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Abstract

Background: The hybrid stochastic simulation algorithm, proposed by Haseltine and Rawlings (HR), is a
combination of differential equations for traditional deterministic models and Gillespie’s algorithm (SSA) for
stochastic models. The HR hybrid method can significantly improve the efficiency of stochastic simulations for
multiscale biochemical networks. Previous studies on the accuracy analysis for a linear chain reaction system showed
that the HR hybrid method is accurate if the scale difference between fast and slow reactions is above a certain
threshold, regardless of population scales. However, the population of some reactant species might be driven
negative if they are involved in both deterministic and stochastic systems.

Results: This work investigates the negativity problem of the HR hybrid method, analyzes and tests it with several
models including a linear chain system, a nonlinear reaction system, and a realistic biological cell cycle system. As a
benchmark, the second slow reaction firing time is used to measure the effect of negative populations on the
accuracy of the HR hybrid method. Our analysis demonstrates that usually the error caused by negative populations is
negligible compared with approximation errors of the HR hybrid method itself, and sometimes negativity phenomena
may even improve the accuracy. But for systems where negative species are involved in nonlinear reactions or some
species are highly sensitive to negative species, the system stability will be influenced and may lead to system failure
when using the HR hybrid method. In those circumstances, three remedies are studied for the negativity problem.

Conclusion: The results of different models and examples suggest that the Zero-Reaction rule is a good remedy for
nonlinear and sensitive systems considering its efficiency and simplicity.

Keywords: Hybrid stochastic algorithm, Negative population, Second slow reaction firing time

Background
The stochastic simulation algorithm (SSA), also often
called Gillespie’s algorithm [1, 2], is a major stochastic
simulation method for simulating stochastic effects in bio-
chemical networks. Although the SSA is quite reliable
in numerous applications in computational biology, the
algorithm is computationally intensive and inefficient for
systems with fast reactions or large populations. Though
many optimizations have been proposed to improve the
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efficiency of the algorithm [3–8], the essential idea of sim-
ulating each reacting event in a dynamical system makes
it unpromising for large and complex biochemical systems
compared to traditional deterministic methods.

To avoid the expensive computational cost of the SSA,
researchers began studying approximation strategies. One
well-known approximation is the τ -leap method [9],
which approximates many reaction events in an inter-
val of τ instead of simulating each reaction. As biologi-
cal networks at single cell levels usually have large scale
discrepancies in populations of species such as mRNAs
and proteins, as well as rate constants among differ-
ent reactions, research is increasingly focused on hybrid
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methods targeting multiscale systems that contain species
populations or reaction rates with widely varying scales
[10–13]. One branch of the hybrid method is the piece-
wise deterministic Markov process [10, 14, 15], which
mixes the deterministic evolution with random jumps.
Under the SSA branch, one hybrid method is to combine
the τ -leap algorithm and the SSA for multiscale features
among species populations [13]. Species and correspond-
ing reactions are partitioned into two sets based on their
populations, one simulated by the SSA and the other sim-
ulated by the τ -leap method. In a multiscale system, fast
reactions can reach partial equilibrium or quasi-steady-
state under certain conditions. Hybrid methods, like the
slow-scale SSA method (ssSSA) [16, 17] and the stochastic
quasi-steady-state SSA method (SQSSA) [12], were pro-
posed based on this property. The ssSSA partitions the
system into fast reaction and slow reaction sets, assuming
partial equilibrium for the fast reactions, while simulat-
ing the slow reactions with the SSA. Similarly, the SQSSA
first separates intermediate species and their correspond-
ing reactions from the system, then assumes that the
separated subsystem is at a steady state and simulates
the rest of the system with the SSA. But both methods
have limitations on parameter space to ensure the system
validity [18, 19].

For general cases where fast reactions do not always
reach a steady state or partial equilibrium, Haseltine
and Rawlings [11] proposed a hybrid method (hereafter
referred to as the HR hybrid method), which modeled part
of the system by continuous dynamics (ordinary differen-
tial equations (ODEs) or Langevin equations), while keep-
ing the rest discrete. The idea of the HR hybrid method
was further explored, improved, and extended to several
hybrid methods [20–23]. In Salis et al.’s work [20], they
partitioned the system into fast and slow reaction groups,
and modeled the fast group by Langevin equations and
the slow group by the SSA. Later, Liu et al. [21] improved
the efficiency of the HR hybrid method by a different par-
titioning strategy: reactions that have both low-density
reactants and small reaction rates were put into the slow
reaction subsystem and all the other reactions into the
fast reaction subsystem. Wang et al. [24] optimized the
implementation efficiency for the HR hybrid method and
compared the efficiencies of the hybrid method coupled
with three traditional ODE solvers RADAU5, DASSL, and
DLSODAR. Lecca et al. [22] further divided the system
into three sets: fast reactions, moderate reactions, and
slow reactions, where the simulation of moderate reac-
tions can be switched between stochastic and determinis-
tic processes based on the reaction firing time during the
system evolution. For spatial models or domains, hybrid
methods were introduced under reaction-diffusion sys-
tems, where diffusion was approximated by differential
equations to improve simulation efficiency [23, 25, 26].

Simulation tools, e.g. Hy3S [27] and MoBioS [22], and
software like COPASI [28] were investigated based on
the HR hybrid method and provided users with different
simulation choices and implementation rules. As to the
application on complex biochemical models, Wang et al.
[29] used the HR hybrid method to model a budding yeast
cell cycle. The method largely reduced the simulation time
and the results matched well with experimental data on
cell cycle properties and prototypes of most mutant cells.
To mathematically analyze the accuracy of the HR hybrid
method, Chen et al. [30] used the next reaction time of
the slow reaction event as the accuracy benchmark and
showed that the HR hybrid method is accurate in lin-
ear chain systems under certain conditions (either large
populations of reactants in the fast subsystem or large
scale differences of reaction rates between fast reactions
and slow reactions). It also demonstrated that the HR
hybrid method is valid for a much greater region in system
parameter space than those for the ssSSA and the SQSSA
methods.

However, in the HR hybrid method framework, pop-
ulations of some reactant species may become negative
if they are involved in both deterministic and stochas-
tic systems. Take system (1) as an example. If reaction
rate constants satisfy f1 � kc and b1 � kc, the system
can be divided into two groups: the fast reaction group
and the slow reaction group, containing the reversible and
irreversible reactions, respectively.

S1
f1�
b1

S2
kc→ S3. (1)

Assume that this system has two S1 molecules at the
beginning, and the system parameters are f1 = 1, b1 =
9, kc = 0.01. Then, compared with the slow system, the
fast system can be considered at equilibrium, which gives
x1 = 1.8 and x2 = 0.2, where xi denotes the mean pop-
ulation of species Si. Thus, when a slow reaction fires, x2
is reduced to − 0.8. Only after a certain period of time,
it may become nonnegative again through the reaction
S1 → S2.

Negative populations may also appear in stochastic sim-
ulations of reaction-diffusion systems, especially when
low-density species are distributed in a well-meshed
space. For example, in a one-dimensional spatial model
of the Caulobactor cell cycle [31], the spatial domain is
divided into 50 equally spaced bins. Since diffusion hap-
pens much faster than chemical reactions in the cell,
diffusion events are modeled as continuous deterministic
equations whereas chemical reactions are modeled by the
SSA. In the initial stage of the cell cycle, protein DivKp
has a low population (< 50). Thus the average popu-
lation of DivKp inside each bin is < 1. Note that the
mean population of a species is a real number if it is
involved in the fast subsystem. As illustrated in Fig. 1,
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Fig. 1 An example of a negativity phenomenon in a reaction diffusion system. xi denotes the population of DivKp in the ith bin

if there is a degradation reaction of DivKp firing in the
ith bin, its population would become negative. There-
fore, any consumption of those low population species
in the spatial stochastic domain may lead to a nega-
tive population. The phenomenon of species’ populations
becoming negative, as shown in the above two exam-
ples, is called the negativity problem for the HR hybrid
method.

This paper is organized as follows. In the Methods
section, we present the theoretical derivation of the sec-
ond exit time of the chemical master equation (CME), the
HR hybrid method, and three proposed remedies for the
negativity problem. The Results and Discussion section
analyzes the potential negativity effects on the accuracy
of linear chain systems for a simple case (n = 2) and
a complex case (n = 10). We test three remedies on
three examples: a closed linear chain system, a nonlinear
system, and a realistic biological system. Summary and
conclusions are given last.

Methods
Second slow reaction firing time
Our prior work [30] analyzed the accuracy of the HR
hybrid method by studying the next slow reaction fir-
ing time (NSRFT, also called the first exit time). Since
the negative population problem mostly emerges after a
slow reaction, it is not enough to just study the first exit
time. So, we further extend that work and study the sec-
ond slow reaction firing time (SSRFT, which can also be
referred to as the second exit time). The SSRFT reflects
the influence of a (possible) negative population on the
firing of slow reactions. With this analysis, we hope to
gain certain insight on the impact of the negativity prob-
lem on algorithm accuracy. In the HR hybrid method we
assume reactants become negative only after a slow reac-
tion happens, which is after the first exit time. Negative
populations may also arise, with a much smaller probabil-
ity, in the numerical integration of ODEs. That is not our
focus here.

We use the same linear chain reaction network in Refs.
[30, 32] as a study example, shown below.

S1
f1�
b1

S2
f2�
b2

· · · fn−1�
bn−1

Sn
kc→ Sn+1. (2)

A particle can exit the reversible chain system through Sn
with reaction rate kc. In most cases, kc is comparably less
than reaction rates fi and bi for 1 ≤ i ≤ n − 1. In many
applications, the reversible chain reactions can be consid-
ered as a fast subsystem and the irreversible reaction (exit
to Sn+1) as a slow subsystem. With this partitioning strat-
egy, if xn < 1, then Sn will become negative whenever a
slow reaction fires.

SSRFT for the CME
While the first exit time (NSRFT) denotes the time when
the next slow reaction fires in the linear chain system (2),
the second slow reaction firing time (SSRFT) is the time
period from the system start to the second time the slow
reaction fires.

Recapping the derivation of NSRFT in Ref. [30], the
SSRFT can be considered as the probability that two inde-
pendent events (NSRFT) happen in a time interval [ 0, t].
In system (2), �x(t) = (x1(t), x2(t), . . ., xn+1(t))T repre-
sents the system state at time t. If there is only one particle
in the system, we denote the probability of xi = 1 as

pi(t) = P[ xi(t) = 1] , for i = 1, . . . , n + 1.

and the probability vector for species S1, S2, . . . , Sn as

P(t) =[ p1(t), . . . , pn(t)]T

In the chemical master equation system, we have

dP
dt

= −AP, (3)

where A is stoichiometric matrix,
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A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1 −b1 0 0 · · · 0
−f1 b1 + f2 −b2 0 · · · 0

0 −f2 b2 + f3 −b3
. . . 0

0
. . . . . . . . . . . . 0

0 · · · 0 −fn−2 bn−2 + fn−1 −bn−1
0 · · · 0 0 −fn−1 bn−1 + kc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As there is only one particle all the time in the system,
we have

∑n+1
i=1 pi(t) = 1. And xn+1(t) = 1 if and only if

the first exit time T1 ≤ t. Thus

P[ T1 ≤ t] = pn+1(t) = 1 −
n∑

i=1
pi(t) = 1 − �eT

P(t),

where �e =[ 1, . . . , 1]T . Given an initial condition �ej (a vec-
tor with the jth element equal to 1 and all other elements
equal to 0), the NSRFT is (see Ref. [30])

qj(T1) = P[ T1 > t] = �eT e−At�ej

= 1 − pn+1(t) = 1
∫ t

0
kcpn(s)ds.

In a general case where there are m particles (�x0 =
[ m1, m2, . . . , mn]T , m = ∑n

i=1 mi) in this linear system, as
particles are independent of each other, the NSRFT is

q(T1) =
n∏

j=1
qmj

j (T1).

Based on similar analysis to NSRFT, the second slow
reaction firing time can be written as

P[ T2 ≤ t] = 1 −
n∏

j=1
qmj

j −
n∑

i=1,mi �=0

C1
mi(1 − qi)qmi−1

i

n∏
j=1,j �=i

qmj
j .

(4)

For a simple case where n = 2 and the initial condition:
m1 = 2 and m2 = 0, we have

P[ T2 ≤ t] = (1 − q1(t))2 . (5)

SSRFT for the HR hybrid method
In the HR hybrid method, define the state vector in the
fast subsystem as �x(t) =[ x1(t), x2(t), . . . , xn(t)]T . The fast
subsystem is modeled as a linear ODE system, denoted as

d�x(t)
dt

= −Ã�x(t). (6)

Ã is a n × n matrix given by

Ã = A − kc�en�eT
n ,

where only the last elements of matrices Ã and A are
different, Ã(n, n) = bn−1, A(n, n) = bn−1 + kc.

Denote T1 as the NSRFT, we have
∫ T1

0
kcxn(t)dt =

∫ T1

0
�eT

n e−Ãt�x0dt = r,

where r is a unit exponential random number. In order to
compare it with the CME result, we have to change the
exponential random number to a unit uniform random
number u by the relation u = 1− e−r . The above equation
can be written as

P[ T1 ≤ t] = 1 − e− ∫ T1
0 kc�eT

n e−Ãt�x0dt = u.

And the density function of the NSRFT is

p(T1) = kc�eT
n e−Ãt�x0e− ∫ T1

0 kc�eT
n e−Ãt�x0dt . (7)

The SSRFT for the HR hybrid method can be considered
as the next slow reaction firing time with a different initial
condition �xT1 (the system state after the first exit time T1),

∫ T2

T1
kcxn(t)dt =

∫ T2

T1
�eT

n e−Ã(t−T1)�xT1 dt = r,

where �xT1 = e−ÃT1�x0 − �en. Thus

p(T2|T1) =
(

kc�eT
n e−Ã(T2−T1)�xT1 − kc�eT

n �xT1

)

e− ∫ T2
T1

kc�eT
n e−Ã(t−T1)�xT1 dt .

(8)

Therefore, the SSRFT is

p(T2) =
∫ ∞

0
p(T1)p(T2|T1)dT1. (9)

Below we present three strategies to handle the negativ-
ity problem and compare the corresponding impact on the
SSRFT.

SSRFT for remedy I: zero-population
For the negativity problem in the HR hybrid method,
one simple treatment is to immediately change any neg-
ative value to zero. So we name this strategy the Zero-
Population remedy: after a slow reaction happens in
the stochastic subsystem, detect whether any correspond-
ing reactants become negative, if so set them as zero
and continue the simulation, otherwise continue without
modification.

To check the effect of the Zero-Population remedy, we
study the second slow reaction firing time of the sys-
tem under this rule. Since the rule takes effect after the
first slow reaction, only the conditional density function
p(T2|T1) is different from the HR hybrid method when
xn < 0. In this scenario, the initial condition of the second
slow reaction firing time in linear chain system (2) is

�xT1 = e−ÃT1�x0 −�en, �xT1(n) = max(0, �xT1(n)). (10)

The conditional density function of the second exit time
in the Zero-Population remedy is similar to Eq. (8), just
replace the initial condition with �xT1(n) in Eq. (10).
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SSRFT for remedy II: zero-reaction
While the Zero-Population remedy avoids the negative
effect, it changes the conservation law in the system. For
example, the total amount of all species in the closed
system (2) should always be m, but simply changing the
negative population (−mδ) to zero causes the total popu-
lation to increase to m + mδ . In order to follow the law of
conservation, which is important in many practical appli-
cations, one idea is to scale down a reaction when the slow
reaction happens with a reactant population less than one.
Take the reaction X → Y as an example. Suppose the pop-
ulation of reactant X is less than one (0 < mX < 1), then
instead of consuming one molecule of X, scale the reac-
tion by a ratio of mX , which produces mX molecule of Y.
However, this method breaks the natural discrete feature
of slow reaction firing and can cause significant errors for
stochastic models.

Alternatively, one can simply set all related reaction
propensities as zero when a negative population appears.
So we have the second remedy named the Zero-Reaction
rule: set all reaction propensities involving negative
species as zero in corresponding subsystems until the
negative species become nonnegative.

After the first slow reaction, the system status is �xT1 =
e−ÃT1�x0 − �en. For xn < 0, reaction rates for all reac-
tions that Sn participated in the fast subsystem are treated
as zero, and the corresponding coefficient matrix for the
ODEs is denoted as Â. The propensity of the slow reac-
tion, which Sn participated in, is also set to zero. Since
system (2) has only one slow reaction, no reaction in the
slow subsystem will fire for negative xn. The fast subsys-
tem keeps running until xn = 0. We denote τ as the time
period of xn evolving from negative to zero in the ODE
system:

�eT
n e−Âτ �xT1 = 0, (11)

where the above equation has a unique solution τ . So after
time T1 + τ , the system is back to normal, with the system
state �xτ = e−Âτ �xT1 .

Thus, the conditional density function of the SSNFT
under the Zero-Reaction remedy is

p(T2|T1) =
(

kc�eT
n e−Ã(T2−T1−τ)�xτ − kc�eT

n �xτ

)

e− ∫ T2
T1+τ

kc�eT
n e−Ã(t−T1−τ)�xτ dt .

(12)

SSRFT for remedy III: zero-time
Another remedy for the negativity problem is called the
Zero-Time rule: whenever a species’ population become
negative, pause the system and run a separate virtual
ODE system G′

f that only contains reactions related to
the negative species. When the species in the virtual sys-
tem recovers to a nonnegative state, restart the original

hybrid system with the updated system state. Because
the system recovers under existing reaction systems, the
conservation law is obeyed.

In system (2), the system state is still �xT1 = e−ÃT1�x0 −�en
after the first slow reaction. For xn < 0, build a separate
ODE system that only contains the last reversible reaction,

G′
f : Sn−1

fn−1�
bn−1

Sn. (13)

Run the G′
f system until xn = 0, which costs time ρ from

the below equation.

�eT
2 e−Bρ

[
xn−1

xn

]
= 0, B =

[
fn−1 −bn−1

−fn−1 bn−1

]
(14)

Since the recovery time ρ is not counted in system evo-
lution, we have the conditional density function of the
second exit time under the Zero-Time remedy as

p(T2|T1) =
(kc�eT

n e−Ã(T2−T1)�xρ −kc�eT
n �xρ)e− ∫ T2

T1
kc�eT

n e−Ã(t−T1)�xρdt ,
(15)

where �xρ is the system state after running the G′
f system

for ρ.

Results and discussion
Theoretical analysis of SSRFT
A simple case (n = 2)
This subsection examines the SSRFT of the linear sys-
tem (2) with n = 2, as shown in (1).

We first check conditions that may cause the negativ-
ity problem, such as parameters and initial conditions. In
system (1), after the first slow reaction, we have

�xT1 = e−ÃT1�x0 − �e2, Ã =
[

f1 −b1
−f1 b1

]
,

thus the population of S2 at time T1 is

�xT1(2)= (m2b1 − m1f1)e−(b1+f1)T1 + (m1 + m2)f1
b1 + f1

−1.

The first slow reaction firing may happen from time 0 to
∞. To ensure that the population of S2 is nonnegative for
all possible T1, we should have �xT1(2) ≥ 0 for all T1. We
solve this inequality and get

m1 + m2 ≥ f1 + b1
f1

and m2 ≥ 1. (16)

For the parameter set f1 = b1 = 1, the population of S2
may become negative when the initial condition satisfies
m2 = 0 (Assume m1 + m2 ≥ 2, so a second slow reac-
tion is possible). For the parameter set f1 = 1, b1 = 10,
the population of S2 may become negative when the initial
condition satisfies m2 = 0 or m1 + m2 < 11.

Figure 2 presents the cumulative distribution functions
(CDFs) of NSRFT and SSRFT from both the CME and the
HR hybrid method, respectively. The model parameters
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(a) (b)
Fig. 2 Cumulative probability distributions of NSRFT and SSRFT in the linear system (1) of the CME and the HR hybrid method. Parameters used in
this example are: f1 = b1 = kc = 1. The initial condition is m1 = 2, m2 = 0. a Cummulative probablitity distributions of NSRFT b Cummulative
probablitity distributions of SSRFT

and initial conditions are chosen so that the negativ-
ity problem may arise. For the NSRFT, when t is small,
the two methods are close enough. When t ∈[1, 10], the
HR hybrid method has the first slow reaction firing ear-
lier than the CME. In this time interval, the mismatch
between the two methods comes from the error of the
hybrid method, rather than the negativity problem. For
the SSRFT, the CDFs of two methods have an intersection
at around t∗ = 2, where before this point the HR hybrid
method tends to fire the second slow reaction later than
the CME. This difference shows the impact of the nega-
tivity problem. After the first slow reaction, x2 becomes
negative, and the system needs extra time to recover,
which causes a delay for the SSRFT in the HR hybrid
method.

For comparison, we calculate the relative error

er = |Tc − Th|
Tc

, (17)

where Tc and Th are the second slow reaction firing times
of the CME and the HR hybrid method, respectively. Here
we sample the mean SSRFT as Tc and Th, i.e. P(T2 <

Tc) = 0.5, P(T2 < Th) = 0.5.
When we increase b1 from 1 to 10 and set the initial

condition as m1 = m, m2 = 0, then S2 has a low popula-
tion and a great chance to become negative when the slow
reaction fires. In Fig. 3, the acceptable region for er < 0.01
of the SSRFT is surprisingly larger than that of the NSRFT.
But it can be well explained. First, it is known that the
NSRFT of the HR hybrid method is faster than that of
the CME from the previous work [30] and the example in
Fig. 2a. If there is no negativity problem, then the SSRFT
of the hybrid method should be even faster than that of
the CME as it accumulates error from two slow reactions.
However, when there is a negative species, e.g. S2 in this

case, the system slows down to recover from its nega-
tive state. The negativity recovery time, to some extent,
reduces the numerical error of the hybrid method in the
linear chain system. This runs like a way of coordination
between two subsystems: when a species becomes nega-
tive caused by a slow reaction, i.e. the slow subsystem runs
faster than expected, then the slow subsystem has to wait
longer for the next slow reaction to fire again.

For the Zero-Reaction and Zero-Time remedies, though
they have a smaller acceptable parameter space compared
with the HR hybrid method, they still have a larger param-
eter region than the NSRFT. Note that in the linear chain
system, the Zero-Time rule is similar to the Zero-Reaction
rule as G′

f is the fast subsystem and time τ , ρ are com-
parably small, but they are different for other cases, such
as when G′

f is different from the fast subsystem or when
there are more slow reactions in the slow subsystems.
For the Zero-Population remedy, the acceptable param-
eter space is only half of the other methods. All three
remedies converge to the contour line of the HR hybrid
method when m ≈ 11, satisfying one of the nonnega-
tive requirements (16). On the other hand, when the total
population is large (or m ≥ f1+b1

f1 ), a negative popula-
tion appears in a shorter time window, whereas Ref. [30]
has demonstrated that the error of the HR hybrid method
becomes smaller with larger populations. This leads us to
a conjecture regarding the HR hybrid method for the lin-
ear chain reaction system: the error caused by negative
populations is negligible compared to the original error of
the hybrid method. In other words, the negativity effect is
substantial only when the method is already problematic
in accuracy. Sometimes it acts as a positive sign to reduce
the numerical error of the HR hybrid method.

For general cases that include both negative and non-
negative situations, we calculate the mean relative error
based on all possible initial conditions �x0, which follows
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m
101 102

k c

10-2

100

102
1st exit time
2nd exit time
0-Population
0-Reaction
0-Time

Fig. 3 Contour plot of relative error er in the linear system (1) with parameters f1 = 1, b1 = 10. The initial condition is set to m1 = m, m2 = 0.
Regions below each line have a relative error less than 1%. For the Zero-Population rule, the bottom right region is the acceptable parameter space

the steady state distribution of the fast subsystem subject
to f1 and b1. Figure 4 illustrates the acceptable system
parameter region (er < 0.01) for b1 = 1 and b1 = 10.
In both cases, the SSRFT keeps the same pattern but
with improved accuracy horizontally resulting from the
negativity phenomenon and decreased accuracy vertically
due to the accumulative method error. Since nonnegative
situations occur much more frequently than negative situ-
ations (where the initial condition must be either m2 = 0
or m < 11), the three proposed remedies do not make
a difference in the acceptable region of the HR hybrid
method.

A larger system (n = 10)
If we increase the length of the linear chain system
to n = 10, it is hard to calculate the derived formulas
(4, 9) for the second exit time. Instead, we run simula-
tions of each method and collect samples for the NSRFT
and the SSRFT. For each pair of (m, kc), the reported
NSRFT and SSRFT are the mean values from one mil-
lion simulation results. Consider that all the contour plots
in this subsection are processed to make the outline
smooth.

First look at one negative case where the initial con-
dition is m1 = m, mi = 0 (i = 2, 3, . . . , 10). In Fig. 5,

(a) (b)
Fig. 4 Contour plot of the average relative error er = 0.01 in the linear system (1) with different kc and m values. The remaining parameter is f1 = 1.
Acceptable parameter pairs for the HR hybrid method can be chosen from the bottom and right regions. a Contour plot of the average relative error
er = 0.01 with parameter b9 = 1 b Contour plot of the average relative error er = 0.01 with parameter b9 = 10
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m
101 102 103

k c

10-2

100

102 1st exit time
2nd exit time
0-Population
0-Reaction
0-Time

Fig. 5 Contour plot of relative error of er in the linear chain system (2) with parameters fi = bi = kc = 1, b9 = 10. The chain length is n = 10 and the
initial condition is set to m1 = m, mi = 0 (i = 2, 3, . . . , 10). Regions below each line have a relative error less than 1%. Note that the HR hybrid
method has an extra top right region of acceptable parameter pairs

the shape of the acceptable region (er < 0.01) is similar
to the case when n = 2. For the Zero-Reaction rule,
it has the same accuracy as the original HR hybrid
method, except for the top right region; while the Zero-
Population rule is only accurate for large m and small
kc. So the observation that negativity does not influ-
ence the accuracy still holds for large linear chain
systems, if the Zero-Reaction rule is applied. We do
not consider the Zero-Time rule as it is much less

efficient than the other two remedies in this larger
system.

For general cases, we randomly sample initial conditions
for each (m, kc) pair. And the probability distribution of
�x0 satisfies the steady state of the reversible reactions con-
trolled by fi and bi. Figure 6 exhibits the same pattern as
Fig. 4 for both cases b9 = 1 and b9 = 10. The accept-
able parameter space for the second exit time is smaller
when n = 10, which is similar to the first exit time

(a) (b)
Fig. 6 Contour plot of the average relative error er = 0.01 in the linear chain system (2) with different kc and m values. The chain length is n = 10.
Acceptable parameter pairs for the HR hybrid method can be chosen from the bottom and right parts. a Contour plot of the average relative error
er = 0.01 with parameter b9 = 1 b Contour plot of the average relative error er = 0.01 with parameter b9 = 10
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discussed in Ref. [30]. Thus, for large linear chain sys-
tems, the negativity problem is insignificant for the hybrid
method.

Numerical experiments
The previous subsection studied the accuracy based on
the first and the second slow reaction times. In this
section, we apply the HR hybrid method and three
remedies to different systems and compare statistics.

A closed linear chain system
The first example shown below is a similar linear chain
system with an extra reaction S3

ks→ S1 that forms a closed
system. We divide the system into two parts, the ODE sys-
tem contains the reversible reaction, while the SSA system
takes the remaining reactions involving S3.

S1
f1�
b1

S2
kc→ S3

ks→ S1. (18)

We choose model parameters and initial conditions so
that negative populations occur frequently in the system.
Figure 7 shows the average evolution of species S2 and S3
from different simulation methods and rules over 10,000
simulations. It is obvious that under the Zero-Population
rule, the populations of S2 and S3 keep increasing with
time while the other methods reach a steady state. The
evolution from the Zero-Reaction rule is slightly closer to
the results of SSA than the other methods. We then look at
the final distributions of species S2 and S3 based on 10,000
simulations, shown in Fig. 8. In system (18), x2 is negative
for 30% of the time if using the original HR hybrid method.
With the Zero-Time rule, x2 is always nonnegative, while
the Zero-Reaction rule does not change the distribution
of S2 much. For the final distribution of S2, though the
differences between methods are fairly close (< 10%), the
Zero-Reaction rule also works better than others. The
results from the Zero-Population rule are much different

from the SSA results, and the final distribution will shift
further to the right if we run the system longer.

The above example demonstrates that the system can
finally recover from negative populations without using
any remedies. To test an extreme case, suppose there is
another species Y highly sensitive to S2, shown below

S1
f1�
b1

S2
kc→ S3, ∅ k1[S2]→ Y k2→ ∅ (19)

The first part is a simple linear chain system with n = 2.
A particle can exit the reversible chain system through S2
with reaction rate kc. The other part is a birth and death
process of species Y. S2 acts as the enzyme activating the
synthesis of Y. Following the same partition strategy used
above, we isolate the irreversible reaction in a slow sub-
system as both the rate constant kc and quantity of S2
are small. All the remaining reactions are put into a fast
subsystem.

By setting f1/b1 = 0.1, S2 maintains a low population
and has a high chance to become negative when the slow
reaction fires. Once x2 < 0, the slow reaction propensity is
negative, which ensures that the slow reaction will not fire
until x2 goes back to a positive value in the fast subsystem.
So the negative population of S2 has no effect on S3 in this
case. But for Y, it can provoke large fluctuations especially
when k1[ S2] � k2. Figure 9 shows one simulation result
of S2 and Y. When S2 first drops to − 0.7, Y is also driven
negative and then becomes positive after one time unit,
while under the Zero-Reaction rule, Y is always nonneg-
ative. During the recovery period of Y, if there is another
species Z dependent on Y and a species A dependent on
Z, then Y may incur a cascade of negativity which signifi-
cantly increases the simulation error. For situations where
negative reactants heavily affect other species, a remedy is
definitely needed to prevent a simulation failure.

(a) (b)
Fig. 7 Evolution of species S2 and S3 in the closed linear system (18) from the SSA, the HR hybrid method, and three remedies (Zero-Population,
Zero-Reaction, and Zero-Time) based on 10,000 simulations. The parameters are f1 = b1 = kc = ks = 1. The initial condition is m1 = 1 and the
remaining species populations are zero. a Population evolution of species S2 b Population evolution of species S3
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(a) (b)

(c) (d)
Fig. 8 Final distributions of species S2 and S3 in the closed linear system (18) from the SSA, the HR hybrid method, and three remedies
(Zero-Population, Zero-Reaction, and Zero-Time) based on 10,000 simulations. The parameters are f1 = b1 = kc = ks = 1. The initial condition is
m1 = 1 and the remaining species populations are zero. a Final population distributions of species S2 b Final population distributions of species S3

c Final population distribution of species S2 under the Zero-Population remedy d Final population distribution of species S3 under the
Zero-Population remedy

A closed nonlinear system
From the previous studies, we found that the HR hybrid
method works fine for linear systems even with a high
frequency of negative populations. Here we want to exam-
ine the effect of negative values on nonlinear systems,
e.g. bimolecular reactions. Slightly modifying reactions
involving S2 into bimolecular reactions in system (18), we
generate a new nonlinear system shown below.

S1
f1�
b1

2S2
kc→ S3

ks→ S1. (20)

Similarly, we partition the system into groups: the
fast group containing the reversible reactions and the
slow group containing the remaining reactions. For the
bimolecular reaction S2 + S2

kc→ S3 in the slow subsystem,
the propensity is abi = kcx2(x2 − 1). When x2 < 0, abi
is positive which can potentially cause the reaction to fire
and further decrease the value of x2. Thus, the SSA system
becomes unstable when x2 < 0.

For the fast ODE system, we have
dx1
dt

= −f1x1 + b1x2
2

dx2
dt

= 2f1x1 − 2b1x2
2

The Jacobian matrix is

J =
[ −f1 2b1x2

2f1 −4b1x2

]

The determinant is

|λI − J| =
∣∣∣∣
λ + f1 −2b1x2
−2f1 λ + 4b1x2

∣∣∣∣
= λ(λ + f1 + 4b1x2)

The two eigenvalues of the ODE system are λ1 = 0,
λ2 = −f1 − 4b1x2. For x2 > 0, λ2 < 0, so the fast system is
stable. But in the HR hybrid method, x2 could be negative
under certain conditions. Let dx2

dt = 2f1x1 − 2b1x2
2 = 0,

species S2 has the two equilibrium points:

x∗
2 = −a ±

√
a2 + am, a = f1

4b1
(21)

where m is the initial total population. One equilibrium
point is positive, thus it is a stable point in the system. But
for the other point, since x∗

2 = −a − √
a2 + am < −2a <

− f1
4b1

, λ2 > 0, it is an unstable point. So the HR hybrid
method fails in this nonlinear system when the population
of S2 gets smaller than − f1

4b1
by chance.
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(a)

(b)
Fig. 9 Population trajectories of S2 and Y in system (19) from one simulation of the HR hybrid method and the Zero-Reaction remedy. The parameters
are f1 = 1, b1 = 10, kc = 1, k1 = 100, k2 = 1. The initial condition is m1 = 2 and the remaining species populations are zero. a Population trajectories
of species S2 and Y from one HR hybrid method simulation b Population trajectories of species S2 and Y from one Zero-Reaction remedy simulation

The above analysis is consistent with our simulation
results. In our experiments, a simulation is considered a
failure when the ODE solver is unable to meet integra-
tion tolerances with the smallest step length, or when one
of the species’ population reaches an extremely abnormal
value, for example if a species’ population becomes abnor-
mally large (e.g. 1000) or below the negative value of the
total population (−m). In Fig. 10, with an initial condition
m1 = 10 and m2 = 0, it is found that even if x2 has a prob-
ability less than 1% to be negative (see Fig. 11a), the system
still suffers a significant error and breaks down after cer-
tain simulation time when using the original HR hybrid
method. Particularly, 191 simulations of the original HR
hybrid method failed among the total 10,000 trials (each
trial runs from time t = 0 to t = 10). In Fig. 10, while
the evolution of S3 from the three rules is pretty close
to that of the SSA, there is an approximate one molecule
difference in the S2 population between the remedy rules
and the SSA, which mainly comes from the method error
rather than the influence of negative value of x2. The final
distributions of species S3 from the Zero-Reaction and
Zero-Time rules are close to the bell shape of the SSA
results. Although the Zero-Population remedy did not fail
in the simulation, the results are quite erroneous. Note

that in Fig. 10, the population of S2 and S3 from the Zero-
Population rule does increase slowly with time. If we run
the system to a much larger time (e.g. t = 1000), S3 can
reach 30, as shown in the final distribution of Fig. 11d.

When decreasing the total population to m = 3, only
the Zero-Reaction rule still works and generates stable
results similar to the SSA except the approximate one
molecule difference in S2 population, see Figs. 12 and 13.
The Zero-Time rule failed because the separate G′

f sys-
tem (which is the fast subsystem in this case) is unstable.
Among the 10,000 simulations where the system was sim-
ulated from time t = 0 to t = 10, the original HR hybrid
method failed in 2468 trials, while the Zero-Time rule
failed in 1302 trials.

In general, the system stability will be affected if neg-
ative species are involved in nonlinear reactions where
either the corresponding reacting terms in the ODE sys-
tem or the corresponding propensities in the SSA sys-
tem are still positive. Through the above comparison,
the Zero-Reaction rule shows its ability to avoid the
instability of nonlinear systems caused by negative val-
ues and at the same time keeps the accuracy of HR
hybrid method. In application, it is easy and efficient to
implement.
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(a) (b)
Fig. 10 Evolution of species S2 and S3 in the nonlinear system (20) from the SSA and three remedies (Zero-Population, Zero-Reaction, and
Zero-Time) based on 10,000 simulations. The parameters are f1 = b1 = kc = ks = 1. The initial condition is m1 = 10 and the remaining species
populations are zero. a Population evolution of species S2 b Population evolution of species S3

Caulobactor crescentus cell cycle model
Caulobactor crescentus is a bacteria that lives in freshwa-
ter like streams and lakes. It has an asymmetrical division
that produces two morphologically different daughter
cells, which makes it an important study organism for cell
cycle modeling. Li et al. [31] studied the stochastic spa-
tiotemporal model of a response-regulator network in the

cell cycle. The stochastic model focused on the bistable
switch of PleC that functioned as both kinase and phos-
phatase and successfully captured the viability of mutant
cells. But it took the stochastic simulation three days for a
single run.

To improve the efficiency, we applied the HR hybrid
method and compared different partitioning strategies. In

(a) (b)

(c) (d)
Fig. 11 Final distributions of species S2 and S3 in the nonlinear system (20) from the SSA, three remedies (Zero-Population, Zero-Reaction, and
Zero-Time) based on 10,000 simulations. The parameters are f1 = b1 = kc = ks = 1. The initial condition is m1 = 10 and the remaining species
populations are zero. a Final population distributions of species S2 b Final population distributions of species S3 c Final population distribution of
species S2 under the Zero-Population remedy d Final population distribution of species S3 under the Zero-Population remedy
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(a) (b)
Fig. 12 Evolution of species S2 and S3 in the nonlinear system (20) from the SSA, the HR hybrid method, and three remedies (Zero-Population,
Zero-Reaction, and Zero-Time) based on 10,000 simulations. The parameters are f1 = b1 = kc = ks = 1. The initial condition is m1 = 3 and the
remaining species populations are zero. a Population evolution of species S2 b Population evolution of species S3

the stochastic model, there are 141 reactions involving 45
species, in which eight proteins and their corresponding
mRNAs are diffusive. The rod cell shape was modeled as
50 × 1 × 1 cubics. In a test run, protein diffusion took
99.826% of the total number of reactions, putting it in the
ODE system would greatly decrease the time cost. The
catalytic reactions CtrA � CtrAp took 0.148%. Compared
to the diffusion of proteins, the diffusion of mRNAs only
occupied 0.024%, while the remaining 140 reactions took
0.002%.

The computational cost of the hybrid method is propor-
tional to the number of slow reaction firings, but is also
affected by the size of the ODE subsystem. Based on the
firing number of different reactions in the SSA simulation,
we investigated three partitioning strategies as shown
in Table 1. In Strategy I, only diffusion events of eight
proteins are simulated by the ODE subsystem, the remain-
ing events are put into the SSA subsystem. While Strategy
II further partitions catalytic reactions of CtrA into the
ODE subsystem, the size of the ODE subsystem does not

change (reactants and products of the catalytic reaction
are diffusive and already included in the ODE subsystem).
But the average slow reaction firing time is one order of
magnitude less than Strategy I, which decreases the time
cost by approximately a factor of ten. Strategy III parti-
tions the system by species type: mRNA reactions are all in
the SSA subsystem and protein reactions are in the ODE
subsystem. This strategy greatly reduces the probability of
negativity problems. On the other hand, although Strat-
egy III has the least interruption by slow reactions (every
6e−5 min), its size for the ODE subsystem increases to 50
(bin number)× 37 (types of species). This is quite a large
ODE system, which imposes a high computational burden
on the ODE solver. Overall, Strategy II is the most effi-
cient partitioning strategy for the HR hybrid method in
this Caulobactor cell cycle model, the time cost for a single
cell cycle simulation is significantly reduced to one hour
from three days!

However, as mentioned in the second example in
the introduction, the negativity problem appears when

(a) (b)
Fig. 13 Final distributions of species S2 and S3 in the nonlinear system (20) from the SSA, the Zero-Reaction remedy based on 10,000 simulations.
The parameters are f1 = b1 = kc = ks = 1. The initial condition is m1 = 3 and the remaining species populations are zero. a Final population
distributions of species S2 b Final population distributions of species S3
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Table 1 Comparison of different partition strategies and complexities

Strategy I Strategy II Strategy III

ODE Reactions Protein diffusion Protein diffusion, catalytic reaction Diffusion, reactions involving proteins

System Size 50× 8 equations 50× 8 equations 50× 37 equations

SSA Reactions mRNA diffusion, all 141 reactions mRNA diffusion, rest 140 reactions mRNA diffusion, synthesis, degradation

Firing Interval 1e−6 2e−5 6e−5

Running Time of HR hybrid Method 9.5h 1h 4h

species density is low. Figure 14 summarizes the total time
of negativity state for each species during one cell cycle
(∼ 120 min). It is observed that protein DivKp has a neg-
ative value for almost 10% of a cycle period, followed by
proteins CckA, DivL(free), CtrAp, and DivJ(free), which
are negative for less than 0.1% of the total time. Figure 15
shows the average population trajectories of four nega-
tive species from the SSA and the HR hybrid method
using Strategy II. We can see that the hybrid method
matches well with the SSA except for a slight difference
in DivJ(free). It is also found that all species with negative
values have a period of a low population during the cell
cycle. The scarce density of DivKp (nearly zero for the ini-
tial 30 min) results in a high occurrence of negative value.
Yet the negativity problem in this model has no significant
impact on simulation accuracy because the diffusion of
proteins happens much faster than chemical reactions (at
least one order of magnitude faster). Whenever a bin has a
negative population resulting from a slow reaction firing,

proteins in neighboring bins (with positive populations)
quickly diffuse to the negative bin in the ODE system and
make it positive before any chemical reaction happens.
The HR hybrid method does not even need a remedy rule
for the negativity problem in this case. But in general, the
Zero-Reaction rule is recommended since the added com-
putational cost is minimal but the potential impacts of the
negativity problem can be avoided.

Conclusion
This paper presents an analysis on the negativity problem
of the HR hybrid stochastic simulation algorithm. Based
on the second slow reaction firing time, the error caused
by negative populations is shown to be negligible com-
pared to the approximation error of the method itself.
In the linear chain system, the negativity phenomenon
actually helps to increase the method’s accuracy. But for
nonlinear systems, negative values may lead to system
failure. Three remedies for negativity are proposed and
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Fig. 14 The percentage of the cell cycle time where species have negative populations
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(a) (b)

(c) (d)
Fig. 15 The mean population trajectories of negative species in the Caulobactor cell cycle model from the SSA and the HR hybrid method over 48
simulations. Note that the shown population of each species at each time point are the summation of the population over 50 bins in the domain. a
Average population trajectories of species CckA b Average population trajectories of species CtrAp c Average population trajectories of species
DivJf d Average population trajectories of species DivKp

studied in the context of SSRFT where Zero-Time and
Zero-Reaction rules have acceptable accuracy. Particu-
larly, the Zero-Reaction remedy can handle both extreme
negative cases and nonlinear systems whereas the other
two methods may fail. Without any remedy for negative
populations, the HR hybrid method may still be success-
fully applied to a real biological network and significantly
improves the efficiency via an optimized partition strat-
egy. Overall, we conclude that the negativity phenomenon
does not influence the biochemical network unless the
negative species are involved in nonlinear reactions that
generate positive reacting terms or propensities. In gen-
eral, the Zero-Reaction remedy is recommended due to
easy implementation and minimal additional computa-
tional cost.

Acknowledgements
Not applicable.

Funding
This work was partially supported by the National Science Foundation under
awards CCF-0953590, CCF-1526666, and MCB-1613741.

Availability of data and materials
The accuracy and negativity analysis of different systems and examples are
detailed in the main text.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 20
Supplement 12, 2019: Selected original research articles from the Fifth
International Workshop on Computational Network Biology: Modeling,
Analysis and Control (CNB-MAC 2018): Bioinformatics. The full contents of the
supplement are available online at https://bmcbioinformatics.biomedcentral.
com/articles/supplements/volume-20-supplement-12.

Authors’ contributions
YC conceived the idea and supervised the study. MC designed the study
models, implemented the simulations, and analyzed the results. MC drafted
the manuscript, and YC gave critical revisions on the writing. All authors have
read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Published: 20 June 2019

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-12
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-20-supplement-12


Chen and Cao BMC Bioinformatics 2019, 20(Suppl 12):315 Page 16 of 16

References
1. Gillespie DT. A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions. J Comput Phys. 1976;22(4):
403–34.

2. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J
Phys Chem. 1977;81(25):2340–61.

3. Gibson MA, Bruck J. Efficient exact stochastic simulation of chemical
systems with many species and many channels. J Chem Phys. 2000;104:
1876–89.

4. Cao Y, Li H, Petzold L. Efficient formulation of the stochastic simulation
algorithm for chemically reacting systems. J Chem Phys. 2004;121(9):
4059–67.

5. McCollum JM, Peterson GD, Cox CD, Simpson ML, Samatova NF. The
sorting direct method for stochastic simulation of biochemical systems
with varying reaction execution behavior. Comput Biol Chem. 2006;30:
39–49.

6. Li H, Petzold L. Logarithmic Direct Method for discrete stochastic
simulation of chemically reacting systems. Santa Barbara: University of
California Santa Barbara; 2006.

7. Slepoy A, Thompson AP, Plimpton SJ. A constant-time kinetic Monte
Carlo algorithm for simulation of large biochemical reaction networks. J
Chem Phys. 2008;128:205101.

8. Anderson DF. A modified next reaction method for simulating chemical
systems with time dependent propensities and delays. J Chem Phys.
2007;127:214107.

9. Gillespie DT. Approximate accelerated stochastic simulation of chemically
reacting systems. J Chem Phys. 2001;115(4):1716–33.

10. Davis MHA. Piecewise-Deterministic Markov Processes: A General Class of
Non-Diffusion Stochastic Models. J R Stat Soc Ser B Methodol. 1984;46(3):
353–88.

11. Haseltine EL, Rawlings JB. Approximate simulation of coupled fast and
slow reactions for stochastic chemical kinetics. J Chem Phys.
2002;117(15):6959–69.

12. Rao CV, Arkin AP. Stochastic chemical kinetics and the quasi-steady-state
assumption: Application to the Gillespie algorithm. J Chem Phys.
2003;118(11):4999–5010.

13. Cao Y, Gillespie DT, Petzold LR. Avoiding negative populations in explicit
Poisson tau-leaping. J Chem Phys. 2005;123(5):054104.

14. Franz U, Liebscher V, Zeiser S. Piecewise-Deterministic Markov Processes
as limits of markov jump processes. Adv Appl Probab. 2012;44(3):729–48.

15. Jahnke T, Kreim M. Error bound for piecewise deterministic processes
modeling stochastic reaction systems. Multiscale Model Simul. 2012;10(4):
1119–47.

16. Cao Y, Gillespie DT, Petzold LR. The slow-scale stochastic simulation
algorithm. J Chem Phys. 2005;122(1):014116.

17. Cao Y, Gillespie DT, Petzold LR. Multi-scale stochastic simulation
algorithm with stochastic partial equilibrium assumption for chemically
reacting systems. J Chem Phys. 2005;206:395–411.

18. Sanft KR, LRP, Gillespie DT. Legitimacy of the stochastic Michaelis-Menten
approximation. IET Syst Biol. 2011;5(1):58.

19. Thomas P, Straube AV, Grima R. Communication: Limitations of the
stochastic quasi-steady-state approximation in open biochemical
reaction networks. J Chem Phys. 2011;135(18):181103.

20. Salis H, Kaznessis Y. Accurate hybrid stochastic simulation of a system of
coupled chemical or biochemical reactions. J Chem Phys. 2005;122(5):
054103.

21. Liu Z, Pu Y, Li F, Shaffer CA, Hoops S, Tyson JJ, et al. Hybrid modeling
and simulation of stochastic effects on progression through the
eukaryotic cell cycle. J Chem Phys. 2012;136(3):034105.

22. Lecca P, Bagagiolo F, Scarpa M. Hybrid deterministic/stochastic
simulation of complex biochemical systems. Mol BioSyst. 2017;13:
2672–2686.

23. Lo WC, Zheng L, Nie Q. A hybrid continuous-discrete method for
stochastic reaction-diffusion processes. R Soc Open Sci. 2016;3(9):160485.

24. Wang S, Chen M, Watson LT, Cao Y. Efficient implementation of the
hybrid method for stochastic simulation of biochemical systems. J
Micromech Mol Phys. 2017;02(02):1750006.

25. Chiam KH, Tan CM, Bhargava V, Rajagopal G. Hybrid simulations of
stochastic reaction-diffusion processes for modeling intracellular
signaling pathways. Phys Rev E. 2006;74:051910.

26. Rossinelli D, Bayati B, Koumoutsakos P. Accelerated stochastic and
hybrid methods for spatial simulations of reaction–diffusion systems.
Chem Phys Lett. 2008;451(1):136–40.

27. Salis H, Sotiropoulos V, Kaznessis YN. Multiscale Hy3S: Hybrid stochastic
simulation for supercomputers. BMC Bioinformatics. 2006 Feb;7(1):93.

28. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, et al. COPASI–a
complex pathway simulator. Bioinformatics. 2006;22:3067–74.

29. Wang S, Ahmadian M, Chen M, Tyson JJ, Cao Y. A Hybrid Stochastic
Model of the Budding Yeast Cell Cycle Control Mechanism. In:
Proceedings of the 7th ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics. BCB ’16. New York: ACM;
2016. p. 261–70.

30. Chen M, Wang S, Cao Y. Accuracy analysis of hybrid stochastic
simulation algorithm on linear chain reaction systems. Bull Math Biol.
2018. https://doi.org/10.1007/s11538-018-0461-z.

31. Li F, Subramanian K, Chen M, Wang S, Cao Y. A stochastic
spatiotemporal model of a response-regulator network in the
Caulobacter crescentus cell cycle. Phys Biol. 2016;13(3):e0133295.

32. Wang S, Cao Y. The abridgement and relaxation time for a linear
multi-scale model based on multiple site phosphorylation. PLoS ONE.
2015;10(8):e0133295.

https://doi.org/10.1007/s11538-018-0461-z

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Methods
	Second slow reaction firing time
	SSRFT for the CME
	SSRFT for the HR hybrid method
	SSRFT for remedy I: zero-population
	SSRFT for remedy II: zero-reaction
	SSRFT for remedy III: zero-time

	Results and discussion
	Theoretical analysis of SSRFT
	A simple case (n=2)
	A larger system (n=10)

	Numerical experiments
	A closed linear chain system
	A closed nonlinear system
	Caulobactor crescentus cell cycle model


	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

