemaatopoietic stem cells are

Figure 7. Cytokine, adipokine, and growth hormone analysis in control and mutant plasma. A, Cytokine profiling in control and mutant
plasma. B, Cytokine array performed using plasma from mouse treated with LPS. C, Results from adipokine array showing fold of difference in the
level of adipokines between mutant and control mouse plasma. D &E, H&E staining of adrenal glands (control = left, mutant = right; scale
bar = 100 mm). F&G, H&E staining of pituitary glands; scale bar = 500 mm. H&I, H&E staining of pituitary anterior lobes; scale bar = 50 mm. J,
Measurement of growth hormone (GH) in mouse plasma using ELISA.
doi:10.1371/journal.pgen.1002404.g007
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in close proximity in the bone marrow and there is known to be

crosstalk between these cell types [42,43]. Our in vitro osteoclast

formation cell culture system started with a restricted population of

cells (bone marrow stromal cells). The in vivo and in vitro difference

could be due to factor(s) that are present in the bone marrow but

absent in the in vitro culturing system.

However, we also found that Wt1 is required for osteoblast

synthesis in bone marrow culture pointing to a role in the

mesenchymal lineage. Consistent with this, our preliminary

experiments have shown that non-haematopoietic Wt1-GFP

positive cells from the bone marrow stroma are able to

differentiate to bone and fat (unpublished observations). Further-

more, we show here that Wt1 loss also leads to an increase in Stro1

positive stromal mesenchymal stem cells, which may explain partly

the disturbance in adipocyte and osteoblast production in the bone

marrow. Our serum protein analysis showed a dramatic reduction

of IGF-1 levels and this might be expected to contribute to the

bone loss phenotype. Interestingly, deletion of IGF-1 specifically in

the liver, the major source of synthesis, only leads to a 75%

reduction in circulating IGF-1 levels and there is no apparent

phenotype [44]. However, mice that are double homozygous

mutant for IGF-1 and the binding protein acid labile subunit

(ALS) [45] show an 85% reduction in IGF1- levels and a similar

degree of bone thinning to that seen in our Wt1 adult knockout

mice. Hence, it seems reasonable to conclude that the 85%

reduction of IGF-1 levels in our mutant mice is a major factor

behind the bone phenotype. In the Wt1 mutant mice, the IGF-1

levels are much lower than those observed when IGF-1 is deleted

specifically in the liver, so either Wt1 is required for IGF-1

expression in non-hepatocytes, or for factors that stabilise IGF-1 in

the serum. Growth hormone, produced by the pituitary gland, is a

major regulator of IGF-1 levels. One possibility was that the

reduction in IGF-1 level was due to defects in the pituitary axis

and downregulation of GH. However, we detected no pathological

abnormalities in the pituitary and adrenal glands, and if anything

GH levels were increased.

Obesity is a major health problem and there is considerable

topical interest in the factors that regulate fat levels. Loss of Wt1

not only leads to reduced adipocyte production in the bone

marrow but also to rapid systemic loss of fat, with dramatically

reduced vacuole size. There are several reasons why we believe

this fat loss is not due to under-nourishment. Fat vacuole reduction

was already apparent 7 days after tamoxifen injection, at which

time the health status of the animals was normal. Nine days post-

injection, the mutant mice still actively sought food and their

stomachs were full on autopsy. Importantly, there was no change

in the levels of circulating leptin, adiponectin, TNFa, and AgRP/

FIAF, all of which would be expected to change dramatically after

one or two days of calorific restriction. There was a reduction in

the level of lipocalin 2 in mutant serum (Figure 7C). Lipocalin 2 is

abundantly produced from adipocytes [46,47]. The reduction of

lipocalin 2 could be caused by the reduced volume of adipose

tissues in mutant mice. Taken together our findings provide

evidence that Wt1 may influence both the formation and

maintenance of adipocytes. The fat loss is extremely rapid and

given that Wt1 only appears to be expressed in a proportion of fat

pads affected, it seems likely that systemic factors might be

involved. We found that the levels of circulating FGF21 increased

by 3.5 fold in the mutant animals and this would be expected to

induce some fat loss [48].

The RT-PCR result showed that Wt1 expression was detected

in fat pads (Figure 5O). In preliminary experiments to address

whether this reflects expression in mature adipocytes or the

stromal vascular compartments, we digested and fractioned fat

tissues from the Wt1-GFP knockin mice into the floating mature

adipocyte layer and the stromal vascular fraction. The majority of

the GFP signal was seen in the stromal vascular fraction

(unpublished data). This supports the idea that systemic or local

paracrine factors dependent on Wt1 are regulating adipocyte

homeostasis.

The effect of Wt1 loss on bone and fat turnover is interesting in

the context of Wilms’ tumours. We and others have shown that the

15–20% subset of Wilms’ tumours arising through WT1 loss are

more likely to be stromal (mesenchymal) predominant and often

contain ectopic tissues, including bone, fat, cartilage and muscle

[49,50,51]. Taken together this and our new findings underline the

key role of the mesenchyme and Wt1 in tissue turnover and

maintenance.

With regard to the pancreatic atrophy, this does not appear to

be typical pancreatitis as there was no increase in serum a-

amylase. However, as discussed above, amylase level may have

increased if the mice had lived longer. Serum cytokine profiles

showed that there was no systemic inflammatory response in the

mutant mice. In line with this there was no observable pathology

in liver, lung and intestine, all tissues susceptible to inflammation.

It remains to be seen whether the severe pancreatic atrophy is due

to loss of Wt1 function within the tissue itself. We can exclude an

effect through loss of Wt1 function in the islet or acinar cells as

deletion of the gene specifically in these cell types using PDX1-Cre

did not lead to overt pathology in the pancreas or elsewhere (P.

Hohenstein, V. Brunton, M. Frame, O. Samson and N. Hastie

unpublished observations). One possibility is that the pancreatic

atrophy arises through activation of the sub-population of stellate

cells that express Wt1 although further study is required to

investigate this hypothesis. Activated stellate cells produce

cytokines [52] and we speculate that these may be responsible

for destroying the acinar cells. Given the published data on foetal

liver [8], the parallel between pancreatic and hepatic stellate cells,

and the role of Wt1 in generating vascular progenitors from the

epicardium by EMT [5], we hypothesise that a proportion of

pancreatic stellate cells arise from the mesothelium, via an EMT,

once more pointing to the role of this tissue as a source of

mesenchymal progenitor cells.

Despite the accumulating knowledge about the importance of

Wt1 at multiple stages of kidney development, the function of Wt1

in the podocytes of mature glomeruli has remained the subject of

some speculation. Even though children and adult mice with Wt1

mutations characteristic of Denys-Drash and Frasier syndrome

develop glomerulosclerosis, it was always possible that the damage

had its origin in utero, rather than reflecting a continued function

for Wt1 in the maintenance of the adult kidney. Our results

provide the first evidence that Wt1 is crucial for maintaining the

integrity of mature podocytes. Our model allowed us to test

whether the glomerulosclerosis we observed arises through

Table 3. Comparison of change of adipokine levels in fasting/
caloric restriction condition and adult mice deleted for Wt1.

Fasting/Caloric restriction Wt1 deletion

Leptin 60–80% reduction [36,37] No change

Adiponectin 75% increase [40] No change

TNF-a 65% reduction [38] No change

AgRP/FIAF 100% increase [39] No change

IGF-1 30% reduction [56,57] 85% reduction

doi:10.1371/journal.pgen.1002404.t003
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abnormalities of cell proliferation or the differentiation state of the

mature podocytes. We did not see major changes in proliferation

or apoptosis in the mutant glomeruli deleted for Wt1 (using

proliferation marker anti-phosph-histone H3 and apoptosis

marker active caspase 3, Figure S8E–S8H). However, we showed

that loss of Wt1 expression resulted in damage to the foot processes

of the podocytes therefore causing a morphological alteration.

Nephrin is necessary for the renal filtration barrier and is also a

known downstream target of Wt1 during kidney development

[53]. Consistent with this we found that nephrin expression levels

reduce dramatically after Wt1 deletion, indicating that the

transcriptional regulation of nephrin by Wt1 continues into adult

life. Here we show that Wt1, known to be a key regulator of

nephrogenesis, is also vital for the maintenance of adult glomerular

structure and function, something that has been the subject of

speculation but not proven until now.

Clearly these findings should be followed up using tissue specific

Cre lines. However, at present suitable Cre lines are not available

for several of the crucial lineages we wished to investigate,

including the mesothelium and mesenchymal stem cells. In the

mean time, we have been able to use cultures to show that several

of the phenotypes we observed are intrinsic to the bone marrow.

The results presented in this study open new avenues of research

into mesenchymal cell function in adult tissues. The cell types that

express Wt1 in adult tissues e.g. the hepatic and pancreatic stellate

cells and bone marrow progenitors are mesenchymal. The other

major cell types expressing Wt1, namely the podocytes and

mesothelia are considered epithelial, but are unusual in expressing

high levels of mesenchymal markers, such as vimentin. Given our

findings, it is interesting to speculate on the possible relationships

between the cell types expressing and requiring Wt1 in these

different tissues. Different reports have shown that stellate cells

may arise from the mesothelium and bone marrow [10,54]. Our

studies suggest that Wt1 may have a function in both stellate cells

and bone marrow mesenchymal stem cells. Stellate cells, like the

epicardially-derived cells requiring Wt1, synthesise retinoic acid.

One of the striking features of stellate cells is the presence of

vitamin A (retinoid) droplets and this becomes lost upon stellate

cell activation. In the epicardium we have shown that RALDH2

levels and RA are reduced when Wt1 is deleted and that RALDH2

is a direct transcriptional target of Wt1 [9]. We have shown that

Wt1 is required for the EMT that generates RA-synthesising

coronary vascular progenitors from the epicardium and it is

interesting that an EMT is required for activation of stellate cells.

It is also notable that stellate cells synthesise high levels of fat and it

will be interesting to see if the Wt1 expressing cells in fat have

similarities to stellate cells and mesenchymal bone marrow cells.

Finally our findings may also have implications for cancer

therapy. There is a growing number of studies developing anti-

WT1 immune therapy for common cancers predicated on the

belief that WT1 is expressed at high levels in cancers [20,55], but

very low levels in the normal adult. Our findings raise questions

about this approach as damage to these normal Wt1-expressing

tissues might have adverse effects.

Materials and Methods

Generation of Wt1-conditional knockout mice
Mice were housed and bred in animal facilities at the MRC

HGU and the University of Edinburgh. Animals were kept in

compliance with Home Office regulations. The Wt1-conditional

line was made in our group [5]. To obtain [CAGG-CreERTM

positive, Wt1loxP/loxP] and [CAGG-CreERTM negative, Wt1loxP/loxP]

transgenic mice, [CAGG-CreERTM positive] males were mated with

Wt1loxP/loxP females, and the resulting offspring intercrossed. Wt1-

GFP knockin mice used in this study were kindly provided by

Professor H Sugiyama [18].

Tamoxifen-induced Wt1 deletion in [CAGG-CreERTM,
Wt1loxP/loxP] mice

Cre recombinase was induced by intraperitoneal administration

of tamoxifen (4 mg/40 g body weight for 5 days; Sigma). All

animal work was carried out under the permission of license. To

delete Wt1 in vitro, cells were treated with 4-OH tamoxifen (1 mM,

Sigma) for three days.

Full methods are described in Text S1. Antibodies and primers

are listed in Tables S1 and S2.

Supporting Information

Figure S1 PCR testing for Cre-mediated recombination in

inducible Wt1-KO. Top panel: PCR bands show the Cre-me-

diated recombination in all the tissues tested in the mutant mice

(indicated by ‘recombination site’, CreERTM+/2; Wt1loxP/loxP).

The Cre-mediated recombination is not 100% as PCR bands

represent no-recombination are still found in the mutant tissues

(indicated by ‘lox site’). Lower panel: no recombination was

detected in the control mice (tamoxifen injected litter mates,

CreERTM2/2; Wt1loxP/loxP).

(PDF)

Figure S2 Immunohistochemistry analysis of depletion of Wt1

expression in tissues from the mutant mice. Images of sections

from mutant mice (CreERTM2/2; Wt1loxP/loxp) are at the right

column, and images from the control mice (litter mates,

CreERTM2/2; Wt1loxP/loxP) which have also been injected with

tamoxifen are at the left column. Using a Wt1-specific antibody,

Wt1 expression is detected in the mesothelial lining of organs

including pancreas, spleen, lung, and uterus (brown, indicated by

arrows). Wt1 expression is not detected in the corresponding

tissues from the mutant mice. Scale bars, 20 mm in the heart,

pancreas, and spleen. 100 mm in lung, and 40 mm in uterus.

(PDF)

Figure S3 Immunohistochemistry analysis indicate the intact-

ness of the mesothelium in the mutant mice. Images of sections

from the mutant mice are shown in the right column and images

from the control mice are shown in the left column. Mesothelium

lining of organs is detected using a cytokeratin antibody. Scale

bars, 20 mm in the heart, pancreas, and spleen. Scale bar, 100 mm

in the lung and kidney.

(PDF)

Figure S4 Characterisation of phenotypes in Wt1-KO mice at

day 7 post-injection. H&E staining of sections from Wt1-KO mice.

A, In the mutant kidney, protein casts are already visible. B,

Moderate level of atrophy is seen in the mutant pancreas. C, The

reduction in the size of fat vacuoles in the abdominal fat pad is

already evident in the mutant mice. D, There is a slight reduction

of the size of fat vacuoles in the brown fat pad from mutant mice;

scale bars, 50 mm.

(PDF)

Figure S5 Minor gonadal defects in Wt1-KO mice. A, H&E

staining show control (left) and mutant (right) testes. B, H&E

staining of ovaries from control (left) and mutant mice (right).

Follicles and corpora lutea are present in all mice but there was

less luteal tissue in the mutant ovaries. In addition, there were

fewer large, antral and atreic follicles in the mutant ovaries.

Although the size of the gonads appear to be smaller in the
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mutants, the difference in the weights (e.g. testes) is not significant.

Partial depletion of Wt1 expression in the Sertoli cells in the

mutant testes (D) compared with the control (C). Wt1 staining in

the granulosa cells in the ovaries (E) and its complete absence in

the mutant (F). (G–I), Immunohistochemistry analysis of the

expression of Sdmg1 (marker for Sertoli cells), Plzf1 (marker for

spermatogonia), and Mvh (marker for spermatogonia, spermato-

cytes, and round spermatids) between control (left column) and

mutant (right column) testes; scale bar, 50 mm.

(PDF)

Figure S6 Immunohistochemistry analysis of markers in the

pancreas. Images of sections from the mutant mice are shown in

the right column and images from the control mice are shown in

the left column. A–D, Immunohistochemistry staining indicate

normal insulin and a-amylase expression in the mutant pancreas;

scale bar, 50 mm. E, F, Using a pan marker for macrophages (F4/

80), infiltrating macrophages are detected in the mutant pancreas;

scale bar, 40 mm.

(PDF)

Figure S7 Fat reduction in mutant Wt1-KO using mCT.

Representative transverse images taken from the mCT scanned mice

before and after tamoxifen injection. Control mice (CreERTM2/2,

Wt1loxP/loxP) used for fat analysis are the sexed matched littermates

of the mutant mice (CreERTM+/2, Wt1loxP/loxP). Light grey shades

indicate fat tissues which are present in both control and mutant

mice before tamoxifen injection (arrows). Darker shades indicate

soft tissues and black shades indicate skeletons. Gaps indicate

gastric gas trapped in the intestines of the animal. After 9 days of

tamoxifen injection, a reduction in the fat pads is noticed in the

mutant mice.

(PDF)

Figure S8 IHC staining of apotosis and proliferation markers in

Wt1-KO mice. A,B, IHC staining of active caspase-3 in control

(left) and mutant (right) spleen; scale bar = 50 um. C,D, IHC

staining of phospho-histone H3 in control (left) and mutant spleen

(right); scale bar = 100 um. E,F, IHC staining of active caspase-3

in control (left) and muatnt kidney (right); scale bar = 50 um. G,H,

IHC staining of phospho-histone H3 in control (left) and mutant

kidney (right); scale bar = 50 um. expression in the mutant

pancreas; scale bar, 50 mm.

(PDF)

Table S1 Antibodies and dilution factor.

(PDF)

Table S2 Sequences of primers and Roche Universal Probe

Library number used for Q-PCR.

(PDF)

Text S1 Supporting methods.

(DOC)

Video S1 Movie shows mCT scanned structures of trabecular

bone of femurs from tamoxifen-injected control mouse.

(MOV)

Video S2 Movie shows mCT scanned structures of trabecular

bone of femurs from tamoxifen-injected mutant mouse.

(MOV)
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