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Abstract: Polyphenols play an important role on the health-promoting properties of humans. Plants
belonging to Lamiaceae family are known as rich source of phenolic compounds. The current
work aimed to evaluate the phenolic compounds, antioxidant, and anti-inflammatory activity of
Elsholtzia ciliata (Thunb.) Hyl. ethanolic extracts from leaf, stem, flower, and whole herb. Twelve
compounds were identified in ethanolic extracts using high-performance liquid chromatography
(HPLC). The HPLC analysis revealed that chlorogenic acid, rosmarinic acid, and rutin were predominant
compounds in ethanolicic extracts. Using HPLC-ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid)) post-column assay, avicularin, chlorogenic, and rosmarinic acids were identified as the
predominant radical scavengers in all ethanolic extracts. All tested preparations significantly reduced
the level of secretion of proinflammatory cytokines TNF-α, IL-6, and prostaglandin E2 induced by
lipopolysaccharide treatment in mouse peritoneal macrophage cell culture. Stem and flower extracts
were most efficient in reducing cytokine release, but leaf extract demonstrated stronger effect on
prostaglandin E2 secretion. This is the first study exploring antioxidant efficiency by HPLC–ABTS
post-column method and investigating anti-inflammatory activity of ethanolic extracts from E. ciliata
different plant parts.

Keywords: Elsholtzia ciliata; anti-inflammatory activity; natural compounds; polyphenols; antioxidant;
HPLC–ABTS post-column; rosmarinic acid

1. Introduction

Natural substances and medicinal herbs have been traditionally administered to treat or prevent
various diseases all over the world. A number of aromatic, spicy, and medicinal plants accumulate
various organic active compounds, which can be classified into four major classes: Phenolic compounds,
alkaloids, terpenoids, and sulfur-containing compounds [1,2]. These active compounds differ in
their physical and chemical properties, structures, and action mechanisms. Phenolic compounds,
or polyphenols, make the largest group of phytochemicals with great chemical diversity—more than
8000 structural variants [3,4]. Phenolic compounds are characterized by the presence of one or more
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aromatic rings bearing one or more hydroxyl moieties. The structure of these phytochemicals varies
from simple molecules, such as phenolic acids, to highly polymerized molecules, such as condensed
tannins. The main polyphenol subgroups are defined into these groups: Flavonoids, phenolic acids,
lignans, tannins, and stilbenes [3,5–8]. The most commonly occurring polyphenols are phenolic acids
and flavonoids [9]. In herbs, polyphenols ensure protection against UV light, oxygen and nitrogen
species, pathogens, and parasites [9–12].

Animal, human, and epidemiologic studies have concluded that beneficial effects of polyphenols
are frequently related to their antioxidant activity, that might have preventive or therapeutic
effects for neurodegenerative disorders, cardiovascular diseases, cancer, osteoporosis, pancreatitis,
gastrointestinal problems, lung damage, and obesity [2–4,9,13,14]. One of the most common condition
in disease is inflammation characterized by increased oxidative stress and release of specific
cytokines and mediators promoting inflammatory activation. Both oxidative bursts can be induced
by the inflammatory cytokines as well as release of the cytokines can be caused by increased
oxidation level [15]. Thus, phytocompounds with antioxidant activity are also expected to possess
anti-inflammatory properties.

Elsholtzia ciliata (Thunb.) Hyl.—an annual plant belonging to Lamiaceae Martinov family—is widely
distributed throughout China, Korea, and Europe [16]. The mint family (Lamiaceae) is an important
medicinal flowering plant family that contains about 236 genera and more than 6000 species [17].
As usual in plants, phenols belong to the largest group of secondary metabolites in Lamiaceae family,
and they exhibit multidirectional biological activity [18]. The crude extract from E. ciliata contains not
only phenols, but also essential oil, flavonoids, steroids, and triterpenes [16]. In traditional medicine,
E. ciliata has been used for the treatment of headache, fever, diarrhea, edema, blood clotting, gastralgia,
dysphonia, nephritis, and throat infections [16,19,20]. According to scientific literature, E. ciliata is a
valuable bioactive source of natural antioxidants [21]. Extracts of E. ciliata possess anti-inflammatory [21],
antiviral, antibacterial, antioxidant [22], anticancer [23], and vasorelaxant [24] effects.

Spectrophotometric assay is the most popular method for determination of total antioxidant
potency of various plant materials [25]. However, in the past few years, more advanced online
HPLC post-column assay has been developed and applied successfully for rapid screening and
identification of antioxidants from the crude extracts of medicinal herbs [26]. Model oxidation systems
of DPPH (2,2-diphenyl-1-picrylhydrazyl), FRAP (Ferric Reducing Antioxidant Power), and ABTS
(2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid))radicals are highly effective, rapid, and possess
other important advantages compared with conventional strategies for identification of antioxidants
from complex mixtures [27]. There are a lot of studies that have determined antioxidant activity
of essential oils, phenolic compounds, and others, but only a few researches have been published
about the antioxidant activity of individual compounds [27,28]. E. ciliata is not an exception—there
is only one publication from Liu et al. describing the antioxidant effect of aqueous extracts from
different parts of E. ciliata [29]. In our previous study, we have determined the chemical composition of
phenolics in ethanolic extracts produced from dried whole herb [24]. However, there is no information
available about the chemical composition of phenolic compounds and antioxidant activity, neither
anti-inflammatory properties of different parts of ethanolic extracts from different parts of E. ciliata.
Therefore, the objective of this study was to determine the main phenolic compounds in the ethanolic
extracts of E. ciliata leaf, stem, flower, and whole herb. The total phenolics content (TPC) and total
flavonoids content (TFC) as well as antioxidant activity in the ethanolic extracts were determined
using spectrophotometrical analysis. The antioxidant active compounds (radical-scavenging activity)
were identified using online assay with HPLC post-column reactions. Anti-inflammatory properties
were evaluated by measuring amounts of inflammatory mediators released from murine peritoneal
macrophages stimulated with bacterial lipopolysaccharide in the presence of ethanolic extracts from
different parts of the E. ciliata plant.
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2. Results and Discussion

2.1. Determination of Total Phenolic Content

Plant heterogeneity is very widespread and is used for the selection of garden and medicinal
plants and for the evaluation of the quality of medicinal plant raw materials. Many medicinal plant
species are characterized by inter-species chemical diversity, of which the study and evaluation is
very important. Chemical diversity studies demonstrate the qualitative and quantitative composition
of the active substance within species, varieties, parts of plants, and between different plants of the
same species. In order to determine the patterns of the accumulation of biologically active compounds
in plants, it is important to identify their composition and content in separate plant organs. Pilot
studies were carried out to determine the total content of phenolic compounds and total flavonoids by
UV-visible light spectrophotometry in order to evaluate the diversity of the composition of phenolic
compounds of different E. ciliata plant parts. Studies showed that TPC ranged from 61.25 ± 1.91 to
94.67 ± 1.91 mg gallic acid equivalent (GAE)/g dry weight (DW) (Figure 1).
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Figure 1. Total phenolic compounds (TPC) and total flavonoid content (TFC) of ethanolic E. ciliata
extracts. Results are means ± SD. Values with different capital (TFC) and lowercase (TPC) letter(s) are
significantly different (p < 0.05) measured by Tukey‘s test.

The amount of phenolics is statistically significantly higher in whole herb (94.67 ± 1.91 mg GAE/g
DW), leaf (89.55 ± 3.91 mg GAE/g DW), and flower (77.39 ± 0.94 mg GAE/g DW) extracts than stem
(61.25 ± 1.91 mg GAE/g DW) extract (p < 0.05). According to Liu et al. [29], the amount of the TPC was
significantly higher in root fraction (497.2 ± 24.9 mg GAE/g) and the lowest in stem (213.1 ± 6.2 mg
GAE/g) and inflorescence (198.2± 10.1 mg GAE/g) fractions of E. ciliata. A recent study investigating the
extracts of mint, parsley, and coriander obtained from leaf and stem, reported highest amounts of TPC
from extracts obtained from leaf (extract of mint (Lamiaceae family) leaf—1.24 mg GAE/100 mL, extract
of parsley (Apiaceae Lindl. family) leaf—1.22 mg GAE/100 mL, extract of coriander (Apiaceae family)
leaf—1.12 mg GAE/100 mL) [30]. These results showed that the higher value of TPC was obtained
from leaf extract than from stem extract. In other study, TPC ranged from 1.33–5.01 g GAE/100 g dry
weight—leaf and flower extracts obtained with methanolic or water had higher amounts of phenolic
compounds than stem extract produced from Justica spicigera Schltdl. (Acanthaceae Juss. family) [31].
Researchers in other study evaluated the TPC or TFC of 20 different medicinal plants parts: leaf, stem,
and flower [32]. Results showed that TPC ranged from 65 to 500 mg/g−1 DM in leaf, 25 to 210 mg/g−1

DM in stem, and 95 to 450 mg/g−1 DM in flower. It was noticed that amounts of TPC in Lamiaceae
and Rosaceae Juss. species were higher than in other families. These results of the studies mentioned
showed the same tendency as in our study that extracts obtained from leaf and flower have higher
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amounts of phenolic compounds than extracts obtained from the stem. The difference may be due
to the different composition and amounts of the phenolic compound in different parts of the plant.
The differences may also be due to the extraction solvent used for the extraction, the conditions of
extraction, and the quality of the plant material itself (under the conditions of the environment during
the growing period, at which stage the raw material was cut, etc.).

2.2. Determination of Total Flavonoid Content

The content of flavonoids obtained in the E. ciliata extracts is shown in Figure 1. The TFC ranged
from 5.06 ± 0.08 to 15.43 ± 1.86 mg RE/g DW. The highest flavonoid levels have been obtained in whole
herb (15.43 ± 1.86 mg RE/g DW), flower (14.22 ± 0.67 mg RE/g DW), and leaf (14.16 ± 0.65 mg RE/g DW)
extracts. The extract from the stem showed a significantly lower amount of TFC (5.06 ± 0.08 mg RE/g
DW) than leaf, flower, and whole herb extracts (p < 0.05). Other researchers investigating methanolic
extracts of E. ciliata plant parts have found TFC between 0.18 and 1.30 g catechin equivalents/100 g dry
weight and the order for methanolic extracts was leaf > flower > stem, whereas for the aqueous extracts,
this sequence was stem > flower > leaf [31]. In another study, TFC ranged from 1.3 to 3.4 mol/g−1 DM
in leaf, from 0.8 to 2.9 mol/g−1 DM in stem, and from 1.1 to 3.3 mol/g−1 DM in flower [32]. The higher
value of flavonoids was found in samples of apple leaves belonging to the family of Rosaceae Juss.,
which ranged from 21.59 ± 0.52 to 45.02 ± 0.90 mg RE/g DW [33].

2.3. Measurements of Antioxidant Activity in Extracts

After studying the total phenolics and flavonoids content of E. ciliata, it is important to examine
and assess an antioxidant activity of different plant parts. The results obtained during studies will
be useful to provide a consumer with products rich in antioxidants, will be useful for the assessment
and standardization of quality of plant raw materials and their products, and will allow predicting an
antioxidant effect of E. ciliata extracts from different plant parts in vivo.

Herbal extracts contain large amounts of biologically active compounds that have antioxidant
activity that gets in the mechanism of the different reactions, so antioxidant effects cannot be analyzed
using only one method [34,35]. For these reasons, it is suggested to use at least two or more different
methods to determine the antioxidant activity of herbal extracts. To evaluate the antioxidant activity of
E. ciliata ethanolic extracts, different antioxidant capacity assays (DPPH, ABTS, FRAP, and CUPRAC
(Cupric Reducing Antioxidant Capacity)) were employed. The results of antioxidant activity obtained
in the ethanolic extracts of leaf, flower, stem, and the whole herb are summarized in Figures 2 and 3.
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Figure 2. Antiradical (DPPH and ABTS radical scavenging) activities of ethanolic E. ciliata extracts.
Results are means ± SD. Values with different capital (DPPH) and lowercase (ABTS) letter(s) are
significantly different (p < 0.05) measured by Tukey‘s test.
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Figure 3. Antioxidant (FRAP and CUPRAC) activities of ethanolic E. ciliata extracts. Results are means
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Overall, stems extract was the sample that revealed the lowest antioxidant potential exhibiting
TE values of 135.60 ± 25.89, 160.17 ± 24.89, 4438 ± 304.87, and 16.40 ± 22.80 µmol/g for DPPH, ABTS,
FRAP, and CUPRAC, respectively. On the other hand, flower extract displayed the highest antioxidant
activity showing TE values of 431.12 ± 90.86, 15019.03 ± 698.72, and 920.33 ± 1.43 µmol/g for ABTS,
FRAP, and CUPRAC, respectively. Herb extract also presented good results in both DPPH and ABTS
(TE 303.90 ± 15.15 and 399.37 ± 21.50 µmol/g, respectively), while leaf extract had good results in
DPPH (TE 319.78 ± 4.51 µmol/g) but was significantly less effective in ABTS (TE 215.01 ± 65.78 µmol/g)
compared to flower extract. Both leaf and herb extracts showed significantly lower FRAP activity
compared to the flower extract, but they were still more active than stem extract. According to
Sepúlveda-Jiménez et al. results, leaf or flower extracts of J. spicigera had higher antioxidant activity
than extract obtained from the stem and the order of free radical scavenging activity for methanolic
extracts was leaf > flower > stem, whereas for aqueous extracts, this sequence was flower > leaf >

stem [31]. Benabdallah et al. data showed that the methanolic extracts of Mentha L. species belonging to
Lamiaceae family (also as E. ciliata) were rich in phenolic compounds and exhibited powerful antioxidant
activity ranging from 7.5 µg/mL to 44.66 µg/mL of TE [26]. These results show that plants from the
Lamiaceae family herbal materials are rich source of the phenolic compounds and their extracts have
high antioxidant activity.

2.4. Identification and Quantification of Phenolic Compounds by High-Performance Liquid Chromatography (HPLC)

Twelve phenolic compounds—rutin, hyperoside, quercitrin, avicularin, chlorogenic acid,
rosmarinic acid, caffeic acid, p-coumaric acid, luteolin-7-O-glucoside, apigenin-7-O-glucoside, apigenin,
and diosmetin—were identified by the HPLC analysis in the ethanolic extracts obtained from the leaf,
stem, flower, and whole herb of E. ciliata (Figure 4). According to a recent study, the predominant
compounds from E. ciliata ethanolic extract were luteolin, rosmarinic acid, and linarin [35]. In our
previous study, 13 phenolic compounds were determined for the first time in E. ciliata dried herb
extracts (quinic acid, neochlorogenic acid, chlorogenic acid, p-coumaric acid, vitexin, ferulic acid,
luteolin-7-rutinoside, luteolin-7-glucoside, procyanidin B, apigenin-7-glucoside, naringenin, diosmetin,
and chrysin) [24].

Amounts of individual phenolic compounds in E. ciliata ethanolic extracts are presented in Table 1.
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Figure 4. E. ciliata leaves, stems, flowers, and whole herb extracts phenolic profiles at 320 nm
wavelenght: 1—chlorogenic acid, 2—caffeic acid, 3—p-coumaric acid, 4—rutin, 5—hyperoside,
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Table 1. Quantitative composition (mg/g of DW) of determined quercetin glycosides in E. ciliata
ethanolic extracts.

Quercetin Glycosides

Extracts Rutin Hyperoside Quercitrin Avicularin

Leaves 0.076 ± 0.002 a 0.017 ± 0.001 a 0.088 ± 0.004 a 0.230 ± 0.009 a

Stems 0.090 ± 0.001 a 0.017 ± 0.001 a 0.048 ± 0.002 b 0.027 ± 0.001 c

Whole plant 0.992 ± 0.079 b 0.126 ± 0.001 b 0.088 ± 0.002 a 0.294 ± 0.034 a

Flowers 2.286 ± 0.230 c 0.233 ± 0.026 c 0.075 ± 0.004 a 0.481 ± 0.212 b

Results are means ± SD (n = 3). Values with different lowercase letter(s) are significantly different in columns.
(p < 0.05) as measured by Tukey’s test. DW—dry weight.

The content of determined phenolic compounds of E. ciliata ethanolic extracts varies depending
on plant part. The extract obtained from flower contained the significantly highest total amount of the
quercetin glycosides—rutin, hyperoside, and avicularin—while stem extract had the lowest amounts
of these compounds (Table 1). Whole plant extract presented significantly higher amounts of rutin and
hyperoside (0.992 ± 0.079 and 0.126 ± 0.001 mg/g of DW, respectively) compared with leaves extract.

Rutin was the predominant compound in flowers, whole plant, and stems ethanolic extracts.
The flower extract had the significant highest amount of rutin (2.286 ± 0.230 mg/g of DW) compared
with leaf, stem, and whole plant extracts (p < 0.05). Avicularin was the second predominant compound
in the ethanolic extracts obtained from flowers, whole plant, and leaves. Quercitrin was the minor
component among all the quercetin glycosides quantified in all ethanolic extracts obtained from
E. ciliata herbal materials.

All the quercetin glycosides identified and quantified in ethanolic extracts of E. ciliata samples
can be ranked in the following ascending order by their content: In leaf extract—hyperoside < rutin <

quercitrin < avicularin; stem extract—hyperoside < avicularin < quercitrin < rutin; whole herb extract
–quercitrin< hyperoside < avicularin < rutin; flower extract—quercitrin < hyperoside < avicularin < rutin.

The highest total amount of phenolic acids identified and quantified by the HPLC method was
found in the ethanolic extract obtained from the whole plant (Table 2).
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Table 2. Quantitative composition (mg/g of DW) of determined phenolic acids in E. ciliata
ethanolic extracts.

Phenolic Acids

Extracts Chlorogenic Acid Caffeic Acid Rosmarinic Acid p-Coumaric Acid

Leaves 10.477 ± 0.391 a 0.044 ± 0.0001 a 0.115 ± 0.011 a 0.068 ± 0.003
Stems 2.748 ± 0.051 b 0.035 ± 0.0008 b 0.412 ± 0.017 ac ND

Whole plant 14.910 ± 0.855 c 0.041 ± 0.0001 c 0.959 ± 0.066 bc ND
Flowers 3.023 ± 0.051 bd 0.038 ± 0.00002 d 1.347 ± 0.443 d ND

Results are means ± SD (n = 3). Values with different lowercase letter(s) are significantly different in columns
(p < 0.05) as measured by Tukey’s test. DW—dry weight; ND—not determined.

The whole plant extract had the highest amount of chlorogenic acid (14910.91 ± 855.01 µg/g
of DW) compared with leaf, stem, and flower extracts. The highest amount of rosmarinic acid
(1.347 ± 0.443 mg/g DW) was obtained in extract produced from flower, and the lowest from leaf
extract (0.115 ± 0.011 mg/g DW) (p < 0.05). Significant differences in the amounts of caffeic acid were
obtained between all four ethanolic extracts (p < 0.05). The ethanolic extract of leaf contained the
highest amount of caffeic acid (0.044 ± 0.0001 mg/g DW). In a recent study, the value of caffeic acid
determined in E. ciliata whole plant ethanolic extract was 0.72 mg/g DW [36]. This amount of caffeic
acid is higher than our study result, because after 60 min of sonification that extract was evaporated
and freeze-dried (concentrated). Phenolic compound—p-coumaric acid was determined only in the
extract obtained from E. ciliata leaf and it was 0.068 ± 0.003 mg/g of DW. According to our study results,
chlorogenic acid and rutin can be chosen as phytochemical markers in the evaluation and control of
quality parameters of E. ciliata herbal materials.

2.5. Analysis of the Antiradical Activity of E. ciliata Ethanolic Extracts Using HPLC-ABTS Post-Column Assay

The human health benefits of plant-based raw materials for the accumulation of phenolic
compounds are supported by a wealth of scientific data [37–39]. A link between the consumption of
plant-based raw materials rich in these compounds and the incidence of oncological, cardiovascular,
and neurodegenerative diseases has been established [40,41]. Identification of biologically active
compounds with antioxidant activity is important. It allows scientifically substantiated use of
medicinal herbal raw materials and their preparations for the prevention and treatment of oxidative
stress disorders. It is expedient to evaluate the antioxidant activity of the plant raw material extracts
provided by different anise, to identify analytical markers that could be used to evaluate the antioxidant
activity and quality control of their medicinal products. The HPLC post-column method is significant
because, unlike various UV-visible light spectrophotometry assays for the antioxidant activity of plant
extracts, it allows the evaluation of the antioxidant activity of individual biologically active compounds
from the extracts in vitro. The antiradical activity determination of the individual compounds of the
E. ciliata plant raw material extracts was performed using an ABTS post-column assay [42]. Antioxidant
activity profiles of E. ciliata herbal materials are presented in Figure 5.

HPLC-separated analytes in ABTS post-column assay react with ABTS radical cation, and bleaching
is detected as negative peaks at 650 nm. Radical-scavenging activities of chlorogenic acid, caffeic
acid, p-coumaric acid, rutin, hyperoside, luteolin-7-O-glucoside, avicularin, apigenin-7-O-glucoside,
quercitrin, rosmarinic acid, apigenin, and diosmetin were determined in almost all antioxidant profiles.
Table 3 represents quantitative values of antioxidant activity of compounds in ABTS post-column
system. Total values of TE varies from 10.738 to 34.77 µmol/g DW in ABTS post-column assay. The highest
TE values were obtained for ethanolic extract produced from flower, and the lowest for stem.
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Figure 5. E. ciliata leaves, stems, flowers, and whole herb extracts ABTS post-column assay
antiradical profile: 1—chlorogenic acid, 2—caffeic acid, 3—p-coumaric acid, 4—rutin, 5—hyperoside,
6—luteolin-7-O-glucoside, 7—avicularin, 8—apigenin-7-O-glucoside, 9—quercitrin; 10—rosmarinic
acid, 11—apigenin, 12—diosmetin.

Table 3. Trolox equivalent (TE) values (µmol/g of DW) of E. ciliata ethanolic extracts in ABTS
post-column assay.

Antioxidant Compound RT (min) Leaves Extract Flowers
Extract

Whole Herb
Extract Stems Extract

Unknown 13.93 2.12 ± 0.1 0.534 ± 0.03 2.24 ± 0.07 0.51 ± 0.02
Unknown 15.70 0.314 ± 0.01 0.322 ± 0.03 0.36 ± 0.01 0.17 ± 0.01
Unknown 17.59 1.153 ± 0.15 1.04 ± 0.05 1.46 ± 0.05 0.28 ± 0.02

Chlorogenic acid 21.66 5.423 ± 0.13 16.38 ± 0.08 12.43 ± 0.1 4.04 ± 0.06
Unknown 22.30 4.535 ± 0.09 1.851 ± 0.09 5.48 ± 0.05 0.57 ± 0.02

Caffeic acid 23.60 0.153 ± 0.03 0.396 ± 0.03 0.28 ± 0.01 0.56 ± 0.03
Unknown 26.54 0.394 ± 0.02 0.495 ± 0.01 0.56 ± 0.02 0.43 ± 0.02
Unknown 29.31 3.01 ± 0.08 0.359 ± 0.03 3.07 ± 0.06 0.52 ± 0.04

p-coumaric acid 32.41 0.142 ± 0.01 ND ND ND
Rutin 40.40 0.064 ± 0.01 2.257 ± 0.05 0.81 ± 0.03 0.21 ± 0.02

Hyperoside 41.03 0.061 ± 0.01 0.599 ± 0.03 0.22 ± 0.01 0.14 ± 0.01
Luteolin-7-O-glucoside 41.80 0.132 ± 0.02 0.287 ± 0.03 0.20 ± 0.01 0.33 ± 0.03

Avicularin 43.95 0.268 ± 0.02 2.519 ± 0.06 1.74 ± 0.06 0.16 ± 0.01
Apigenin-7-O-glucoside 44.90 0.083 ± 0.01 0.358 ± 0.03 0.03 ± 0.001 0.06 ± 0.01

Quercitrin 45.25 0.13 ± 0.01 0.11 ± 0.01 0.12 ± 0.02 0.048 ± 0.0
Rosmarinic acid 47.02 0.501 ± 0.02 3.806 ± 0.02 3.32 ± 0.08 1.23 ± 0.06

Unknown 50.13 0.028 ± 0.01 0.061 ± 0.01 0.1 ± 0.01 0.62 ± 0.02
Unknown 52.15 0.07 ± 0.01 2.059 ± 0.06 1.38 ± 0.06 0.19 ± 0.02
Apigenin 53.70 0.045 ± 0.01 0.072 ± 0.01 ND 0.32 ± 0.03
Diosmetin 54.15 ND 0.038 ± 0.01 0.07 ± 0.01 0.11 ± 0.02
Unknown 57.04 0.74 ± 0.03 0.654 ± 0.01 0.9 ± 0.02 0.24 ± 0.01

Total of all quantitated compounds 19.37 ± 0.78 a 34.20 ± 0.68 b 34.77 ± 0.68 b 10.74 ± 0.47 c

ND—not determined, Values with different lowercase letter(s) are significantly different in columns (p < 0.05) as
measured by Tukey’s test.

To the best of our knowledge, the antiradical activity of ethanolic extracts of different E. ciliata
plant parts was analyzed for the first time. TE (µmol/g of DW) values of principal compounds and
total of all quantitated compounds of E. ciliata leaf, stem, whole herb, and flower were assessed
and presented in Table 3. The results demonstrate that E. ciliata flower and whole herb extracts
(TE 34.20 ± 0.68 and 34.77 ± 0.68 µmol/g of ABTS, respectively) were the most antioxidant (p < 0.05)
among all investigated extracts, but there was no significant difference between these two extracts
(p > 0.05). The predominant radical scavengers in all E. ciliata ethanolic extracts were chlorogenic acid,
rosmarinic acid, and avicularin. Antioxidant activity of chlorogenic acid comprises about 43% of total
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activity in flower extract and 33% in the whole herbal extract of E. ciliata and only about 21% of the
total in stem extract in ABTS assay. In leaf extract, rosmarinic acid comprised only about 2% of total
antioxidant activity, whereas in flower extract, this bioactive compound made about 13%; in the whole
herb extract, about 9% of the radical scavenging activity. Avicularin antioxidant activity comprised
about 6% of total activity in flower and whole herb extracts, and only about 0.7% of the total in stem
extract. There are some unidentified compounds with high values of antioxidant activity, e.g., peaks at
13.93, 15.70, 17.59, 22.30, 26.54, 29.31, 50.13, 52.15, and 57.04 min). According to UV-Vis spectra, these
unidentified compounds may be phenolic acids and/or flavonoids. HPLC-ABTS analysis may present
antioxidative activity of the individual compounds, which consist of ethanolic extract composition.
The E. ciliata extracts obtained from different plant parts have a potential antioxidant capacity, and the
main antioxidative compounds of these extracts are chlorogenic acid, rosmarinic acid, and avicularin.
These results may help for future studies to optimize extraction methods to reach the highest values of
these antioxidative compounds to use them in food, pharmaceutical, or cosmetic fields.

2.6. Anti-Inflammatory Activity of the Ethanolic Extracts

Ethanolic extracts of leaf, stem, and flower parts of E. ciliata as well as of the whole herb were tested
for anti-inflammatory activity in LPS-treated primary murine macrophage cell culture. Inflammation
level was assessed by measuring the amounts of inflammatory mediators that are usually released
by macrophages during bacterial infection: Cytokines TNF-α, IL-6, and PGE2 for determination the
efficiency on cyclooxygenase-2 pathway.

After 24 h treatment with 1 µg/mL of LPS, the levels of inflammatory mediators secreted
to the medium by cultured macrophages increased from below 30 pg/mL to 775 ± 70, 710 ± 60,
and 1143 ± 70 pg/mL for TNF-α, IL-6, and PGE2, respectively (Figures 6–8). When ethanolic extracts
of E. ciliata were present together with the LPS treatment, the secretion of all three inflammatory
mediators was significantly reduced with all tested preparations. The highest efficiency in decreasing
TNF-α level was achieved by stem extract (Figure 6).Molecules 2020, 25, x FOR PEER REVIEW 10 of 20 
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Figure 6. The effect of extracts obtained from different E. ciliata parts on LPS-induced TNF-α secretion.
Results are presented as means ± SD. * significant difference compared to the Control, ˆ compared to
the LPS-only treatment (p < 0.05), one-way ANOVA with Tukey’s test.
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Figure 8. The effect of extracts obtained from different E. ciliata parts on LPS-induced Prostaglandin
E2 secretion. Results are presented as means ± SD. * Significant difference compared to the Control,
ˆ compared to the LPS-only treatment (p < 0.05), one-way ANOVA with Tukey’s test.

The concentrations of this cytokine dropped from 775 ± 70 to 87 ± 31 pg/mL in 1:20 dilution case
reaching a level 9 times lower compared to LPS-treated samples. At 1:100 dilution, stem ethanolic extract
decreased TNF-α level to 219 ± 78 pg/mL, which was 3.5 times lower compared to LPS-stimulated
samples. There is a possibility of other non-phenolic compounds being the cause of the results exhibited
by the stems extract, because this extract demonstrates the lowest amounts of bioactive compounds
like phenolic acids and quercetin glycosides (Tables 1 and 2). Both 1:100 and 1:20 flower extracts
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demonstrated moderate efficiency decreasing the cytokine level to 485 ± 59 and 425 ± 45 pg/mL,
respectively. The predominant compounds in flower extract according to HPLC analysis results were
rutin and chlorogenic acid (Tables 1 and 2). The both chemicals are reported to be potent blockers of
TNF-α-related inflammatory response [43,44], thus it is likely that rutin and chlorogenic acid might be
responsible for prevention of release of this cytokine in our inflammation model. 1:100 leaf extract did
not induce significant suppression of LPS-triggered TNF-α release, however at the higher concentration
of 1:20, quite an efficient decrease to 321 ± 52 pg/mL was achieved.

Similar to the TNF-α case, the most efficient prevention of LPS-induced IL-6 release was
demonstrated by 1:20 stem extract of E. ciliata (Figure 7).

The level of IL-6 dropped from 710 ± 60 to 9 9 ± 39 pg/mL, i.e., 7 times compared to LPS-treated
samples. However, 1:100 stem extract had moderate efficiency and decreased IL-6 level only twice.
A similar moderate effect on prevention of the release of the cytokine was found in 1:20 herb and
1:20 flower extract-treated samples. The highest values of phenolics, flavonoids, and antioxidant
activity were obtained in flower extract (Figures 1–3). Antioxidant activity is very tightly linked
with anti-inflammatory efficiency and suppression of IL-6 release pathway, as demonstrated by
Lowes et al. [45]. The researchers have found that secretion of IL-6 is prevented by antioxidants
targeting mitochondrial oxidative phosphorylation system, thus similar activity might be exerted
by the flower extract in our study. According to HPLC analysis results, flower extract had the
highest amounts of rutin, hyperoside, and rosmarinic acid comparing with other extracts (Tables 1
and 2). Ulrich-Merzenich et al. have investigated the anti-inflammatory activity of salicylate-based
phytopharmaceuticals on human fibroblasts and discovered interaction of rutin with IL-6 release
pathway [46]. Hyperoside was also identified as IL-6 and TNF-α suppressor in LPS-stimulated
fibroblast cell culture and rheumatoid arthritis in vivo model [47]. Rosmarinic acid is well described for
multiple anti-inflammatory actions including release of IL-6, TNF-α, and PGE2 [48,49]. This evidence
suggests that anti-inflammatory activity of E. ciliata flower extract could be explained by the action
of the three most abundant chemical substances of the extract. However, of note is that the highest
efficiency against TNF-α and IL-6 release was discovered in the stem ethanolic extracts containing
rutin and chlorogenic acid as predominant compounds compared with other phenolics. This finding
indicates there might be other compounds with anti-inflammatory properties present in the extract
such as triterpenes, sesquiterpenes, ketones, tannins, etc. The least effective were leaf and 1:100 herb
extracts, and 1:100 flower extract did not significantly prevent the release of IL-6 induced by LPS.

Besides the cytokine signaling, another important proinflammatory pathway is related to the
activity of cyclooxygenase-2 resulting in the formation of prostanoids including prostaglandins [50].
Thus, further in the study, we investigated how the extracts from different parts of the E. ciliata plant
affect the secretion of the key mediator of this pathway PGE2. The experiments revealed that all the
tested extracts have significant effect in preventing the release of the mediator in a dose-dependent
manner (Figure 8).

1:20 leaf extract demonstrated the strongest capacity to suppress this inflammatory pathway.
In the presence of the extract, the level of PGE2 in the medium of LPS-treated cells dropped from
1144 ± 70 to 125 ± 26 pg/mL, or 9 times. Flavonoids and other phenolic compounds are known to target
cyclooxigenase-mediated inflammation [51–53], and one of the highest TPC, TFC, and antioxidant
activity have been obtained in leaf extract (Figures 2–4). According to HPLC analysis results, avicularin
and quercitrin were the predominant compounds of quercetin glycosides in leaf extract (Table 2).
Avicularin is demonstrated to block PGE2 release in LPS-treated murine macrophage cell line RAW
264.7 [54], however there is no evidence about anti-cyclooxigenase activity of quercitrin. According to
phenolic acid content analysis, the leaf extract stood out among other extracts with the highest amount
of caffeic acid (44.07 ± 0.14 µg/g of DW) (Table 2) (p < 0.05). This phenolic acid was demonstrated
to block cyclooxygenase activity induced by UVB radiation [55], thus it might also be implicated
in suppression of cyclooxygenase-mediated inflammatory pathway. PGE2 production can also be
prevented by chlorogenic acids, as reported by Shi et al. [56]. Chlorogenic acid was the predominant
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phenolic acid in leaf extract (Table 2), and this also puts the compound on the list of potential candidates
in prevention of cyclooxygenase-mediated inflammation signal. Also, potent prevention of PGE2
release was achieved by 1:20 whole herb, flower, and stem extracts. Concentration of PGE2 in the
medium after treatment with LPS and the extracts were about 3 times lower than after treatment with
LPS alone. Leaf and flower extracts at the concentration of 1:100 showed moderate PGE2 release
blocking activity by decreasing the level of this mediator twice, whereas stem and whole herb extracts
at this concentration prevented PGE2 release only by a quarter of the level caused by LPS alone.

Cell viability assessment by double nuclear staining revealed that none of the extracts at the
concentrations used for the study were toxic to the cultured primary macrophages (Supplementary
Figure S1). Also, there was no increase in cell death observed after the treatment with LPS (Supplementary
Figure S1). This indicates that cytokine and PGE2 secretion changes observed in the study were caused
by active redistribution of intracellular processes but not by change in the number of viable cells.

Summarizing, all the extracts investigated in the study prevented the LPS-induced release of
inflammatory mediators in the dose-dependent manner, with an exception of herb extract effect on
TNF-α release that was found the same at both 1:20 and 1:100 dilution. The most potent effect on
release of pro-inflammatory cytokines TNF-α and IL-6 was revealed by 1:20 stem extract, whereas
the best blocker of PGE2 release was 1:20 leaf extract. There was no significant effect on the level
of inflammatory mediators in the cultures treated by the extracts alone without the presence of LPS
(Supplementary Figure S1).

3. Materials and Methods

3.1. Plant Material

E. ciliata (Thunb.) Hyl. flower, leaf, stem, and whole plant were purchased from Zolynu namai,
Vilnius, Lithuania. All the plant parts were separated manually and kept in dry, dark place for 5 days
to dry. Dried herb was identified by Dr. Professor Nijole Savickiene, Medical Academy, Lithuanian
University of Health Sciences. A voucher specimen (L 17710) was deposited at the Herbarium of the
Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences. Dried
flower, leaf, stem, and whole herb were separately grounded in a laboratory mill.

3.2. Chemicals

All the standards, reagents, and solvents used through experiments were of analytical grade.
Apigenin, diosmetin, hyperoside, rutin, quercitrin, luteolin-7-O-glucoside, apigenin-7-O-glucoside,
p-coumaric acid, caffeic acid, rosmarinic acid, and chlorogenic acid standards were purchased from
Extrasynthese (Genay, France), and avicularin from Chromadex (Santa Ana, CA, USA). Acetic acid
and acetonitrile were purchased from Sigma-Aldrich GmbH (Buchs, Switzerland), and ethanol from
Vilniaus degtine, AB (Vilnius, Lithuania). Potassium persulfate, sodium acetate trihydrate, iron
(III) chloride hexahydrate, and 2,4,6-tri(2-pyridyl)-S-triazine (TPTZ), 2,2-diphenyl-1-picrylhydrazyl
(DPPH·) radical, and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) were obtained
from Sigma-Aldrich (Steinheim, Germany) and Trolox from Fluka Chemika (Buchs, Switzerland).
Folin-Ciocalteu reagent, gallic acid monohydrate, aluminum chloride hexahydrate, sodium carbonate,
hexamethylenetetramine, copper chloride, and neocuproine were purchased from Sigma-Aldrich
GmbH (Buchs, Switzerland). Deionized water used in HPLC and for the samples preparation produced
by the Crystal E high-performance liquid chromatography (HPLC, Adrona SIA, Riga, Latvia) water
purification system.

3.3. Preparation of E. ciliata Ethanolic Extracts

Powdered material of dried E. ciliata flower, leaf, stem, and whole plant (each for 1 g) was extracted
with 20 mL of 70% (v/v) (1:20) ethanol in a round bottom flask by ultrasound-assisted extraction
performed in an ultrasonic bath (Bandelin electronic GmbH & Co.KG, Berlin, Germany) at 25 ◦C
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for 30 min. The samples were centrifuged for 10 min at 4200 × g, followed by decantation of the
supernatant. The extracts were filtered through paper and PVDF membrane filters (pore size 0.22 µm)
prior to HPLC analysis.

3.4. Determination of Total Phenolic Content

All the spectrophotometric measurements were carried out with a UV/VIS 1800 Shimadzu
spectrophotometer (Shimadzu, Japan). The total phenolic contents (TPC) in E. ciliata extracts were
determined spectrophotometrically using the Folin–Ciocalteu method with some modifications [25].
Nearly 0.2 mL of dilute extract from each sample was mixed with 5 mL Folin-Ciocalteu reagent (diluted
10 times with distilled water). After 5 min, 4 mL of sodium carbonate solution (7.5%) was added
and the mixture was kept in the dark place for 60 min. The absorbance of the resulting solution was
measured at 765 nm. TPC was expressed in terms of milligrams of gallic acid equivalent (GAE) per
gram of dry weight (mg GAE/g DW).

3.5. Determination of Total Flavonoid Content

The colorimetric aluminum chloride method with some modifications was used for quantification
of the total flavonoid content (TFC) of the ethanolic extracts [57]. Briefly, 0.2 mL extract was mixed
with 0.3 mL AlCl3 10% aqueous solution. The absorbance of the reaction mixture was measured after
30 min incubation at 407 nm. The TFC was calculated from a calibration curve, and the result was
expressed as mg rutin equivalent per g/DW.

3.6. Determination of Antioxidant Activity

3.6.1. DPPH·Scavenging Assay

The DPPH· scavenging capacity was measured using the method proposed by Yim and Nam
with slight modifications [58]. In this study, 10µL of each ethanolic extract was mixed with 3 mL
DPPH· solution. A decrease in absorbance was determined at a wavelength of 515 nm after keeping
the samples for 30 min in the dark.

3.6.2. ABTS·+ Decolorization Assay

An ABTS·+ decolorization assay was applied according to the methodology described by Yim
and Nam [58]. A volume 10µL of the ethanolic extract was mixed with 3 mL of ABTS·+ solution
(absorbance 0.800 ± 0.02). A decrease in absorbance was measured at a wavelength of 734 nm after
keeping the samples for 30 min in the dark.

3.6.3. FRAP Assay

The ferric reducing antioxidant power (FRAP) assay was carried out as described by Benzie and
Strain [59]. The working FRAP solution included TPTZ (0.01 M dissolved in 0.04 M HCl), FeCl3·6H2O
(0.02 M in water), and acetate buffer (0.3 M, pH 3.6) at the ratio of 1:1:10. A volume of 3 mL of a
freshly prepared FRAP reagent was mixed with 10µL of the E. ciliata ethanolic extract. An increase in
absorbance was recorded after 30 min incubation in the dark at a wavelength of 593 nm.

3.6.4. CUPRAC Assay

The cupric ion reducing antioxidant capacity (CUPRAC) assay was applied according to the
methodology described by Apak et al. [60]. A volume 10µL of the ethanolic extract was mixed with
3 mL of CUPRAC solution. An increase in absorbance was recorded after 30 min incubation in the
dark at a wavelength of 450 nm.
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3.6.5. Calculation of Antioxidant Activity of the E. ciliata Ethanolic Extracts

The antioxidant activity of extracts was calculated from Trolox calibration curve and expressed as
µmol TE per gram of absolutely dry weight. TE was calculated according to the formula:

TE = c × V/m (µmol/g) (1)

where c is the concentration of Trolox established from the calibration curve (in µM); V is the volume
of leaf extract (in mL); and m is the weight (precise) of grounded herbal powder (in g).

3.7. HPLC Analysis, ABTS Post-Column Assay

The chromatographic analysis was obtained according to Liaudanskas et al. [61]. The HPLC system
applied consisted of Waters 2695 Alliance solvent manager (Waters, Milford, MA, USA) equipped with
a Waters 996 photodiode array detector. Chromatographic separations were carried out by using a
YMC-Pack ODS-A (5 µm, C18, 250 × 4.6 mm i.d.) column equipped with a YMC-Triart (5 µm, C18,
10 × 3.0 mm i.d.) precolumn (YMC Europe GmbH, Dinslaken, Germany). The column was operated at
a constant temperature of 25 ◦C. The volume of the extract being investigated was 10 µL. The flow
rate was 1 mL/min, and gradient elution was used. The mobile phase consisted of 2% (v/v) acetic
acid in water (solvent A) and 100% (v/v) acetonitrile (solvent B). The following conditions of elution
were applied: 0–30 min, 3%–15% B; 30–45 min, 15%–25% B; 45–50 min, 25%–50% B; and 50–55 min,
50%–95% B. The total duration of the analysis, including washing and reconditioning of the column,
was 70 min. The confirmation of the chromatographic peak identity was achieved by comparing
the retention times and spectral characteristics (λ = 200–600 nm) of the eluting peaks with those of
reference compounds. For quantitative analysis, a calibration curve was obtained by injecting known
concentrations (0.5–100 mg/mL) of different standard compounds.

HPLC post-column assay analysis was obtained according to Raudonis et al. [42]. HPLC
post-column addition of ABTS solution was performed using continuously working Waters Reagent
Manager (Milford, MA, USA) pump. The flow rate of the individual solutions was set at 0.5 mL/min.
The mobile phase with separated analytes and ABTS solution flowed through a mixing tee to the
reaction coil. The reaction coil was made of TFE (Teflon) tubing of the following size: 15 m × 0.3 mm
i.d., 1.58 mm o.d., ~1 mL. The product chromatograms after ABTS post-column reaction were registered
at 650 nm, using Waters 2487 dual λ absorbance (UV/Vis) detector (Milford, MA). Data received from
experimental research were processed by Waters Empower software (Milford, MA).

ABTS solution was prepared freshly and kept at room temperature in darkness before HPLC
post-column analysis.

The radical scavenging capacity was calculated and expressed as TE from Trolox calibration
curves (ABTS R2 = 0.999). TE was calculated according to the formula:

TE =
Scomp. − b

a
×

Vs

ms
(2)

where Scomp. is the peak area of antioxidant active compound in the post-column chromatogram; a is
slope; b is the y-intercept from Trolox calibration curve regressive equation; Vs is the volume of herb
raw material extract; and ms is the weight quantity of herb raw material.

3.8. Cell Culture and Treatments

All experimental procedures were performed according the Law of the Republic of Lithuanian
Animal Welfare and Protection (License of the State Food and Veterinary Service for working with
laboratory animals No. G2-80). The mice were maintained and handled at Lithuanian University of
Health Sciences animal house in agreement with the ARRIVE guidelines. Peritoneal macrophages were
isolated from 4-month-old Balb/c mice as described by Lu and Varley [62] with minor modifications.
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Briefly, after anesthesia and cervical dislocation, 5 mL of PBS solution was injected into the peritoneal
cavity. The abdomen was gently massaged for 15–30 s, and the liquid from the peritoneal cavity
collected with a syringe to a centrifuge tube and spun for 5 min at 300 × g (centrifuge Biosan
BS-010212-AAA, Riga, Latvia). The pellet was resuspended in RPMI medium supplemented with
10% fetal calf serum (FCS), 20 ng/mL macrophage colony-stimulating factor (MCSF), and 100 IU/mL
Penicillin-Streptomycin, and seeded into 96-well plates at a density of 4705 cells per well. The cells
were kept in incubator (New Brunswick Galaxy 170S, Eppendorf, NY, USA) at 37 ◦C and 5% CO2.
After 16 h, the cells were washed 3 times with the medium to remove non-macrophage cells. After
another 24 h in the incubator (reaching about 75% of confluency), the cells were treated with 1 µg/mL
lipopolysaccharide (LPS) from E. coli (Sigma Aldrich) with or without E. ciliata ethanolic extracts for
24 h. For anti-inflammatory experiments, the ethanolic extracts (ratio 1:20) were pipetted (2 and 10 µL)
directly to the cell culture medium in the wells with cells (200 µL) (Figure 9). The final ratio of the
extracts in cells medium were 1:20 and 1:100. After the treatment, cell culture media were collected for
inflammatory mediator analysis and the cells were stained for viability evaluation.
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3.9. Viability Staining

Cell viability was assessed by double nuclear fluorescent staining with Hoechst33342 (10 µg/mL)
and propidium iodide (PI, 5 µg/mL), 5 min at 37 ◦C. PI-positive nuclei indicating lost nuclear membrane
integrity were considered necrotic. Cells were visualized under fluorescent microscope OLYMPUS
IX71S1F-3 (Olympus Corporation, Tokyo, Japan), counted in fluorescent micrographs by means of
ImageJ freeware.

3.10. Inflammatory Mediator Detection

The levels of pro-inflammatory mediators in cell conditioned medium after treatments was
detected by Enzyme-Linked Immuno Sorbent Assay (ELISA) kits for mouse tumor necrosis factor-α,
or TNF-α (Thermo Fisher Scientific, Waltham, MA, USA), interleukin-6, or IL-6 (Thermo Fisher
Scientific), and prostaglandin E2, or PGE2 (Abbexa Ltd.), according to protocols provided by the
manufacturers. Optical density in the samples was measured in a MultiskanFC plate reader (Thermo
Fisher Scientific). The data are presented as averages ± standard deviation.

3.11. Statistical Analysis

Statistical analysis was performed using one-way analysis of variance (ANOVA) followed by
Tukey‘s test with the software SPSS Statistics 20.0 (IBM Corporation, NY, USA). The graphs were
created by SigmaPlot v13. All quantitative data were done in triplicate, and the results are presented
as means ± standard deviation. The value of p < 0.05 was taken as the level of significance.

4. Conclusions

The highest amounts of the main phenolic compounds—rutin, hyperoside, avicularin,
and rosmarinic acid—were obtained in E. ciliata flower ethanolic extract, and quercitrin and chlorogenic
acid in whole plant ethanolic extract. Flower, leaf, and whole plant ethanolic extracts showed the
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highest amounts of TPC, TFC, and antioxidant activity using DPPH and ABT assays. FRAP and
CUPRAC assays indicated the highest antioxidant activity in the flower extract. As revealed by ABTS
post-column analysis, the TE values of the flower extract was 1.7 times higher than leaf extract and
3 times higher than stem extract. Of all ethanolic extracts investigated, stem extract had the smallest
amounts of quercetin glycosides, phenolic acids, TPC, TFC, and the lowest antioxidant activity using
DPPH, ABTS, FRAP, and CUPRAC assays.

All investigated E. ciliata ethanolic extracts demonstrated anti-inflammatory activity. Stem and
flower extracts most efficiently suppress TNF-α and IL-6-related pathways, and leaf extract is the most
potent blocker of PGE2 secretion.

In general, this study shows that E. ciliata plant is a potential source of polyphenols and can be
used as antioxidant and anti-inflammatory material. This study may serve as an incentive to continue
the work already begun or to take new ones, investigating other biological effects and adapting the
E. ciliata herbal material to various pharmaceutical forms.

Supplementary Materials: The following are available online: Figure S1: Representative images of macrophage
viability assessment by double nuclear fluorescent staining. (a) Control, (b) treated with 1:20 E. ciliata Leaf
extract, (c) 1:20 Stem extract, (d) 1:20 Flower extract, (e) 1:20 Herb extract, (f) 1 µg/mL LPS, (g) LPS and 1:20 Leaf
extract, (h) LPS and 1:20 Stem extract, (i) LPS and 1:20 Flower extract, (j) LPS and Herb extract. All nuclei are
Hoechst33342-only positive and are visible as blue, and necrotic nuclei are both Hoechst3342 and propidium
iodide-positive and are visible as red or purple. The percentage of necrotic nuclei in all samples investigated
were in the range between 95 ± 4 and 99 ± 3 (average of 5 microscopic fields of 3 different wells was counted in
3 separate experiments for each sample). Based on this result, it was assumed that the treatments did not affect
cell viability.
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