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Ladder-type n-conjugated compounds containing a benzo[2,1-b:3,4-b"]difuran skeleton, such as dibenzo[d,d'|benzo[2,1-b:3,4-
b'ldifuran (syn-DBBDF) and dinaphtho[2,3-d:2',3'-d"|benzo[2,1-b:3,4-b'|difuran (syn-DNBDF) were synthesized. Their photophysi-
cal and electrochemical properties were revealed by UV—vis absorption and photoluminescence spectroscopy and cyclic voltammet-

ry. Organic field-effect transistors (OFETs) were fabricated with these compounds as organic semiconductors, and their semicon-

ducting properties were evaluated. OFETs with syn-DBBDF and syn-DNBDF showed typical p-type characteristics with hole
mobilities of <1.5 x 1073 cm2V~!ls7! and <1.0 x 107! cm2-V~ 57! respectively.

Introduction

Organic semiconductors have significantly been developed in
the past two decades by virtue of their advantages, such as low
weight, flexibility, large-area processability, which are differ-
ent features from conventional silicon-based semiconductors.
Organic semiconducting materials can be used as active layers
in organic field-effect transistors (OFETs) [1-7], organic light-
emitting diodes (OLEDs) [8-10], and organic photovoltaics
(OPVs) [11,12]. Among many organic semiconducting materi-
als so far reported, thiophene-fused n-conjugated compounds
have been widely studied as organic semiconducting materials
and found to exhibit high semiconducting performances [5,13-
16].

Furan-containing m-conjugated compounds have attracted less
attention until recently [17-27]. The oxygen atom possesses a
smaller van der Waals radius than a sulfur atom. Accordingly,
furan-containing n-conjugated compounds should be expected
to form a denser packing structure in the solid state, which is
one of the main requirements for high semiconducting proper-
ties [28-31]. In 2007, Nakamura and co-workers reported the
synthesis of furan-fused ladder-type n-conjugated compounds,
benzo[1,2-b:4,5-b"]difurans (BDFs) 1 and their application to
OLEDs as hole-transporting materials (Figure 1) [32]. They
also synthesized a series of isomeric BDFs (benzo[1,2-b:5,4-
b']difurans and benzo[1,2-b:6,5-b"]difurans) and studied their
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structure—property relationship [33,34]. Furthermore, naphtho-
difurans with a fused-naphthalene between two furan rings have
been developed as organic semiconductors for OFETs [19,20].
In particular, the naphtho[2,1-5:6,5-b']difuran derivative 2 has
been reported to demonstrate an excellent OFET mobility of
3.6 cm®V~!s71 [19]. Previously, we have reported the synthe-
sis of dibenzo[d,d'|benzo[1,2-b:4,5-b"|difurans (anti-DBBDFs),
which is also a m-extended homologue of BDF [35]. The OFET
devices with an anti-DBBDF skeleton exhibited p-type semi-
conducting properties [36,37]. For example, dialkyl-substituted
anti-DBBDF 3 showed a hole mobility of 0.042 cm?2-V~!

[38]. Recently, we have also found that dinaphtho[2,3-d:2',3'-
d'lbenzo[1,2-b:4,5-b']difuran (anti-DNBDF 4) with a more
extended m-conjugation afforded higher hole mobility of
0.33 ecm?V 1571 [39-41]. These studies clearly demonstrate
that furan-fused n-conjugated compounds are promising candi-
dates as organic semiconducting materials, and it is highly
desirable to investigate the structure—property relationship thor-
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Figure 1: Structures of furan-fused ladder-type m-conjugated compounds.
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oughly for further development of furan-containing semicon-

ducting materials.

Herein we report the synthesis of ladder-type m-conjugated
compounds containing a benzo[2,1-b:3,4-b']difuran skeleton,
such as dibenzo[d,d'|benzo[2,1-b:3,4-b"]difuran (syn-DBBDF 5)
and dinaphtho[2,3-d:2',3'-d']benzo[2,1-b:3,4-b"']difuran
(syn-DNBDF 6, Figure 1) [42-46]. The physical and electro-
chemical properties of the synthesized compounds are also
discussed. OFETs with these compounds as semiconducting
layers were found to exhibit relatively high hole mobility of
<1.0 x 107! em? V717l

Results and Discussion

Synthesis

The synthetic routes to syn-DBBDF 5 and syn-DNBDF 6 are
described in Scheme 1 and Scheme 2. 3-Decylanisole was first
synthesized from commercially available 3-bromoanisole via
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Scheme 1: Synthesis of syn-DBBDF 5.
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Scheme 2: Synthesis of syn-DNBDF 6.

iron-catalyzed cross-coupling reaction with decylmagnesium
bromide in 71% yield [47]. Lithiation of the obtained 3-decyl-
anisole with s-BuLi and the following treatment with
2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (iPrO-
Bpin) gave boronate ester 7 in 57% yield. Then, terphenyl 9
was synthesized via palladium-catalyzed Suzuki—Miyaura cross
coupling of boronate ester 7 with 2,3-difluoro-1,4-diiodoben-
zene (96% yield) and subsequent demethylation (95% yield).
Finally, the desired syn-DBBDF 5 was successfully synthe-
sized via the double intramolecular cyclization under basic
conditions at high temperature (92% yield) [37,43]. The same
synthetic strategy was applied to the synthesis of syn-DNBDF
(Scheme 2). 2-Decyl-7-methoxynaphthalene was prepared from
7-methoxynaphthalen-2-ol in two steps according to the litera-
ture [23,48], and used for the synthesis of boronate ester 10
(45% yield). The following cross coupling (80% yield),
demethylation (85% yield), and the double cyclization (87%
yield) gave the target syn-DNBDF 6. The obtained syn-DBBDF
5 is soluble in common organic solvents and can be purified by
column chromatography. In contrast, because of low solubility
in common organic solvents, the crude product of syn-DNBDF
6 was purified by washing several times with water and the

subsequent sublimation.

Thermal properties

The phase-transition properties and thermal stability of
syn-DBBDF § and syn-DNBDF 6 were evaluated by differen-
tial scanning calorimetry (DSC) and thermogravimetric analy-
sis (TGA), respectively. The DSC scans of syn-DBBDF 5 and

syn-DNBDF 6 showed some transition peaks with the first
phase-transition temperature at 20 °C and 45 °C, respectively,
in the heating process (Figure 2a). Such phase-transition tem-
peratures are >50 °C lower than those of their anti-isomers 3
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Figure 2: (a) DSC and (b) TG curves of syn-DBBDF 5 and
syn-DNBDF 6.
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Table 1: Photophysical and electrochemical properties of syn/anti-DBBDFs and DNBDFs.

Compound Aabs (nM)2 Aem (nM)P ® (%)°
syn-DBBDF 5 324 328 18
syn-DNBDF 6 365 370 61
anti-DBBDF 3 342 - —
anti-DNBDF 4 394 - -

Stokes shift (cm™")  Eg (eV) Eonset (V)®  Enomo (eV)f
376 3.72 0.84 -5.64
370 3.32 0.56 -5.36
- 3.51 - -
- 3.15 - -

aln CHCI3 (1.0 x 1075 M). PIn CHCI3 (1.0 x 10~7 M). Excitation at 310 nm. Absolute quantum yield determined by a calibrated integrating sphere
system. Excitation at 275 nm for syn-DBBDF 5 and syn-DNBDF 6. 9Optical band gaps estimated from the onset position of the UV-vis absorption
spectra in solution. ®Onset potentials (vs Fc/Fc*) of the first oxidation wave determined by cyclic voltammetry: 1.0 mM solution in CHoCl, (syn-DBBDF
5) or Cl,CHCHCI, (syn-DNBDF 6) with 0.1 M BusNCIO,, Pt as working and counter electrodes, scan rate = 50 mV-s~". fCalculated according to
Enomo = —(Eox + 4.80) eV (Fc/Fc* redox couple: 4.8 eV below the vacuum level).

and 4 [38,39]. These results indicate that syn-DBBDF 5 and
syn-DNBDF 6 form weaker intermolecular interactions in
the solid state than their corresponding anti-isomers. The
mesophase of syn-DBBDF 5 was converted to the isotropic
phase at 115 °C, while syn-DNBDF 6 did not melt below
250 °C. From the TG measurement, the temperatures of 5%
weight loss (Tys) of syn-DBBDF 5 and syn-DNBDF 6 were
estimated to be 272 °C and 423 °C, respectively (Figure 2b).

Photophysical properties

The UV-vis spectrum of syn-DBBDF 5 in chloroform
showed the strongest absorption maximum at 324 nm, while
syn-DNBDF 6 showed a red-shifted absorption spectrum with
the strongest absorption maximum at 365 nm (Figure 3a and
Table 1). Since syn-DNBDF 6 contains one more benzene ring
at each terminal of the n-conjugated skeleton than syn-DBBDF
5, it should possess an extended n-conjugation length, resulting
in a red-shifted absorption spectrum. The HOMO-LUMO
energy gaps estimated from the absorption edges were 3.72 eV
and 3.32 eV for syn-DBBDF § and syn-DNBDF 6, respectively.
Their photoluminescence spectra as shown in Figure 3b exhib-
ited mirror images of their absorption spectra with small Stokes
shifts (376 cmi™! for syn-DBBDF 5; 370 cmi! for syn-DNBDF
6), which reflect their high rigidity. Similar to its absorption
spectra, syn-DNBDF 6 showed a red-shifted emission band with
a relatively high quantum yield (¢ = 61% in CHCl; solution).

To investigate the structure—property relationship of DBBDFs
and DNBDFs, the optical properties of syn-DBBDF 5 and
syn-DNBDF 6 were compared with those of anti-DBBDF 3
and anti-DNBDF 4. The UV—vis spectra of anti-DBBDF 3 and
anti-DNBDF 4 were reported to show absorption maxima
(342 nm for anti-DBBDF 3; 394 nm for anti-DNBDF 4) and
absorption edges [353 nm (3.51 eV) for anti-DBBDF 3; 410 nm
(3.15 eV) for anti-DNBDF 4] at longer wavelengths than
syn-DBBDF 5 and syn-DNBDF 6, respectively [38,39]. Accord-
ingly, syn-isomers are indicated to possess shorter m-conjuga-

tion lengths than anti-isomers.
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Figure 3: (a) UV-vis absorption spectra of syn-DBBDF 5 (blue line)
and syn-DNBDF 6 (red line) in CHCI3 (1.0 x 107° M) and (b) normal-
ized photoluminescence spectra of syn-DBBDF 5 (blue line) and
syn-DNBDF 6 (red line) in CHCl3 (1.0 x 1077 M).

Electrochemical properties

Cyclic voltammograms of syn-DBBDF 5 and syn-DNBDF 6 are
shown in Figure 4 [1.0 mM solution in CH;,Cl, (syn-DBBDF 5)
or CI,CHCHCI; (syn-DNBDF 6) with 0.10 M BuyNClO4], and
the electrochemical properties were summarized in Table 1.
syn-DBBDF 5 exhibited two oxidation waves, and an onset
potential of the first oxidation wave was determined to be
0.84 V (vs Fc/Fc™). Accordingly, the HOMO energy level was
estimated to be —5.64 eV under the premise that the energy
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level of Fc/Fc' is 4.8 eV below the vacuum level [49-51]. In
contrast, syn-DNBDF 6 showed one oxidation wave with an
onset potential of 0.56 eV (vs Fe/Fc™, HOMO = —5.36 €V). The
lower oxidation potential and higher HOMO energy level of
syn-DNBDF 6 should reflect its longer n-conjugation length
than syn-DBBDF 5. Based on their HOMO energy levels and
HOMO-LUMO energy gaps, syn-DBBDF 5 and syn-DNBDF 6
are expected to work as stable semiconducting materials under

ambient conditions.

syn-DBBDF
syn-DNBDF ﬂ
-2 -15 -1 -05 O© 0.5 1 1.5 2

potential (V vs Fc/Fc*)

Figure 4: Cyclic voltammograms of syn-DBBDF 5 and syn-DNBDF 6
(measurement conditions: 1.0 mM in CH,ClI, for syn-DBBDF 5 or
CI,CHCHCI, for syn-DNBDF 6 with 0.1 M BuyNCIOg4; Pt as working
and counter electrodes; scan rate = 50 mV-s'1).

Fabrication of OFETs with syn-DBBDF- and
syn-DNBDF-based thin films and evaluation

of semiconducting properties

To study the semiconducting properties of syn-DBBDF 5 and
syn-DNBDF 6, bottom-gate/top-contact OTFTs were utilized
as a device structure. Thin films of syn-DBBDF 5 and
syn-DNBDF 6 were deposited by sublimation under high
vacuum (p < 1075 Pa) at a rate of ca. 1 A-s™! for syn-DBBDF
and ca. 0.4 A-s™! for syn-DNBDF onto the Si/SiO, substrates.
The substrate temperature (7,p) during deposition has been
known to have a great impact on the OTFT performance by
affecting the nucleation and growth of the organic molecules
[52,53]. Accordingly, the thin films were fabricated at different

Table 2: FET characteristics.

Compound Surfactant Tsup (°C)
syn-DBBDF 5 - 30
HMDS 30
syn-DNBDF 6 - 30
- 90
HMDS 30
HMDS 90

Beilstein J. Org. Chem. 2016, 12, 805-812.

substrate temperatures. In addition to the bare Si/SiO, sub-
strates, the HMDS (hexamethyldisilazane)-treated substrates
were used to evaluate the effect of the substrate structure on the
device performance. The gold source/drain electrodes were
deposited on the thin films. The channel width and length were
500 um and 50 um, respectively.

Both syn-DBBDF- and syn-DNBDF-based OFETs demon-
strated typical p-type semiconducting characteristics. The
extracted FET parameters and the transfer/output character-
istics are summarized in Table 2, Figure 5, and Figure S21
(Supporting Information File 1). The syn-DBBDF-based OFETs
fabricated on bare Si/SiO; substrates at Tq,, = 30 °C showed a
field-effect mobility ppgy of 5.0 x 107> em?V~1s7! and an
Ion/Iogr ratio of 10!, while those with HMDS-treated substrates
demonstrated higher mobility of 1.5 x 1073 cm?V~!s™! with an
Ion/Iogr ratio of 103, The deposition of syn-DBBDF 5 at
Tsup = 60 °C did not give a thin film, which should be caused
by re-sublimation of syn-DBBDF 5§ from the surface. The
more n-extended syn-DNBDF 6 afforded higher performances
than syn-DBBDF 5. OFETs fabricated on the bare and
HMDS-treated Si/SiO, substrates at T, = 30 °C showed a
field-effect mobility of 2.3 x 1072 cm2-V s (I, /16 = 10%)
and 2.0 x 1072 cm2- V157! (Iy/Iosr = 103), respectively. The
FET performance also depends on the substrate temperature
during thin-film fabrication. Thus, the highest hole mobility of
1.0 x 107" em?-V~!s71 was obtained for the syn-DNBDF-based
device fabricated on the HMDS-treated substrate at Ty, =
90 °C, while it was lower than that fabricated with anti-DNBDF
derivatives [39].

Analysis of thin films

The vapor-deposited thin films of syn-DBBDF 5 and
syn-DNBDF 6 were analyzed by X-ray diffraction (XRD) and
atomic force microscopy (AFM). Figure 6 shows the out-of-
plane XRD pattern and an AFM image of the thin film of
syn-DNBDF 6 on the HMDS-treated Si/Si0, substrate (Tgyp, =
90 °C), which demonstrated the highest mobility in this study.
The layer structure was confirmed with a monolayer thickness
(d-spacing) of 3.94 nm (20 = 2.24°). Molecular lengths with ex-

HreT (cm2-VT-s71) Vin (V) lon/ ot
5.0x 107 -26 101
1.5x 1073 -25 103
2.3x1072 -24 108
6.5x 1072 -25 104
2.0 x 1072 -22 108
1.0 x 107! -28 105
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Figure 5: Output and transfer characteristics of the representative OFETs with a thin film of (a) syn-DBBDF 5 (Tgyp = 30 °C) and (b) syn-DNBDF 6
(Tsub = 90 °C) on HMDS-treated Si/SiO, substrates.

tended linear alkyl chains are expected to be ca. 4.2 nm. Ac-  strate. Such a layer structure was also confirmed by AFM. As
cordingly, syn-DNBDF 6 should be arranged on the substrate  shown in Figure 6b,c, the thin film of syn-DNBDF 6 forms rela-
with its molecular long axis almost perpendicular to the sub- tively large grains (ca. 0.5 pm in size) with a layer structure
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Figure 6: (a) XRD pattern, (b) AFM image (2 x 2 um), and (c) cross-section height of a thin film of syn-DNBDF 6 on HMDS-treated Si/SiO, substrates
(Tsub = 90 °C).
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(step heights ca. 4.0 nm) along with heterogeneous protrusions.
The molecular arrangement indicated by these observations is
advantageous for the in-plane charge transfer of OFETs. Based
on XRD patterns and AFM images, the substrate treatment and
the substrate temperature seem to have a limited impact on the
molecular arrangement (Figures S22 and S23, Supporting Infor-
mation File 1). The similar layer structure was also confirmed
for syn-DBBDF 5 (Figures S22 and S23, Supporting Informa-
tion File 1).

Conclusion

In summary, we investigated the synthesis and properties of
ladder-type m-conjugated compounds, dibenzo[d,d'|benzo[2,1-
b:3,4-b'difuran (syn-DBBDF 5) and dinaphtho[2,3-d:2',3'-
d'lbenzo[2,1-b:3,4-b']difuran (syn-DNBDF 6). Based on the
photophysical and electrochemical data, both compounds are
expected to possess good air stability as organic semiconduct-
ing materials. The comparison with their anti-isomers revealed
that the m-conjugation in syn-DBBDF 5 and syn-DNBDF 6 is
less effective than those of their anti-isomers. OFETs based on
these compounds were fabricated as bottom-gate top-contact
devices, and their semiconducting properties were evaluated.
All devices showed typical p-type transistor characteristics. The
highest hole mobility of 1.0 x 107! cm2-V~1-s7! was achieved
when using syn-DNBDF-based OFET device.

Supporting Information

Supporting Information File 1

General experimental procedures, synthetic
procedures/characterization data of compounds 5-12,
device fabrication/evaluation procedures, OFET
characteristics, XRD patterns, and AFM images.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-12-79-S1.pdf]
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