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ASIC-dependent LTP at multiple 
glutamatergic synapses in 
amygdala network is required for 
fear memory
Po-Han Chiang1, Ta-Chun Chien3, Chih-Cheng Chen4, Yuchio Yanagawa5 &  
Cheng-Chang Lien1, 2, 6

Genetic variants in the human ortholog of acid-sensing ion channel-1a subunit (ASIC1a) gene are 
associated with panic disorder and amygdala dysfunction. Both fear learning and activity-induced 
long-term potentiation (LTP) of cortico-basolateral amygdala (BLA) synapses are impaired in ASIC1a-
null mice, suggesting a critical role of ASICs in fear memory formation. In this study, we found that 
ASICs were differentially expressed within the amygdala neuronal population, and the extent of 
LTP at various glutamatergic synapses correlated with the level of ASIC expression in postsynaptic 
neurons. Importantly, selective deletion of ASIC1a in GABAergic cells, including amygdala output 
neurons, eliminated LTP in these cells and reduced fear learning to the same extent as that found 
when ASIC1a was selectively abolished in BLA glutamatergic neurons. Thus, fear learning requires 
ASIC-dependent LTP at multiple amygdala synapses, including both cortico-BLA input synapses and 
intra-amygdala synapses on output neurons.

The amygdala is a complex structure in the mid-temporal lobe that plays a key role in fear learning 
and emotional processing1–3. Genetic variation in ACCN2, the human ortholog of the acid-sensing ion 
channel-1a subunit (ASIC1a) gene, is associated with both panic disorder and alterations in human 
amygdala structure and function4. Several lines of evidence implicate acid-sensing ion channels (ASICs) 
in the rodent amygdala in fear-like behavior. First, ASIC1a-null mice display impaired conditioned fear 
behavior and reduced innate fear5,6. Second, restoring ASIC1a in the basolateral complex of the amygdala 
(BLA) of ASIC1a-null mice rescues the fear memory impairments7. Third, overexpression of ASIC1a 
increases acquired fear-related behavior8. Finally, ASICs contribute to long-term potentiation (LTP) at 
cortico-BLA synapses, and this synaptic plasticity is critical for associative fear learning and memory9.

As proton-activated Na+-permeable channels, ASICs belong to the degenerin/epithelial Na+ channel 
superfamily10–12. To date, seven ASIC subunits (ASIC1a, 1b, 2a, 2b, 3, 4, and 5; a and b refer to splice 
variants), encoded by five genes (ASIC1 to ASIC5), have been identified13,14. At least ASIC1a, ASIC2a, 
and ASIC2b are expressed in the central nervous system11,15–17. Of these, ASIC1a is the obligatory sub-
unit of the ASIC5,18. In the brain, ASICs consist of homotrimeric ASIC1a and heterotrimeric ASIC1a/2a 
and ASIC1a/2b channels19,20. Although ASICs are expressed widely in the brain, ASIC1a and ASIC2 are 
particularly enriched in the amygdala9,20. The amygdala comprises a heterogeneous collection of nuclei, 
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including the BLA, the central amygdala (CeA), and intercalated cell masses (ICMs)1,3,21. Fear condi-
tioning is known to cause widespread synaptic plasticity in the amygdala22–25. Despite the importance of 
ASICs in the cortico-BLA for fear learning, it is not clear whether the distribution of ASICs varies among 
different cell types within amygdala circuits, or whether synaptic plasticity in other cell types depends on 
ASICs and such plasticity also plays a role in fear learning.

To address these questions, we measured ASIC currents in different types of amygdala neurons in 
acutely-prepared brain slices from young adult mice. We found that ASIC expression was highly cell 
type- and region-specific, whereas ASIC gating kinetics and subunit composition were similar. Notably, 
ASICs were highly expressed in glutamatergic principal neurons (PNs) of the BLA receiving cortical and 
thalamic inputs, and low-threshold bursting (LTB) gamma-aminobutyric acid (GABA)-ergic neurons in 
the medial sector of the CeA (CeM), which is the output station of the amygdala circuitry. Analysis of 
synaptic plasticity revealed that the abundance of ASICs in postsynaptic neurons correlated with, and 
contributed to, LTP of glutamatergic synapses and fear-like behavior. Furthermore, ASIC-dependent LTP 
at both cortico-BLA and intra-amygdala glutamatergic synapses was required for the formation of fear 
memories.

Results
Cell type-specific expression of ASICs in the BLA. The amygdala is composed of several synapti-
cally interconnected nuclei2,3,26. The borders of individual nuclei in a coronal section of the mouse brain 
were outlined, and neurons were identified using the neuronal marker NeuN (Fig. 1a, left). To differenti-
ate between GABAergic and non-GABAergic neurons, we used knock-in (KI) mice expressing the green 
fluorescent protein (GFP) in glutamate decarboxylase 67 (GAD67)-positive neurons27 (Fig. 1a, middle). 
Consistent with previous studies2,21,26–28, we found that the BLA consisted of a great majority (approx-
imately 80%) of glutamatergic PNs and a minority of sparsely GABAergic interneurons (INs), whereas 
the CeA and ICMs were composed of mostly (approximately 90%) GFP-expressing cells (Fig. 1a, right).

To investigate the functional expression of ASICs, we used fast application of proton (H+) to excised 
nucleated patches from recorded neurons (Fig.  1b). As previously described19,29, this method allows 
rapid application of proton, an almost ideal space-clamp, and a reliable measurement of current density. 
Solution exchange could be achieved in less than 200 μs (see Methods) with our fast application system. 
We found that BLA-PNs generated regular and accommodating action potential (AP) trains, in response 
to depolarizing current pulses in the current clamp (Fig.  1b, top). Nucleated patches from BLA-PNs 
exhibited ASIC-like, transient inward currents (Fig. 1b, bottom), in response to a submillisecond switch 
of extracellular pH from 7.4 to 5. The peak amplitude of the current depended on the pH value of the 
applied solution (Fig. 1c).

As expected for a non-voltage-gated Na+ channel11, we found the reversal potential of ASIC-like 
currents to be 67.8 ± 5.2 mV (n = 6; Fig.  1d), close to the Na+ equilibrium potential (61 mV) under the 
recording condition. The current densities measured were independent of animal ages (19 to 30 days, 
152 ± 4.5 pA/pF, n = 14; 30 to 60 days; 139 ± 28 pA/pF, n = 10; 60 to 75 days, 131 ± 8 pA/pF, n = 3; P = 0.50, 
Kruskal–Wallis test) and thus were pooled together in this study. On average, the current density was 
178 ± 14 pA/pF in wild-type (WT) mice (n = 28; Fig. 1e). Using ASIC1a–/– and ASIC2–/– mice, we found 
that a pH fall from 7.4 to 5 did not activate detectable currents in ASIC1a–/– mice (3.0 ± 0.6 pA/pF, n = 5; 
Fig.  1e), while these currents were greatly reduced in ASIC2–/– mice (ASIC2–/–, 45.4 ± 4.5 pA/pF, n = 6; 
***P < 0.001, Wilcoxon rank-sum test; Fig. 1e), consistent with the obligatory role of the ASIC1a subunit 
for a functional ASIC30 and the auxiliary role of ASIC231. Furthermore, we found that although the 
desensitization τ was unchanged (Fig. 1f, bottom left), the current amplitude in ASIC2–/– mice showed 
a significantly accelerated reduction during repeated stimulation (Fig.  1f, bottom right), Finally, these 
currents were significantly reduced by Psalmotoxin 1 (PcTX1) (control, 357 ± 38 pA; PcTX1, 268 ± 34 pA, 
n = 11; ***P < 0.001, Wilcoxon signed-rank test; Fig. 1g), a specific peptide blocker of ASIC1a homomeric, 
and ASIC1a/2b heteromeric, channels32,33. Together, these results indicate that proton-activated currents 
in BLA-PNs were mediated by ASIC1a, ASIC2a, and ASIC2b subunits. Owing to the weak sensitivity to 
PcTX1, a large proportion of current was likely mediated by ASIC1a/2a heteromers.

GABAergic INs in the BLA display heterogeneous intrinsic excitability34,35. To avoid arbitrary and 
subjective classification, we performed hierarchical cluster analysis36 from 72 randomly recorded 
GFP-expressing cells in the BLA of GAD67-GFP KI mice. Four major IN subtypes were identified, 
including accommodating INs (AcINs), stuttering INs (StINs), delay-firing INs (DFINs), and fast-spiking 
INs (FSINs) (see Methods; Supplementary Table S1). Among these, AcINs exhibited an accommodat-
ing AP pattern (Fig.  2a; Supplementary Fig. S1); StINs exhibited a characteristic pattern of multiple 
AP bursts separated by variable quiescent periods (Fig. 2b; Supplementary Fig. S1); DFINs exhibited a 
marked spike delay in response to near-threshold current pulse injection (Fig.  2c; Supplementary Fig. 
S1); and FSINs showed characteristic brief APs with high firing rates and little accommodation (Fig. 2d; 
Supplementary Fig. S1). Nucleated patch measurements from these cells showed that AcINs, StINs, and 
DFINs exhibited large ASIC currents, similar to BLA-PNs, while FSINs showed very small ASIC currents 
(Fig. 2a, b, c, and d, bottom). Thus, ASIC expression in GABAergic INs in the BLA is cell type-specific 
(PN, 150 ± 13 pA/pF, n = 30; AcIN, 136 ± 32 pA/pF, n = 9; StIN, 131 ± 41 pA/pF, n = 10; DFIN, 114 ± 36 pA/
pF, n = 5; FSIN, 8.9 ± 3.2 pA/pF, n = 6; Fig. 2e).



www.nature.com/scientificreports/

3Scientific RepoRts | 5:10143 | DOi: 10.1038/srep10143

Cell type- and subregion-specific ASIC expression in the CeA and ICMs. The CeA, which con-
tains lateral (CeL) and medial (CeM) subdivisions, receives excitatory inputs from the BLA and inhib-
itory projections from the medial–dorsal ICM (ICMMD) and medial–ventral ICM (ICMMV)3. Previous 
studies have identified two major types (‘late-spiking’ [LS] and ‘early-spiking’ [ES]) of GABAergic neu-
rons37,38. Consistently, our cluster analysis of CeL neurons revealed two non-overlapping cell populations 
(Supplementary Fig. S2; Supplementary Table S2), corresponding to LS and ES neurons, with a spike 
delay of 1769 ± 24 ms (n = 46) and 778 ± 86 ms (n = 26), respectively (P < 0.001, Wilcoxon rank-sum test). 

Figure 1. ASIC currents in mouse amygdala neurons were mediated by ASIC1a and ASIC2 subunits. 
(a) A coronal brain section from a GAD67-GFP KI mouse. Left, immunostaining of NeuN. Middle, GFP-
expressing cells in the same slice. Right, merged image. BLA, basolateral amygdala; CeL/CeM, lateral/
medial subdivisions of the central amygdala; ICMMD/ICMMV/ICML, medial–dorsal/medial–ventral/lateral 
intercalated cell mass. Axis: L, lateral; V, ventral. (b) Top, firing pattern of a BLA-PN and the current 
protocol. Bottom, schematic of fast application of H+ to a nucleated patch and averaged ASIC current (from 
seven trials) recorded from the same cell. (c) Top traces, ASIC currents recorded from BLA-PNs. Bottom, 
ASIC current (normalized) plotted against pH value. The single Hill equation (half-maximal pH 6.3, Hill 
coefficient 1.8) was fitted to the data points. Points represent mean values from 4 to 20 experiments. (d) 
Top traces, ASIC currents recorded from a BLA-PN at different membrane potentials. Bottom, the current–
voltage curve of ASIC currents. Data points are fitted with a polynomial function. (e) Top, example traces 
of ASIC currents recorded from BLA-PNs of WT, ASIC1a–/– and ASIC2–/– mice. Bottom, bar graph of the 
average current density. **P < 0.01; ***P < 0.001, Wilcoxon rank-sum test. (f) Top, examples of ASIC currents 
recorded from BLA-PNs of WT and ASIC2–/– mice; currents were evoked by repetitive 1 s pulses (from pH 
7.4 to 5) at 0.05 Hz. Only the first five traces are shown. Bottom, bar graph of the average desensitization 
τ of ASIC currents (left) and time course of cumulative reduction during repeated stimulation (right). 
Current amplitudes were normalized to the first amplitude and were plotted against the time of each pulse. 
Continuous lines represent fits to a single exponential function; time constants for WT and ASIC2–/– are 
37.5 s and 8.9 s, respectively. (g) Top, ASIC currents recorded from BLA-PNs in the control and in the 
presence of 30 nM PcTX1. Traces are average of 3–7 sweeps. Bottom, PcTX1 significantly reduced ASIC 
currents. ***P < 0.001, Wilcoxon signed-rank test. Data obtained from the same cell are connected by solid 
lines.
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Figure 2. Mapping of ASIC expression in different types of amygdala neurons. (a–d) Top, examples of 
firing patterns recorded from BLA-INs as indicated and current protocols. Bottom, averaged ASIC currents 
recorded from the same cells (AcIN, from 13 trials; StIN, from 15 trials; DFIN, from 12 trials; FSIN, from 
14 trials). Scale bars in (a) apply to (b) to (d). (e) Summary of ASIC current density of BLA neurons. 
(f–i) Top, examples of firing patterns recorded from neurons in the CeL and CeM. Bottom, averaged ASIC 
currents (LS, from 7 trials; ES, from 6 trials; CeM-LTB, from 9 trials; CeM-ES, from 14 trials) recorded 
from the same cell. Scale bars in (f) apply to (g) to (i). (j) Summary of ASIC current density. (k–m) Top, 
representative firing patterns of GABAergic neurons in the ICMMV, ICMMD, and ICML. Bottom, ASIC 
currents recorded from the same cells. Scale bars in (k) apply to (l) and (m). (n) Summary of ASIC current 
density of ICM neurons. (o) Heat map summarizing ASIC current density of various cell types of amygdala 
neurons. Error bars represent mean±s.e.m. *P < 0.05, ***P < 0.001; n.s., not significant, Wilcoxon rank-sum 
test.
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We found ASIC currents with modest and similar densities in LS and ES neurons (CeL-LS, 48 ± 13 pA/
pF, n = 12; CeL-ES, 63 ± 15 pA/pF, n = 6; Fig. 2f, g, and j).

The CeM is the main output station of the amygdala circuitry3. We found that, in mouse amygdala, 
the CeM consisted of two major cell types, based on their firing properties: low-threshold bursting (LTB) 
cells (87/147, 59%; Fig. 2h) and ES cells (50/147, 34%; Fig. 2i; Supplementary Table S3). Unlike ES cells, 
LTB cells exhibited characteristic rebound APs after hyperpolarizing pulses (Fig.  2h) and showed sig-
nificantly larger ASIC current densities than those found in ES cells (CeM-LTB, 143 ± 23 pA/pF, n = 14; 
CeM-ES, 71 ± 12 pA/pF, n = 9; P < 0.05, Wilcoxon rank-sum test; Fig. 2j). Thus, unlike the CeL, the CeM 
showed differential ASIC expression in different subpopulations of GABAergic neurons.

The ICMMV and ICMMD are clusters of GABAergic neurons between the BLA and CeA, receiv-
ing input from the BLA and sending projections to the CeL and CeM (Fig.  1a)39. On the other hand, 
the lateral ICM (ICML) is located on the dorsal–lateral side of the BLA, projecting inhibitory outputs 
to the BLA (Fig.  1a)39. We found that all ICM neurons showed similar electrophysiological proper-
ties (Supplementary Table S4) and exhibited modest ASIC currents similar to CeL neurons (ICMMV, 
54 ± 8 pA/pF, n = 5; ICMMD, 44 ± 9 pA/pF, n = 6; ICML, 54 ± 8 pA/pF, n = 5; Fig. 2k, l, m, and n).

In summary, the above functional mapping of ASIC current densities in diverse cell types of the 
amygdala network showed that ASICs were highly expressed in the major cell types of input (BLA) and 
output (CeM) regions of the amygdala (Fig. 2o).

Differential expression of ASICs selectively contributed to LTP in amygdala circuits. The 
functional significance of distinctly high ASIC expression in the main input (BLA-PNs) and output 
(CeM-LTB) amygdala neurons was further examined by studying synaptic plasticity in these neurons. 
A recent study showed that ASIC1a contributes to LTP at cortical inputs to BLA-PNs, and that altera-
tions in proton-ASIC signaling modulate the magnitude of LTP at this synapse9. Since fear conditioning 
causes widespread plasticity at multiple synapses in amygdala circuits22–25, we investigated whether ASIC 
expression contributed to LTP at glutamatergic synapses onto various types of amygdala neurons. Using a 
standard high-frequency stimulation (HFS) protocol, we compared LTP induction at glutamatergic syn-
apses onto four distinct types of amygdala neurons (i.e., BLA-PN, CeM-LTB, CeM-ES, and CeL neurons) 
in brain slices from WT and ASIC1a–/– (NestinCre/+; ASIC1afl/fl) mice (Fig. 3a, b, c, and d, top). Consistent 
with a previous study9, we found that HFS evoked robust LTP (211 ± 25%; n = 6 cells, 4 animals; P < 0.05, 
Wilcoxon signed-rank test; Fig.  3a, bottom) at cortex→BLA-PN synapses in WT littermates, but small 
LTP (128 ± 13%; n = 7 cells, 5 animals; P = 0.15, Wilcoxon signed-rank test; Fig. 3a, bottom) in ASIC1a–/– 
mutants. Interestingly, LTP evoked at BLA→CeM-LTB neuron synapses in WT neurons (144 ± 10%; n = 10 
cells, 7 animals; P < 0.05, Wilcoxon signed-rank test; Fig. 3b, bottom) was also significantly larger than 
that in ASIC1a–/– neurons (104 ± 9%; n = 10 cells, 6 animals; P = 0.92, Wilcoxon signed-rank test; Fig. 3b, 
bottom). In contrast, LTP evoked at BLA→CeM-ES neuron synapses in WT mice (147 ± 15%; n = 9 cells, 
7 animals; P < 0.05, Wilcoxon signed-rank test; Fig. 3c, bottom) was not significantly different from that 
in ASIC1a–/– mice (146 ± 27%; n = 9 cells, 6 animals; P = 0.08, Wilcoxon signed-rank test; Fig. 3c, bottom).

Glutamatergic inputs from the lateral parabrachial nucleus (lPB) in the brainstem also exhibit LTP40,41 
and are required for conditioned fear learning and expression41. Similar to CeM-ES neurons, we found 
that LTP evoked at lPB→CeL neuron synapses in WT neurons (140 ± 7%; n = 21 cells, 16 animals; P < 0.001, 
Wilcoxon signed-rank test; Fig.  3d, bottom) was similar to that in ASIC1a–/– neurons (132 ± 9%; n = 8 
cells, 5 animals; P < 0.05, Wilcoxon signed-rank test; Fig. 3d, bottom).

Collectively, ASIC1a deletion caused a highly significant reduction in the magnitude of LTP in 
BLA-PNs and CeM-LTB neurons (Fig.  3e), both of which exhibited the highest ASIC current density, 
whereas this deletion had little effect on LTP in CeM-ES and CeL neurons that expressed relatively 
low levels of ASICs. This suggests that the level of ASIC expression contributed to the extent of LTP 
induction. In support of this idea, we found that the percentage of reduction in the LTP magnitude 
(Δ LTP%) in ASIC1a–/– littermates, compared to WT mice, positively correlated with the ASIC current 
density observed in the postsynaptic neuron (Pearson’s R = 0.528; P < 0.001, F-test; Fig.  3f). Thus, the 
differential expression of ASICs among amygdala neurons contributed to LTP at both cortico-BLA and 
intra-amygdala glutamatergic synapses.

ASIC1a deletion in GABAergic neurons selectively impaired LTP at BLA-CeM neuron syn-
apses. Next, we investigated whether LTP at cortex→BLA-PN synapses was normal if ASICs were 
deleted in GABAergic neurons only. By crossing ASIC1afl/fl mice with GAD65-Cre transgenic mice, we 
generated GABAergic neuron-specific conditional deletion of ASIC1a in their offspring. Indeed, normal 
ASIC currents were detected in BLA-PNs (Fig. 4a, top), whereas ASIC currents were eliminated in CeM 
neurons (Fig.  4b, top) in mice (GAD65Cre/+; ASIC1afl/fl) with specific ASIC1a deletion in GABAergic 
neurons. In line with this finding, we also found that the application of HFS robustly induced LTP 
at cortex-BLA-PN synapses in mutant mice (GAD65Cre/+; ASIC1afl/fl), which had the specific ASIC1a 
deletion in GABAergic neurons (225 ± 51%; n = 9 cells, 5 animals; P < 0.01, Wilcoxon signed-rank test; 
Fig.  4a, bottom). On average, the magnitudes of LTP at cortex-BLA-PN synapses were similar in WT 
mice and mutants (Fig. 4c). Finally, we tested whether selective deletion of ASIC1a in GABAergic cells, 
including amygdala output neurons, eliminated LTP in these cells. We found that HFS failed to induce 
significant LTP (115 ± 14%; n = 9 cells, 5 animals; P = 0.30, Wilcoxon signed-rank test; Fig.  4b, bottom) 
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at BLA-CeM-LTB neuron synapses in mutants (GAD65Cre/+; ASIC1afl/fl), similar to no LTP in mice with 
pan-neuronal ASIC1a deletion (Fig. 3e; P = 0.60, Wilcoxon rank-sum test), but in contrast to marked LTP 
induction at the same synapse in WT mice (Fig. 4d).

Deleting ASIC1a in GABAergic neurons impaired conditioned fear learning. The impairment of 
fear learning seen in ASIC1a-null mice could be prevented by specific transgenic expression of ASIC1a in 
the amygdala 7. The finding that disrupting ASIC1a in mice resulted in deficits in LTP at cortex→BLA-PN 
synapses has prompted the notion that ASIC-dependent LTP at the sensory inputs to the amygdala plays 
a critical role in conditioned fear learning9. In light of the present finding of ASIC-dependent LTP in the 
amygdala output neurons, we further examined whether deleting ASIC1a in GABAergic neurons also 
affected conditioned fear behavior. Using mice with either pan-neuronal ASIC1a deletion or a specific 

Figure 3. ASICs selectively contributed to LTP at glutamatergic synapses onto amygdala neurons. (a–d) 
Top, experimental configurations. Synaptic responses were measured for cortex→BLA-PN (a), BLA→CeM-
LTB (b), BLA→CeM-ES (c), and lPB→CeL (d) neuron synapses. Bottom, averaged synaptic response 
(normalized) plotted against time. Representative averaged EPSP traces before (black) and after HFS 
(gray) were taken at the time indicated by number. (e) Summary of LTP magnitude, which was measured 
25–30 min after HFS (arrow), at each synapse in WT and ASIC1a–/– mice. **P < 0.01; n.s., not significant, 
Wilcoxon rank-sum test. (f) Plot of the percentage of reduction in LTP magnitude versus ASIC current 
density of postsynaptic neurons. The percentage of LTP reduction correlates with ASIC current density.
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deletion of ASIC1a in GABAergic neurons, we next compared the behavioral effects of ASIC1a deletion 
in all neurons versus deletion in GABAergic neurons only.

Pavlovian fear conditioning was used to test the role of ASICs in learned fear1,2. Mice were placed 
into the conditioning box (context A) and received five trials of tone-foot shock pairings. As illustrated 
(Fig.  5a), an initially neutral, auditory pure-tone conditioned stimulus (CS) was paired with a nox-
ious unconditioned stimulus (US, an aversive footshock). During the training on day 1, we found that 
pan-neuronal ASIC deletion mice (NestinCre/+; ASIC1afl/fl) showed decreased CS/US-induced freezing 
responses, relative to WT littermates (Fig.  5b), suggesting impaired fear learning in ASIC1a-deletion 
mice. Interestingly, mice with specific ASIC1a deletion in GABAergic neurons (GAD65Cre/+; ASIC1afl/fl) 
also exhibited impaired learning behavior similar to that found in pan-neuronal ASIC1a-deletion mice 
(Fig.  5b). On day 2, context- and cue-dependent fear memory was tested. We found that presenting 
either the training context or the cue (tone) elicited normal high-level freezing responses in WT mice 
(Fig.  5c, d). However, mice with either pan-neuronal ASIC1a deletion or specific ASIC1a deletion in 
GABAergic neurons showed similar, but significantly lower, freezing levels (Fig. 5c, d).

Figure 4. ASIC1a deletion in GABAergic neurons impaired LTP at CeM-LTB neuron synapses. (a, b) 
Top, experimental configurations. Representative ASIC current traces evoked in BLA-PN (a) and CeM-LTB 
neurons (b) from WT and mutant (GAD65Cre/+; ASIC1afl/fl) mice. Black bars denote the application of pH 
5 acidic solution. Bottom, synaptic responses were measured for cortex→BLA-PN (a) and BLA→CeM-LTB 
neuron (b) synapses. Averaged synaptic response (normalized) plotted against time. Representative averaged 
EPSP traces before (black) and after HFS (gray) were taken at indicated time points. (c–d) Summary of 
LTP magnitude, which is the average of the normalized postsynaptic responses at 25–30 min after HFS, at 
synapses in WT and mutant mice. *P < 0.05; n.s., not significant, Wilcoxon rank-sum test.
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Figure 5. Deleting ASIC1a in GABAergic neurons impaired conditioned fear behavior. (a) Experimental 
protocol of auditory fear conditioning on day 1 and memory recall tests on day 2. (b) Plot of relative time 
spent in freezing versus the trial (T) of fear conditioning. H, habituation. *P < 0.05; **P < 0.01; ***P < 0.001, 
WT versus NestinCre/ + ; ASIC1afl/fl; ##P < 0.01; ###P < 0.001, WT versus GAD65Cre/+; ASIC1afl/fl, Wilcoxon rank-
sum test. (c, d) Relative time spent in freezing during contextual and cued tests. ***P < 0.001, Wilcoxon 
rank-sum test. (e, f) AAV8 vector encoding GFP-Cre or GFP was injected into BLA of ASIC1afl/fl mice. Left, 
epifluorescence images showing GFP-Cre and GFP expression at BLA. Right, representative ASIC currents 
recorded from transfected and non-transfected neurons. Black bars denote the application of pH 5 acidic 
solution. Scale bars in (e) apply to (f). (g) Plot of relative time spent in freezing versus the trial of fear 
conditioning. *P < 0.05; **P < 0.01, GFP-Cre; ASIC1afl/fl versus GFP; ASIC1afl/fl, Wilcoxon rank-sum test. (h) 
Relative time spent in freezing during memory recall tests. ***P < 0.001, **P < 0.01, Wilcoxon rank-sum test.
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Finally, we tested the behavioral impact of selective deletion of ASIC1a in glutamatergic PNs of the BLA, 
using the Cre/loxP system. We found that bilaterally injecting an adeno-associated viral vector serotype 
8 (AAV8), encoding GFP-Cre under the control of the CaMKIIα promoter (AAV8-CaMKIIα-GFP-Cre), 
into the BLA of ASIC1afl/fl mice specifically eliminated ASIC currents in virus-transfected BLA-PNs, but 
not in non-transfected neurons (Fig.  5e) or neurons transduced with the fluorophore alone (Fig.  5f). 
Moreover, ASIC1afl/fl mice that received the viral vector encoding GFP-Cre in the BLA exhibited lower 
freezing levels than mice injected with a viral vector encoding GFP alone during conditioning (Fig. 5g) 
and the recall test (Fig.  5h). In summary, these results indicate that ASIC1a expression in GABAergic 
neurons was as important as ASIC1a expression in glutamatergic neurons in supporting conditioned 
fear behavior.

Discussion
In this study, we characterized ASIC function in the amygdala at cellular, synaptic, and behavioral levels. 
Using ASIC1a–/– and ASIC2–/– mice, we found that ASIC1a and ASIC2 were co-expressed in the amygdala 
neurons. Moreover, ASIC expression level was highly variable and cell type-specific. In support of the 
notion that ASIC is a synaptic modulator, the extent of LTP correlated positively with the ASIC current 
density in the postsynaptic neuron. Importantly, ASIC1a deletion in GABAergic neurons only eliminated 
LTP of intra-amygdala glutamatergic synapses onto CeM output neurons and reduced both contextual 
and cued fear memory to the same extent as that found for ASIC1a deletion in all neurons or selectively 
in BLA glutamatergic PNs. Thus, fear learning requires ASIC-dependent LTP at multiple amygdala syn-
apses, including both cortico-BLA input synapses, as well as intra-amygdala synapses on output neurons.

Our recent study shows differential expression of ASICs in different cell types within hippocampal 
networks19. Somatic ASIC current density of oriens lacunosum-moleculare (O-LM) cells in the CA1 
region, a classical type of dendrite-targeting IN, is 6 times greater than that of fast-spiking basket cells 
(BCs) in the dentate gyrus, a major class of soma-targeting IN. Similarly, ASIC currents in dendrites of 
O-LM cells evoked by local acid puffing are approximately 6-fold greater than those in BC dendrites 
at remote distances (up to 100 μm) from the soma19. Nevertheless, there is a general concern whether 
somatic ASICs are equally representative of those in the synaptic membrane. In this study, a detailed 
characterization of ASICs was made from patches excised from somata rather than dendrites. Therefore, 
it is important to be aware of this potential pitfall in the interpretation of the correlation between the 
extent of LTP and the ASIC current density in the postsynaptic neurons. Finally, people should keep in 
mind that the extent of ASIC-dependent LTP might be sensitive to the patterns of induction paradigms 
used at synapses. In this study, we used the LTP induction protocol for each synapse type according to 
previous studies (see Methods).

It is intriguing to note that GAD65Cre/+; ASIC1afl/fl mice show a similar extent of fear learning/mem-
ory deficit as NestinCre/+; ASIC1afl/fl mice. The CeM is the final output station projecting to the brainstem 
areas42, which are responsible for freezing expression. The selective disruption of synaptic plasticity at the 
BLA→CeM-LTB synapses, but not cortex→BLA-PN synapses, in GAD65Cre/+; ASIC1afl/fl mice indicates a 
central role of the CeM in fear expression. Nevertheless, we are aware of the important role of BLA-INs 
in controlling fear learning43. Thus, we cannot exclude the possibility that ASIC1a deletion in GABAergic 
INs in GAD65Cre/+; ASIC1afl/fl mice causes abnormal inhibitory control in the BLA, given that ASIC 
expression levels are high in most BLA-IN subtypes. Finally, we speculate that similar changes in LTP 
induction can be observed in cortex-BLA-PN or BLA-CeM-LTB pathway induced by selective deletion 
of ASIC1a in glutamatergic neurons using the AAV-Cre/loxP system. However, if it is not the case, it 
implies that deletion of ASICs during early embryonic stages may disrupt synapse formation or alter the 
synaptic function during the development. If restoring ASIC1a with AAV-ASIC1a can rescues LTP in 
these two pathways in ASIC1a-null mice, it can exclude the essential role of ASIC during development.

The high level of ASIC expression in the primary input (i.e., BLA) and output (i.e., CeM) neurons of 
the fear circuitry is in accordance with the behavioral observation that ASIC1a deletion leads to deficits 
in fear acquisition and expression. In terms of fear expression, at least two types of CeM neurons pro-
ject to two distinct brainstem sites: the periaqueductal gray and dorsal vagal complex42. With respect 
to brainstem-projecting neurons, whether there is a correspondence between the cell type (i.e., LTB 
versus ES) and their brainstem site remains unknown. On the other hand, information transfer from 
the lateral amygdala to the CeM is flexibly gated, depending on the specific pattern of environmental 
cues confronting the animal44. It is thought that the CeL and ICMs fulfill this function, as they receive 
glutamatergic inputs from the BLA and send GABAergic projections to the CeM3. As described above, 
ASICs are modestly expressed in CeL and ICM neurons. The role of ASICs in these neurons and their 
relative contribution to the acquisition of fear conditioning and expression of conditioned fear require 
further studies, for which cell type-specific gene disruption, as demonstrated here, would prove useful.

The gating properties of ASICs described here including desensitization and recovery time course 
(Supplementary Fig. S3) are similar to those of CA1 pyramidal neurons, which contain a mixture of 
homomeric ASIC1a, heteromeric ASIC1a/2a, and heteromeric ASIC1a/2b channels15,19. PcTX1 is known 
to inhibit ASIC1a homomers and ASIC1a/2b heteromers, but not ASIC1a/2a heteromers33. Therefore, 
the great majority (approximately 80%) of ASICs in amygdala neurons is likely mediated by ASIC1a/2a 
heteromers. Conversely, the PcTX1-sensitive component (approximately 20%) is mediated by ASIC1a 
homomers and/or ASIC1a/2b heteromers. Notably, the current (putatively mediated by ASIC1a 
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homomers) in ASIC2-/- mice, which is approximately 20% of the total current in WT mice, exhibits 
a rapid cumulative reduction in responses to successive applications of proton. This phenomenon is 
termed tachyphylaxis45. Since only ASIC1a homomer exhibits prominent tachyphylaxis45, we speculate 
that PcTX1-sensitive component is primarily mediated by ASIC1a homomers. The difference in ASIC 
current densities in various cell types reflects the variation in the expression of ASIC subunits. In our 
study, since no difference in gating properties was found in ASIC currents recorded from all cell types 
(Supplementary Fig. S3), the differential expression of ASICs in each cell type may involve the coor-
dinated regulation of ASIC subunit expression, without altering the relative contribution by ASIC1a 
homomer, and ASIC1a/2b and ASIC1a/2a heteromers.

Two recent studies showed that ASICs participate in synaptic transmission in the amygdala and 
nucleus accumbens where they contribute to approximately 5% of excitatory postsynaptic currents9,46. 
ASICs are Na+- and Ca2+-permeable channels that are activated by extracellular acidosis29. We specu-
late an important role of proton-ASIC signaling during intense presynaptic stimulation. During basal 
transmission, synaptic pH drop is rapidly buffered by a variety of homeostatic mechanisms47. Massive 
extracellular pH reductions may occur during intense activity such as fear conditioning. The lower pH 
can generate larger ASIC currents, thereby boosting N-methyl-d-aspartate (NMDA) receptor function18. 
These effects could explain the involvement of protons and the requirement of ASICs for LTP induced by 
HFS. In this scenario, the strength of proton-ASIC signaling should be critical in determining the rela-
tive contribution of ASICs to learning, memory, and synaptic plasticity. Indeed, several lines of evidence 
support this view. First, ASIC1a and ASIC2 expression in the hippocampus is relatively low, compared 
to other brain regions5,20. Consistent with this, ASIC1a–/–, ASIC2–/–, and ASIC1a/2–/– mice display normal 
spatial learning and memory20,48. Second, ASIC currents during synaptic transmission are not detected in 
the hippocampus. In keeping with this, LTP at CA3-CA1 synapses can be readily induced in ASIC1a–/– 
mice48. Third, the observed effects of ASICs on synaptic plasticity, learning, and behavior are found in 
the amygdala and nucleus accumbens, the brain regions where ASICs are highly enriched9,46. Fourth, 
increasing or decreasing pH buffering capacity can bidirectionally modulate the magnitude of LTP at 
cortex→BLA-PN synapses9. Finally, in our study, the reduction in the magnitude of LTP at different gluta-
matergic synapses in ASIC1a–/– mice, relative to WT controls, correlates positively with the abundance of 
ASICs in postsynaptic neurons (Fig. 3f). Collectively, our study also supports the view that postsynaptic 
ASIC is a positive regulator of associative fear learning and memory at both the synaptic and behavioral 
levels. Such knowledge could be of importance for future drug discovery and development.

A recent study finds that disrupting ASIC1a leads to an increase in spine density and changes in gluta-
mate receptor function in nucleus accumbens, although the underlying mechanisms remain unknown46. 
Thus, it is worth to note that our study did not exclude the possibility that ASICs are involved in reg-
ulation of synapse structure and function in the amygdala neurons. Further experiments are needed to 
investigate whether ASIC is required for LTP in a cell-autonomous fashion. Several outstanding ques-
tions remain to be answered, including why ASIC is important for LTP at some certain synapses, and 
why ASICs are so enriched in several BLA-IN subtypes, but not in FSINs. Furthermore, it will be of 
interest to determine whether ASIC mediates or modulates synaptic plasticity in BLA-INs. Finally, the 
striking differences in the ASIC expression level between non-FSINs and FSINs raise general questions 
regarding the roles of ASIC in amygdala INs in fear learning and memory.

Methods
Brain slice preparation. Coronal brain slices (300 μm thick) were prepared from mice (19–75 days 
old for AISC characterization; 1–4 months old for LTP experiments and 3–5 months old for behav-
ioral tests) of either sex on C57BL/6 genetic background, including WT, GAD67-GFP KI, ASIC1a–/–, 
and ASIC2–/– mice, using a vibratome (DTK-1000, Dosaka, Kyoto, Japan), as described previously49. 
Animals were killed by decapitation, in accordance with national and institutional guidelines, and all 
procedures were approved by the Animal Care and Use Committee of National Yang-Ming University. 
Floxed ASIC1a (ASIC1afl/fl) mice were crossed with Nestin-Cre and GAD65-Cre transgenic mice to gen-
erate ASIC1a gene deletion in their offspring48. ASIC2–/– mice50 were obtained from Jackson Laboratory 
(Bar Harbor, ME, USA). To facilitate cell type identification, we used GAD67-GFP KI mice, in which 
GFP expression was driven by the GAD67 promoter27. Slices were sectioned in ice-cold cutting solution 
containing (in mM): 87 NaCl, 25 NaHCO3, 1.25 NaH2PO4, 2.5 KCl, 10 glucose, 75 sucrose, 0.5 CaCl2 
and 7 MgCl2. Following sectioning, slices were incubated in the cutting solution (oxygenated with 95% 
O2/5% CO2) in a holding chamber at 34 °C for 30 min, and then at room temperature until used. During 
experiments, individual slices were transferred to a submersion recording chamber and were continu-
ously superfused with oxygenated artificial cerebrospinal fluid (CSF) containing (in mM): 125 NaCl, 
25 NaHCO3, 1.25 NaH2PO4, 2.5 KCl, 25 glucose, 2 CaCl2 and 1 MgCl2. The recording temperature was 
25 ± 3 °C. Neurons were visualized under the guidance of infrared differential interference contrast (DIC) 
optics and by their green fluorescence with epifluorescence illumination.

Nucleated patch recordings. Nucleated patch recordings were made, as described previously49,51, 
using an Axopatch 200B amplifier (Molecular Devices, Sunnyvale, CA, USA). Pipette capacitance was 
compensated. Signals were low-pass filtered at 5 kHz (four-pole Bessel) and sampled at 10 kHz using a 
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digitizer (Digidata 1440 A; Molecular Devices). Pulse sequences were generated by a Digidata 1440 A 
via pClamp 10.2 (Molecular Devices). Minor and major axes of nucleated patches were measured. It 
was assumed that nucleated patches were approximately ellipsoid52, and the membrane surface area was 
calculated using the following formula:

π
=
( + )

( )surface area
major minor axis

4 1

2

The total membrane capacitance was determined from the surface area, using the value (1 μF/cm2) of 
specific membrane capacitance52,53. Fast application of H+ on nucleated patches, isolated from identified 
neurons, was performed, as described previously19. Fast application experiments were started 1–2 min 
after the patches were excised. Double-barreled application pipettes were fabricated from theta glass 
capillaries (2 mm outer diameter, 0.3 mm wall thickness, 0.12 mm septum, Hilgenberg GmbH, Malsfeld, 
Germany) and mounted on a piezoelectric-based solution switching system (MXPZT-300, Siskiyou, OR, 
USA). The time necessary for the complete exchange of solutions was determined using an open patch 
pipette by switching between Na+-rich and 10% Na+-rich solutions, which was 186 ± 14 μs (n = 3) by 
measuring 20–80% rise time of the junction potential change. ASIC currents evoked by 1 s pulses of 
H+ were applied every 20 s, except for some pharmacological experiments where short pulses (50 ms) 
were used.

To evoke ASIC currents with various pH values, 2-(N-morpholino)ethanesulfonic acid (MES)-buffered 
Na+-rich external solution in the test barrel was used, containing (in mM): 135 NaCl, 5.4 KCl, 1.8 CaCl2, 
1 MgCl2, 10 MES, adjusted to the desired values with N-methyl-d-glucamine. The intracellular solution 
contained (in mM): 142 K-gluconate, 2 KCl, 0.2 EGTA, 4 MgATP, 10 HEPES, 7 Na2-phosphocreatine; pH 
adjusted to 7.3 with KOH. Bovine serum albumin (0.1%) was added to external solutions containing the 
spider toxin PcTX1 (Peptides International, Louisville, KY, USA) to prevent its absorption into tubing 
and containers. For PcTX1 application, both pH 7.4 and 5 external solutions contained 30 nM PcTX1. 
The nucleated patches were placed in the pH 7.4 solution at least 1 min before the fast-application exper-
iment. All other chemicals were from Sigma (St. Louis, MO, USA), unless specified otherwise.

Measurement of synaptic responses and LTP induction. Excitatory postsynaptic potentials 
(EPSPs) or currents (EPSCs), in the presence of GABA receptor type A (GABAAR) antagonist gabazine 
(1 μM), were recorded from identified neurons in current or voltage clamp. Basal synaptic responses 
were evoked by a brief pulse (0.1–0.5 ms) of either constant voltage or current delivered by a stimulus 
isolation unit (Isoflex, A.M.P.I., Jerusalem, Israel) every 20 s with tungsten bipolar electrodes. Stimulation 
electrodes were positioned at axonal bundles of inputs of interest. Synaptic strength was quantified as 
the peak amplitude of EPSP or EPSC. Baseline responses were collected with a stimulation intensity that 
yielded 10–30% of the maximal response. Slices displaying unstable baseline recording or series resist-
ance change of >20% were discarded. For the cortex→BLA-PN synapse, LTP was induced by pairing four 
trains of HFS (HFS × 4, 100 Hz for 1 s per train; 10 s intervals) with brief supra-threshold current step 
injections (approximately 2 nA; 1 ms) into the postsynaptic cell (with a 5 ms delay) in a current clamp. 
For the BLA→CeM neuron synapse, LTP was induced by HFS × 4 (10 s intervals), with postsynaptic cells 
held at –70 mV in a current clamp54. Similarly, HFS × 4 (20 s intervals), with postsynaptic cells held at 
–50 mV, was used to induce LTP at the lPB→CeL neuron synapse40.

Immunohistochemistry. For immunofluorescent labeling, brains were removed from GAD67-GFP 
KI mice which were transcardially perfused with 4% paraformaldehyde in 0.1 M phosphate buffered 
saline (PBS). Brains were further dehydrated in 15% sucrose for 24 h, and 30% sucrose for 24 h. Cryostat 
sections (20 μm thick) were rehydrated with PBS. Following a PBS wash, sections were permeabilized 
with 0.3% PBST (0.3 % triton-X-100 in PBS) for 30 min and incubated in 10% normal goat serum (NGS) 
for 2 h to block non-specific binding. To stain NeuN, which is a neuron-specific protein, sections were 
incubated in primary mouse anti-NeuN antibody (1:400; MAB377; Merck Millipore, Billerica, MA, USA) 
with 5% NGS in 0.3% PBST for 24 h at 4 °C. Following a PBS wash, sections were incubated in secondary 
antibody (goat anti-mouse Alexa Fluor 594; Life Technologies, Grand Island, NY, USA) with 2% NGS 
in 0.3% PBST for 2 h at 4 °C. Following a PBS wash, sections were mounted in VECTASHIELD HardSet 
Mounting Medium (Vector Laboratories, Burlingame, CA, USA) and viewed under a Zeiss Microscope 
Axio Observer A1 (Zeiss, Oberkochen, Germany).

Fear conditioning. Fear conditioning was performed in two different contexts. On day 1, mice were 
placed into the conditioning box (context A) for 2 min habituation and then received five trials of tone 
(80 dB, 20 s)-foot shock (0.6 mA, 2 s) pairings. A foot shock was given 2 s before the end of a tone. 
There was 1 min observation time between each pairing. To evaluate fear learning, we recorded the 
freezing time during habituation and between each trial. The context-dependent fear memory test was 
performed 24 h later by re-exposing the mice for 5 min to context A. One hour later, mice were placed 
into context B for 2 min, which was followed by three trials of 20 s tone plus 1 min observation time to 
evaluate the tone-dependent fear memory. We recorded the freezing time to context or tone during the 
total  observation time. Freezing is defined as a lack of movement (>2 s) associated with a crouching 
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posture, except for heartbeat and respiration. The freezing time is expressed as a percentage of the total 
observation time.

Virus injections. Mice (2–4 months old) were anaesthetized with isoflurane and placed into a stere-
otaxic frame (Stoelting, Wood Dale, IL, USA), with the mouths and noses covered by the anaesthetizing 
mask with constant air flow containing 1.5% isoflurane (air flow rate: 4 mL/min). The mice were placed 
over a homeothermic blanket (Panlab Harvard apparatus, Barcelona, Spain) to keep their body temper-
ature constant (36 °C), with their eyes protected by ophthalmic gel during securing. The skull was sur-
gically exposed using scissors and drilled over the desired coordinates. AAV8-CMV-GFP was generated 
in the laboratory of our collaborator Dr. Min-Hong Tai (National Sun Yat-Sen University, Taiwan). The 
transgene (pAAV-CMV-GFP), packaging (pLT-RC08), and helper (pHGTI-adeno1) constructs were gifts 
from Dr. Jeng-Shin Lee (Harvard Gene Therapy Initiative, Harvard Medical School, Boston, MA, USA). 
AAV2/8 was serotyped with AAV8 capsid proteins. The AAV8-CaMKIIα-GFP-Cre was purchased from 
University of North Carolina Vector Core (Chapel Hill, NC, USA). The virus was delivered through the 
craniotomy bilaterally using a 10 μL NanoFil syringe (World Precision Instruments, Sarasota, FL, USA) 
and a 35-gauge beveled metal needle. The injection volume (0.5 μL at each location) and flow rate (0.1 μL/
min) were controlled with a nanopump Controller (KD Scientific, Holliston, MA, USA). The needles 
were left in position for 10 min after injection. Injection coordinates, relative to Bregma, were: anterior–
posterior, –2 mm; medial–lateral, ±3.4 mm; dorsal–ventral, –5 mm and –5.1 mm. Mice were allowed to 
recover for 3 weeks, following injection.

Hierarchical clustering analysis. For cell classification, unsupervised clustering34,55,56 was performed, 
using squared Euclidean distances and Ward’s method36. Electrophysiological properties of BLA INs and 
CeL neurons were tested for uniformity in their distributions. Variables with a nonuniform distribution 
(see Supplementary Fig. S1a, S1b, S1c, S1d, S2c, S2d, S2e, and S2f) were used for subsequent unsuper-
vised clustering. Hierarchical clustering was operated, as follows. First, each neuron was transformed 
into a four-dimensional data point with variables. Before clustering, variables were first normalized into 
the range (0, 1) by performing Min-max normalization. The distance between data points represented 
the dissimilarity between them; closer data points have higher similarity. Next, all the data points were 
clustered by the following iterative procedure. First, each data point was assigned to a cluster; every 
cluster therefore contained only one data point. Second, the two closest clusters were merged into one 
cluster, such that there would be one fewer cluster. Third, the distance between the new cluster and each 
of the old clusters was determined. Fourth, steps two and three were repeated, until there was only one 
cluster left. Ward’s method linkage rules36 minimize the error sum of squares of any pair of cluster in 
step three. The pair of clusters with a minimum between-cluster distance was merged. The hierarchical 
clustering analysis was carried out using Free Statistics Software v.1.1.23-r7. (Wessa, P. Free statistics 
software, available at: http://www.wessa.net/)

Data analysis and statistics. Data were analyzed and fitted with Clampfit 10.2 (Molecular Devices) 
and Prism 5.01 (GraphPad, La Jolla, CA, USA). The accommodating ratio is the maximal ratio of the 
mean of the last five inter-spike intervals (ISIs) divided by the mean of the first five ISIs under mini-
mal current step injection (<400 pA) which could generate>10 APs per second. The spike delay is the 
latency of the first AP upon 1 s near-threshold depolarizing (rheobase) current step injection. The ISI 
ratio is calculated as the latter ISI divided by the previous ISI. The maximal coefficient of variation (CV) 
of ISI ratios was calculated from spike trains evoked by 1 s current step injection. The maximal mean 
firing rate is the maximal number of APs that could be generated by 1 s current step injection. Input 
resistance is defined by the ratio of steady-state voltage change/1 s hyperpolarizing current (–25 pA or 
–50 pA). For classification of BLA GFP-expressing cells, four features consisting of the accommodating 
ratio, maximal CV of ISI ratio, delay, and maximal mean firing rate were used to identify different cell 
types (Supplementary Fig. S1). The desensitization time constant of ASIC current was obtained by fitting 
currents with the function shown below:

( ) = + ( )
−
τI t Ae C 2
t

A denotes the peak amplitude of current, τ represents the desensitization time constant, and C denotes 
the amplitude of steady-state current.

The pH-response curve was fitted with the function, as shown below:
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where A is the constant for the maximal effect, c denotes the concentration, EC50 represents the 
half-maximal effective concentration, and n denotes the Hill coefficient.

http://www.wessa.net/
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For reversal potential measurements, data points of I-V relations were fitted with second-order pol-
ynomials, from which the interpolated potentials were calculated. The theoretical reversal potential of 
sodium channels (ENa) was calculated, according to the Nernst equation:

=
( )

+

+E RT
F

ln
[Na ]

[Na ] 4
Na

o

i

where [Na+]o, [Na+]i are outer and inner Na+ concentrations, and F, R, T have standard thermodynamic 
meanings57.

Values indicate mean±s.e.m. (standard error of mean); error bars in figures also represent s.e.m. 
Statistical significance among groups was tested using the nonparametric Kruskal–Wallis test. Where 
significant, pairwise comparisons, using the Wilcoxon rank-sum test, were carried out for each pair of 
groups. Statistical significance of linear regression was tested using the F-test. All tests were performed 
at the significance level (P) as indicated. The s.e.m. of reversal potentials were obtained by analyzing data 
of individual experiments separately.
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