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Vasculitis refers to inflammation of blood vessels and can cause a variety of serious
complications depending on which vessels are affected. Two different forms of vasculitis
are Giant Cell Arteritis (GCA) and Granulomatosis with Polyangiitis (GPA). GCA is the most
common form of vasculitis in adults affecting the large arteries and can lead to visual
impairment and development of aneurysms. GPA affects small- and medium-sized blood
vessels predominantly in the lungs and kidneys resulting in organ failure. Both diseases
can potentially be fatal. Although the pathogenesis of GCA and GPA are incompletely
understood, a prominent role for CD4+ T cells has been implicated in both diseases. More
recently, the role of CD8+ T cells has gained renewed interest. CD8+ T cells are important
players in the adaptive immune response against intracellular microorganisms. After a
general introduction on the different forms of vasculitis and their association with infections
and CD8+ T cells, we review the current knowledge on CD8+ T-cell involvement in the
immunopathogenesis of GCA and GPA focusing on phenotypic and functional features of
circulating and lesional CD8+ T cells. Furthermore, we discuss to which extent aging is
associated with CD8+ T-cell phenotype and function in GCA and GPA.
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INTRODUCTION

The vasculitides are a heterogeneous group of disorders characterized by inflammation of blood
vessels. Classification of the different forms of primary vasculitis is defined by the 2012 International
Chapel Hill Consensus conference (1) and is based primarily on the size of the inflamed vessels. The
distinct forms of vasculitis also differ from each other regarding age of onset, genetic predisposition,
pathogenesis and affected organs.

The onset of some forms of vasculitis has been linked to infectious triggers. A prime example is
granulomatosis with polyangiitis (GPA), which has been associated with various microbial agents,
in particular Staphylococcus aureus. GPA is a severe systemic autoimmune disease that
predominantly affects the elderly. The disease is characterized by necrotizing vasculitis of small-
to medium-sized blood vessels and the presence of anti-neutrophil cytoplasmic antibodies (ANCA)
mainly directed against proteinase 3 (PR3). Due to inflammation of small blood vessels, several
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organs and tissues can be severely affected. In GPA, especially
upper and lower respiratory tract and kidney involvement are
common. Besides necrotizing vasculitis, GPA is characterized by
granulomatous inflammation of the respiratory tract. Studies
have shown that the majority of GPA patients are nasal carriers
of S. aureus which correlated with higher relapse rates although a
direct link between S. aureus carriage and disease activity or
relapse risk remains to be established (2, 3). Moreover, in a subset
of GPA patients a clinical benefit from treatment with antibiotics
has been demonstrated adding to the notion that a microbial
factor may trigger the disease (4).

Giant cell arteritis (GCA) is the most common form of large
vessel vasculitis and affects females twice as often as men. GCA is
strongly age-related as it only affects people older than 50 years
of age (5). The symptoms experienced by GCA patients are
largely dependent on the anatomic localization and type of the
affected vessels. Different studies reported an association between
disease onset and infections with specific pathogens such as
Mycoplasma pneumoniae, Parvovirus B19, Herpes Zoster and
Parainfluenza virus but none of these associations could be
conclusively validated in follow-up studies (6–8). This does not
exclude a role for infections in the onset of GCA, but rather
suggests the involvement of shared inflammatory pathways that
can be activated by various infectious agents.

Other forms of vasculitis in which infections have been
strongly implicated include Kawasaki disease (KD) (9–11), a
medium vessel vasculitis affecting young Asian populations,
Polyarteritis nodosa (PAN), a medium-sized vessel vasculitis
affecting adults (12–15) and Takayasu Arteritis (TA), which
affects younger adults from Asian populations (16).

Our immune system is designed to protect our body against
infectious agents and utilizes specialized immune cells for this
purpose. CD8+ T cells are key in the anti-viral defense by
clearance of virus-infected cells, but also act against
intracellular bacterial infections. It is therefore not surprising
that the role of CD8+ T cells has been investigated in several
forms of vasculitis that have been associated with infectious
agents. The forms of vasculitis in which the role of CD8+ T cells
is most pronounced, are diseases affecting children (KD) or
Frontiers in Immunology | www.frontiersin.org 2
younger adults (TA) (summarized in Table 1). CD8+ T cells
are highly prevalent in inflammatory infiltrates of KD patients
and upregulated CD8+ and interferon pathway genes were
detected in post mortem coronary artery biopsies (17, 18). In
TA CD8+ T cells are also abundantly present in affected arteries
and perforin was suggested to induce vascular cell injury (25).
Regarding older adults with PAN, available data is limited to a
small number of case series, which revealed the presence of
CD8+ T cells at the site of vascular inflammation, mostly
outnumbering the CD4+ T cells (29–32).

Although disease onset and progression in GCA and GPA
have also been linked to infectious agents, the contribution of
CD8+ T cells to the pathogenesis of these diseases is largely
unknown. Studies on immune mechanisms involved in disease
pathogenesis have mainly focused on the roles of macrophages
and CD4+ T cells in GCA, and additionally on neutrophils and
autoantibody producing B cells in GPA. Recent studies however,
have clearly demonstrated the presence of CD8+ T cells in
vasculitis lesions in both GCA and GPA (33, 34). We deemed
this observation of particular interest due to the possible role of
infectious triggers in both diseases and the notion that aging,
having a profound influence on especially CD8+ T-cell
functions, presents a risk factor for both GCA and GPA.

Therefore, we here review and discuss the studies on CD8+ T-
cell involvement in the pathogenesis of GCA and GPA to
determine whether CD8+ T cells are active contributors to
disease pathogenesis or just bystanders with limited pathogenic
functions, and to determine to which extent aging affects the
function and phenotype of CD8+ T cells in GCA and GPA. After
a general overview of CD8+ T-cell function in health, disease and
aging we discuss the current knowledge on CD8+ T cells in GCA
and GPA with respect to circulating and lesional phenotypes,
transcriptomic profiles and function. Paired medical subject
(MeSH) headings used for our literature search included giant
cell arteritis, temporal arteritis, granulomatosis with polyangiitis,
Wegener’s, CD8+ T cells and ANCA-associated vasculitis. The
reference lists of the articles selected with these keywords were
also used to include additional relevant articles. Single case
reports, reports in <5 patients, studies without any clear
TABLE 1 | Evidence suggesting CD8+ T cell involvement in Kawasaki disease and Takayasu Arteritis.

Kawasaki disease Takayasu Arteritis

* Strongly associated with (viral) infections (9–11).
* Transmural infiltration of more memory CD8+ T cells than CD4+ T cells in biopsies of
coronary artery aneurysms (17).
* Genes related to CD8+ T-cell activation and type 1 interferon induced genes are upregulated
in biopsies (18).
* CD8+ T cells, but not CD4+ T cells, are required for KD development in a murine model of
KD (19).
* The frequency of activated CD8+ T cells, defined by HLA-DR expression, was higher in
peripheral blood of active KD patients compared to controls (20).
* Treatment with intravenous immunoglobulin (IVIG) inhibits CD8+ T-cell activation (20).
* Patients that were IVIG resistant had a higher percentage of peripheral blood CD8+ HLA-DR+
T cells compared to responders (20).
* Percentages of the costimulatory receptor NKG2D-expressing CD8+ T cells were lower in
peripheral blood of acute KD than in HCs (21). NKG2D-expressing CD8+ T cells could also have
migrated to tissues or NKG2D could be downregulated in response to ligand-bound activation.

* MHC-I genes, especially HLA-B52 is strongly associated with
TA, suggesting involvement of CD8+ T cells (22–24).
* CD8+ T cells are present in aortic tissues (25, 26).
* A study in a small group of rather old TA patients suggests that
TA aorta biopsies have more infiltrating CD8+ T cells than
temporal artery biopsies of GCA patients (26).
* Perforin was expressed in CD8+ T cells in aortic tissues of TA
patients, which was suggested to induce vascular cell injury (25)
* 248 genes in CD4+ and 432 genes in CD8+ T-cell samples
differed between TA and HCs. TA patients had upregulation of
type I interferon genes (27)
* Strong expression of NKG2D, a costimulatory receptor for CD8
+ T cells and NK cells, and its ligand MICA in aortic lesions of TA
patients (28).
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patient characteristics, and inaccessible whole text of studies
were excluded.
CD8+ T CELLS IN HEALTH AND DISEASE;
ACTIVATIONANDSUBSETDIFFERENTIATION

The primary function of CD8+ T cells is to identify and eliminate
virus- or bacteria-infected, malignant and damaged cells. Upon
recognition of their cognate peptide presented by MHC class I,
CD8+ T cells can kill their target cells via perforin and granzymes
and release cytokines such as Interferon (IFN)-g and tumor
necrosis factor alpha (TNF-a). Some cytokines are directly
cytotoxic, but others recruit and activate other effector cells.
Fas-Fas-Ligand interactions between target cells and CD8+ T
cells, respectively, result in death of target cells as well.

Next to these protective functions, CD8+ T cells can also be
detrimental and contribute to autoimmune diseases. For
instance, auto-reactive CD8+ T cells seem to contribute to
autoimmune pathology in type 1 diabetes, alopecia areata,
multiple sclerosis and inflammatory bowel disease (35–38). In
healthy individuals, several mechanisms are in place that prevent
the activation of CD8+ T cells upon autoantigen presentation. In
patients with an autoimmune disease however, failing regulatory
mechanisms and other factors can result in activation of
autoreactive CD8+ T cells. These factors include among others,
Frontiers in Immunology | www.frontiersin.org 3
the activation state of the dendritic cells (DCs), the number of
antigen-MHC complexes, TCR affinity, the local cytokine milieu
and the functionality of regulatory CD4+ and CD8+ T cells (38).

Activation of CD8+ T cells, in either the context of health or
disease, leads to a sequence of events that results in
differentiation of naive CD8+ T cells into memory cells and
thus the generation of a pool of antigen-specific memory CD8+ T
cells (Figure 1). Upon proper antigen presentation and
appropriate co-stimulation and cytokine involvement, naive
CD8+ T cells proliferate and give rise to clonal expansions of
antigen-specific effector CD8+ T cells. Contraction of the effector
pool takes place after antigen clearance via apoptosis of most
short-lived effector cells. Long-term memory is generated by the
survival of a small subset of long-lived antigen-specific memory
CD8+ T cells. The memory CD8+ T cell pool generated in
response to antigen recognition consists of several subsets.
Central memory CD8+ T cells (TCM) are hardly found in the
circulation as these home to secondary lymphoid organs whereas
effector memory CD8+ T cells (TEM) cells are more abundant in
the circulation and often migrate to the (inflamed) tissues (39,
40). Nowadays it is clear that tissue residing memory CD8+ T
cells (TRM) have a role in instant protection of the host tissues to
both internal and external imminent threats. Indeed, CD8+ TRM

cells are thought to reside in the tissues permanently and do not
seem to circulate. Antigen recognition by TRM cells also
promotes the recruitment and activation of other innate and
FIGURE 1 | CD8+ T-cell activation and differentiation. Naive CD8+ T cells when presented with their cognate antigen by antigen presenting cells such as dendritic
cells (DCs) in the context of co-stimulation (CD28-CD80/86) and in the presence of cytokines become activated (1) which gives rise to an antigen-specific CD8+
effector pool (2). Effector CD8+ T cells kill infected, tumor or damaged cells by perforin and granzyme, Fas and Fas ligand (FasL) interactions and directly or indirectly
via cytokines such as interferon (IFN)-g and tumor necrosis factor (TNF)- a (3). After antigen clearance most effector cells go into apoptosis which leads to contraction
of the effector pool, but long-lived memory cells such as central memory (TCM), effector memory (TEM), memory cells that re-express CD45RA TEMRA, and tissue
residing memory (TRM) cells survive (4). Created with BioRender.com.
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adaptive immune cells to the tissue. Another memory CD8+ T-
cell subset detected in both the circulation and the (inflamed)
tissues is the TEMRA subset. TEMRA cells are late-stage memory
CD8+ T cells that re-express CD45RA and are likely terminally
differentiated (40). The latter subset is characteristic of aging and
latent CMV infection.
CD8+ T CELLS, AGING, CMV
AND INFLAMMAGING

Upon aging, many changes in the immune system occur, but the
decline of naive CD8+ T-cell numbers is the most profound
hallmark of aging (Figure 2). The thymus involutes early in life
around puberty, and T-cell homeostatic proliferation of naive T
cells is necessary to maintain the pool of naive T cells. This
process causes absolute numbers of naive CD4+ T cells to remain
stable in elderly but naive CD8+ T-cell numbers still profoundly
decrease upon aging (41–43). In both CD4+ and CD8+ naive T
cells the size of the TCR repertoire declines between the ages of
30 and 70 years. Although this may limit the size of the TCR
Frontiers in Immunology | www.frontiersin.org 4
repertoire, the TCR repertoire still remains very large and the
decrease in diversity in elderly is predicted to unlikely have
functional consequences (44, 45).

Aging is often associated with T-cell clonal expansions
especially in the naive repertoire. Clonal sizes increase due to
antigen-driven selective pressures or by uneven homeostatic
proliferation in response to homeostatic cytokines. The latter
seems to be the cause of increased clonal sizes within both the
CD4+ and the CD8+ naive pools, as the clonally expanded naive
CD8 T cells had different TCR sequences compared to memory
CD8+ T cells. Increases in clonal sizes within the naive T-cell
pool upon aging might be beneficial for the host as expanded
clones may result in a faster response to antigenic challenges (44,
45). Conversely, this may also generate an auto-reactive
repertoire and contribute to development of autoimmune
diseases with aging.

Latent infections with viruses such as varicella zoster virus,
Epstein-barr virus (EBV) and CMV are well known to have an
impact on the T-cell composition in the blood. This is likely
caused by continuous stimulation of the immune system. As
CMV is a relatively large virus expressing many proteins, the
FIGURE 2 | Effects of aging on CD8+ T cells. Upon aging, the thymus size decreases which leads to a reduced output of naive CD8+ T cells, thereby affecting the
diversity of the T-cell receptor (TCR) repertoire. Also, due to antigen-driven selective pressure and uneven homeostatic proliferation naive clonal sizes increase, which
leads to a faster response to certain antigens but may also favor an autoreactive repertoire. Repetitive stimulation by (e.g. latent viral) antigens decreases CD28
expression, CD8+ T cells lacking CD28 have decreased proliferative capacity but produce more pro-inflammatory cytokines. CMV infection leads to increasing CD8+
TEMRA cell numbers. Together, these phenomena lead to decreased immune cell functions (immunosenescence), low-grade inflammation (inflammaging) and a higher
risk to develop autoimmunity, cancer and infections. Created with BioRender.com.
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CD8+ T-cell immune repertoire controlling the virus is quite
broad. CMV seropositivity is well known to increase with age
and 50-85% of adults of 40 years and older are seropositive (46).
As a substantial repertoire of CD8+ T cells needs to control this
infection the development and expansion of highly differentiated
CD8+ TEMRA cells have been documented (42, 47). As a result
CD8+ TEMRA cells accumulate with age, a progress called
memory inflation (48, 49). This process is kept in balance to
some extent because CD8+ TEMRA cells have a lower proliferative
capacity. At the same time, CD8+ TEMRA cells are highly
cytotoxic and can produce many cytokines, which is beneficial
in combatting infections, and thus may compensate for their
lower proliferative potential (45).

Another important marker of T-cell aging and of highly
differentiated cells such as CD8+ TEMRA cells is the lack of
CD28 expression. CD28 is the most important co-stimulatory
receptor expressed by T cells as it interacts with CD80/86 on
professional antigen presenting cells. Repetitive stimulation of
CD8+ T cells, however, leads to downregulation of CD28 (50).
CD8+CD28- cells are highly differentiated, produce pro-
inflammatory factors and proliferate poorly to TCR
stimulation but are still able to proliferate in response to
cytokines like interleukin (IL)-15 (51). As senescent cells are
unable to proliferate in response to any signal, CD8+CD28- cells
are not considered truly senescent but instead described as
“senescent-like”. The higher proportion of CD8+CD28- cells in
aged adults has been linked to decreased responses to infectious
agents and vaccines (52).

Clonally expanded naive CD8+ T cells and accumulation of
highly differentiated CD8+ T cells with high cytotoxic capacity
are normal phenomena that are related to aging. However, these
phenomena alongside decreased function of other immune cells
such as B cells can lead to decreased immune clearance and lower
ability to maintain self-tolerance. Immunosenescence is a general
term used to describe the waning of immune functions with
aging. Immunosenescence may lead to increased occurrence of
infections, cancer and autoimmunity. Furthermore, high
cytokine production, for instance by differentiated CD8+ T
cells, can lead to a state of low-grade inflammation in the
elderly, also known as inflammaging (53). Immunosenescence
and inflammaging have been associated with several
autoimmune diseases, such as systemic lupus erythematosus
(SLE) and rheumatoid arthritis (RA) (54, 55).
PATHOGENESIS OF GCA

GCA is a granulomatous vasculitis that can affect the aorta and
its proximal branches, including cranial vessels. Symptoms
include severe headaches, scalp tenderness or necrosis, visual
disturbances or even visual loss (56). Most GCA patients have a
relapsing disease course. Studies indicated that human leukocyte
antigen (HLA) class II genes, in particular HLA-DRB1*04, are
associated with disease susceptibility, visual loss and
glucocorticoid resistance (57–59), HLA class I genes have been
associated with genetic susceptibility as well (57, 60).
Frontiers in Immunology | www.frontiersin.org 5
It is unclear what causes the disease although several
infectious agents have been proposed to be involved in
triggering the immune response that results in severe
inflammation of the vessel wall. However, an unknown
endogenous factor (e.g. danger associated molecular pattern
(DAMP)) should not be excluded and may function as a
trigger for initiation of the disease in a susceptible host.
Activation of tissue-residing dendritic cells (DCs) bearing toll-
like receptors (TLRs) in the adventitia of the vessel wall by such
an unknown trigger may start the cascade of disease-specific
inflammatory processes.

The proposed sequences of events thus start with activated
DCs producing cytokines and chemokines which attract
additional DCs and activate T cells. Especially T helper (Th)-1
and Th-17 cells that produce IFN-g and IL-17, respectively, seem
to be involved in the perpetuation of the inflammatory response
in GCA. These cells and their cytokines contribute to both local
and systemic inflammation by instigating pleotropic effects on
various immune cells. IFN-g induces the production of
chemokines by vascular smooth muscle cells (VSMCs).
Monocytes and macrophages migrate to the vessel wall in
response to these chemokines. In addition, IFN-g activates
macrophages, which are crucial in the destruction and
remodeling of the vessel wall and may fuse to form
multinucleated giant cells, which is one of the pathological
hallmarks of GCA. IL-17 has pro-inflammatory effects on
macrophages, neutrophils, endothelial cells and fibroblasts (61).

Following the activation of the adaptive arm of the immune
system, an amplification of the local immune response takes
place, causing vascular wall remodeling and disruption including
neoangiogenesis fueling the inflammation and facilitating further
immune cell recruitment to the vascular wall. Vessel-infiltrated
macrophages appear to be primarily responsible for these effects,
since they produce chemokines, damaging reactive oxygen
species (ROS) and matrix metalloproteinases. Furthermore,
macrophages produce pro-inflammatory cytokines such as
TNF-a, IL-1b, IL-7 and IL-33 of which local production may
translate into systemic effects. Giant cells and macrophages
produce platelet-derived growth factor (PDGF) and vascular
endothelial growth factor (VEGF) which can activate VSMCs
(62–64). Activated VSMCS differentiate into myofibroblasts after
migrating to the intima of the vascular wall. This results in
intimal hyperplasia and luminal occlusion (62). The different
phases in the pathogenesis of GCA have been nicely illustrated
previously in a review paper by Samson et al. (61).

In the 1980’s and 90’s many studies were directed toward
elucidating if circulating CD8+ T cells could act as a possible
biomarker for GCA disease activity. However, during that period
many studies did not differentiate between GCA and
polymyalgia rheumatica (PMR), a rheumatic disease that often
overlaps with GCA. Nevertheless, some studies found that CD8+
T cells were decreased in these patients (65–67), but it is highly
likely that these studies were confounded by glucocorticoid
treatment (68–72). It was not until recently that the possible
role of CD8+ T cells gained more interest (34), as CD8+ T cells
were detected at the site of inflammation in GCA-affected
March 2021 | Volume 12 | Article 654109
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lesions. To which extent CD8+ T cells contribute to disease
pathogenesis will be addressed in this review (Supplementary
Table 1).
PHENOTYPE OF CD8+ T CELLS IN
CIRCULATION AND AFFECTED TISSUES
OF GCA PATIENTS

As described previously, infectious triggers have been associated
with the onset of GCA pathogenesis, but endogenous triggers
could be involved as well. To assess whether a specific (viral or
self) antigen causes activation and differentiation of CD8+ T cells
in GCA, several studies assessed the clonality and TCR repertoire
of these cells. Whereas one study found that circulating CD8+ T
cells were clonally expanded in GCA patients (34), other studies
found no differences in clonal expansions between HCs and
GCA/PMR patients (73, 74). Clearly, these data are not
conclusive on the involvement of cognate antigens in the
development of GCA. However, one of the latter studies
reported that even though no differences in clonal expansions
were found between patients and controls, the TCR repertoire
with regard to Jb gene segments itself seemed to differ (74). In
addition to this, another study found that the expression of TCR
Va and Vb genes were different between T cells in peripheral
blood and vascular tissues. The authors state that this difference
may be due to local expansion of T cells caused by either
recruitment of specific T cells or local proliferation of these T
cells. In this study, no distinction could be made between TCR
genes of CD4+ and CD8+ T cells in vascular tissues (75). Most
importantly, patients and controls in these studies investigating
TCR diversity were not controlled for CMV status or matched
for HLA polymorphisms, factors associated with TCR diversity
(76). Thus, it remains to be identified whether CD8+ T cells are
clonally expanded by a response toward shared self or foreign
antigens, such as derived from infectious agents. Knowledge on
CD8+ T-cell clonality and TCR repertoire can aid our
understanding of selective CD8+ T-cell expansion during the
early phases of the disease or may inform on risk factors for
development of the disease.

In a recent study, Samson and co-workers performed a
detailed analysis of the phenotype of circulating CD8+ T cells
in GCA (34). In this study, higher percentages of circulating
cytotoxic CD8+ T cells, defined by perforin and granzyme B
expression, and higher systemic levels of soluble granzyme A and
B were observed. Furthermore, Tc-17 cell frequencies were found
increased in GCA patients as well. Since GCA patients had
higher frequencies of CXCR3+ CD8+ T cells and higher
systemic levels of the ligands CXCL9, -10 and -11, Samson et
al. hypothesized that CXCR3-expressing CD8+ T cells migrate to
the tissue in response to those chemokines, and subsequently
become activated by an unknown trigger.

Several studies identified CD8+ T cells at the site of tissue
inflammation in GCA by immunohistochemistry on temporal
artery biopsies (TAB). TAB tissues are often taken for diagnostic
purposes, and provide an important source of information to
Frontiers in Immunology | www.frontiersin.org 6
unravel the disease pathogenesis of GCA. Three vessel wall layers
can be distinguished in a TAB; from outside in: the adventitia,
the media and the intima. CD8+ T cells are present in TABs,
especially in the adventitia and media layers, but are less
abundant than CD4+ T cells (69). Schaufelberger et al.
reported that CD8+ T cells comprised 12%-46% of total T cells
in TABs (75).

As mentioned above, Samson et al. hypothesized that
CXCR3-expressing CD8+ T cells migrate to the tissue in
response to CXCL9, -10 and -11. CXCR3+ CD8+ T cells were
indeed found in TAB tissue, as well as the CXCR3 ligands
CXCL9 and CXCL10. These findings led the authors to
propose an adaptation of the hypothetical pathogenic model of
GCA, one where CD8+ T cells have a role in aggravating the local
immune response. IFN-g produced by Th1 cells can trigger the
release of, among others, CXCL9, -10 and -11 by VSMCs. This in
turn can lead to recruitment of CXCR3-expressing cells, such as
CXCR3+CD8+ T cells. After activation by an unknown trigger,
CD8+ T cells start to produce cytokines such as IL-17 and IFN-g.
IFN-g production by CD8+ T cells triggers additional release of
chemokines, creating a feed-forward loop of additional recruited
and activated CD4+ and CD8+ T cells (34). Interestingly, in this
study it was also found that strong CD8+ T-cell infiltration in
TABs was associated with a more severe disease course and
associated with more visual disturbances. This finding, however,
has not yet been confirmed by other studies in an independent
cohort of patients.

Taken together, although it remains to be elucidated which
factors activate CD8+ T cells in the vascular wall, it is clear that
CD8+ T cells are present in GCA inflamed tissue. Studies on
chemokine expression suggest involvement of the CXCL9/10/11-
CXCR3 axis. Although granzyme B and perforin- expressing CD8+
T cells are elevated in blood of GCA patients, it remains to be
elucidated whether these cells contribute to vasculitis development.
EFFECT OF AGE ON CD8+ T-CELL
PHENOTYPE IN CIRCULATION AND
AFFECTED TISSUES OF GCA PATIENTS

Several studies looked into the aging-related phenotype of CD8+
T cells in GCA. Aging is strongly associated with an increase of
CD8+CD28- and to a lesser extent also CD4+CD28- (41, 77). In
addition, T cells lacking the co-stimulatory receptor CD28, often
upregulate other co-stimulatory receptors, such as natural killer
group 2 member D (NKG2D). Studies on CD8+CD28-
frequencies in GCA are inconsistent. Whereas one study
described similar absolute and relative values of CD8+CD28-
cells in GCA/PMR patients compared to HCs (73), another study
reported higher frequencies of CD3+CD8+CD28- cells in GCA/
PMR patients (78). However, the first study included treatment-
naive patients only whereas the second study reported on
patients of whom almost all were on glucocorticoid treatment.
Furthermore, both studies did not report the CMV status of their
study cohort, even though CMV status is well-known to increase
the numbers and percentages of CD8+CD28- significantly. Also
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the finding that the frequency of circulating NKG2D-expressing
CD8+CD28+ T cells was higher in GCA/PMR patients than HCs
(78) could be confounded by glucocorticoid treatment. Indeed,
the authors also report that patients on high-dose glucocorticoid
treatment had higher NKG2D expression on CD8+CD28+ T
cells than patients on low-dose glucocorticoids.

In TAB tissues of GCA patients, both NKG2D-expressing T
cells and expression of one of its ligands MHC class I
polypeptide-related sequence A (MICA) were detected. MICA
was present on endothelial cells in the intima and on endothelial
cells surrounding the vasa vasorum. Furthermore, other cells in
the intima and adventitia showed moderate MICA expression
whereas VSMCs in the media showed strong expression.
Lymphocytes and giant cells were MICA positive as well.
Although the authors did not formally proof expression of
NKG2D by CD4+ or CD8+ T cells in TABs, staining of
consecu t ive s ec t ions sugges t ed tha t NKG2D was
predominantly expressed by CD4+CD28- T cells, because the
majority of T cells in TABS were CD4+ and CD28- (78).
However, double-staining of NKG2D and CD8 and/or NKG2D
and CD3/CD4 should be performed to confirm this finding, as
NKG2D is generally mostly expressed by CD8+ T cells and
NK cells.

Together, these findings do not support the contention that
CD8+ T cells of GCA patients have a more age-associated
phenotype than HCs, for instance by upregulation of NKG2D
to compensate for downregulation of CD28. Even though
NKG2D-expressing T cells were found in the vascular wall, we
cannot yet conclude whether these cells are CD4+ or CD8+.
However, the finding that MICA was expressed throughout the
whole tissue suggests that MICA could be one of the ligands that
activates NKG2D+CD8+ T cells in GCA lesions. Importantly, as
before, none of the studies described in this section controlled for
CMV serostatus, which is crucial when investigating age-
associated CD8+ phenotypes.
FAILING REGULATION: REGULATORY
CD8+ T CELLS IN GCA AND AGING

Studies focusing on the functionality of CD8+ T cells in GCA are
scarce. The only functional data available on CD8+ T cells is of a
particular subset of CD8+ T cells, the CD8+ Tregs. Sufficient
regulatory function of T cells is necessary to prevent the
activation of autoreactive T cells. It has been postulated that
CD8+ Tregs are essential in peripheral tissues such as secondary
lymphoid organs (79). Circulating CD8+ FoxP3+ Tregs indeed
co-express CCR7+, involved in lymphocyte homing to secondary
lymphoid organs. CD8+ Tregs are thus present in secondary
lymphoid organs, where they produce NADPH oxidase 2
(NOX2) in vesicles to suppress activation and expansion of
CD4+ T cells. In aged individuals, the CD8+ Tregs
demonstrated NOX2 deficiency which may underly the failing
suppression of the immune response. This effect was even more
pronounced in GCA patients (80). This was taken to suggest that
CD8+ Tregs are important in the starting phase of the disease,
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because dysfunctional CD8+ Treg could cause unopposed CD4+
T-cell priming in secondary lymphoid organs. Unopposed T-cell
priming could result in excessive inflammatory T-cell responses.
Indeed, frequencies of CD8+CCR7+ Tregs expressing NOX2
were lowered in GCA, independent of glucocorticoid use, when
compared to age matched controls (6% vs 23%). Interestingly,
frequencies of NOX2+CD8 Tregs did not differ between patients
with small-vessel vasculitis and age-matched controls: 46% of
their CD8+CCR7+ Tregs expressed NOX2, against 40-50% in
young healthy donors (80). Notably, the small vessel vasculitis
patients had no antibodies against PR3 and MPO and were on
glucocorticoid treatment.

Thus, it cannot be excluded that glucocorticoid treatment may
have preserved CD8+CCR7+NOX2+ Treg frequencies. The
suggestion that frequencies of CD8+ Tregs differ between different
forms of vasculitis are interesting but, as this notion is based on a
single report, these findings require independent confirmation.

In a follow-up study the molecular mechanisms underlying
the aberrant function of CD8+ Tregs in GCA were studied. Here
the authors used a mouse model in which vasculitis was induced
in engrafted human arteries. Transfer of CD8+ Tregs from HCs
prevented CD4+ T-cell expansion in the spleens of these mice
and inhibited vessel wall invasion of CD3+ T cells. In contrast,
transfer of CD8+ Tregs from GCA patients had no beneficial
effects. This was caused by aberrant signaling through the
NOTCH4 receptor leading to dysfunctional CD8+ Tregs in
GCA (81).

Together these studies suggest a role for this rare CD8+ Treg
subset in prevention of disease onset in GCA patients. Although
this is an interesting notion it would require further
substantiation and may await technological advances as the
frequency of CD8+CCR7+ Tregs is very low even in HC.
FUNCTION OF CD8+ T CELLS IN GCA:
INSIGHTS FROM TRANSCRIPTOME
STUDIES

In GCA, a transcriptome study has been performed on CD4+
and CD8+ T cells of 16 GCA patients with the aim to identify
gene expression profiles that could aid in confirming diagnosis
and in defining predictive biomarkers. In this study,
transcription profiles of CD4+ and CD8+ T cells were assessed
at six timepoints in GCA patients, from acute phase to 12
months, and at two time points in HCs. In the acute phase
(T1), 288 genes were differentially expressed by CD8+ T cells and
196 by CD4+ T cells compared to HCs. The authors
hypothesized that gene expression profiles would normalize
after 12 months, and that genes that remain differentially
expressed compared to HCs may be of clinical interest. In
CD8+ T cells, two genes were differentially expressed at 12
months compared to HCs. These genes were SGTB which is
associated with neuronal apoptosis and FCGR3A which is
associated with susceptibility to another large vessel vasculitis:
Takayasu arteritis. The implications of these differentially
expressed genes for the pathogenesis of GCA are still unclear.
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However, the authors also correlated gene expression to disease
symptoms and found that IL32 was associated with a history of
PMR, visual disturbance and raised neutrophils in the acute
phase, and bilateral blindness and death within 12 months (82).
PATHOGENESIS OF GPA

GPA is also an aging-associated form of vasculitis as the typical
age of onset is around 45 to 65 years of age. Notably, GPA not
only affects adults, but also children – albeit rarer than adults.
GPA affects especially the small- to medium-sized vessels. In
GPA, the onset of the disease is most likely the result of a
complex interplay between genetic background and
environmental factors (4, 83, 84). In PR3-AAV, genome-wide
association studies have revealed an association with HLA class
II genes, in particular with HLA-DPB1*04:01 (85, 86).

Before the onset of symptoms, central and peripheral T and B
cell tolerance toward PR3 is lost which leads to the generation of
autoreactive T and B cells and results in the production of PR3-
ANCAs that are characteristic for this disease. Although there is
some evidence that defective Treg function and lower numbers
of Bregs may contribute to loss of tolerance toward PR3 in GPA,
the immunopathogenesis of the disease is far from understood.

More knowledge exists on the effector phase of the disease in
which ANCA-mediated activation of primed neutrophils causing
blood vessel injury is considered to be a central event (4, 87).

One of the most severe disease manifestations of GPA is the
development of necrotizing crescentic glomerulonephritis
(NCGN). Besides GPA, NCGN is also a frequent manifestation
in microscopic polyangiitis (MPA), another form of ANCA-
associated vasculitis (AAV) characterized by an autoimmune
response against myeloperoxidase (MPO). Here, we will mainly
focus on GPA, but studies often include both GPA and MPA
patients, especially those focusing on renal disease
manifestations. NCGN is characterized by necrosis of the
glomerular capillary loops, after which fibrin, red blood cells,
lymphocytes and macrophages seep into the urinary space
surrounded by Bowman’s capsule. Subsequently, parietal
epithelial cells start to proliferate which leads to glomerular
crescent formation. Due to excessive inflammation, Bowman’s
capsule is destructed, and glomerulosclerosis may develop
leading to renal function loss. Moreover, interstitial infiltrates
surrounding the necrotic lesions of glomeruli as well as
inflammation of small arteries in the tubulointerstitium are
commonly observed as well (4).

Studies on renal biopsies of GPA patients have demonstrated
the presence of CD8+ T cells in periglomerular areas, the
majority of which were located adjacent to Bowman’s capsule
(88). Similarly, CD8+ T-cell infiltration has been documented in
renal tissues of untreated MPO-ANCA positive MPA patients as
part of the inflammatory infiltrate in the interstitium.
Interestingly, in these studies interstitial CD8+ T-cell numbers,
as well as those of CD4+ T cells and macrophages correlated
inversely with renal function (89) an observation that has been
corroborated by others (90). Collectively, these observations
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suggest that CD8 T cells are active contributors to disease
pathogenesis in GPA. In the next sections, we will review the
current knowledge on CD8+ T-cell phenotypes and function in
GPA and discuss how these may link to disease development and
progression (Supplementary Table 2).
PHENOTYPE OF CD8+ T CELLS IN
CIRCULATION AND AFFECTED TISSUES
OF GPA PATIENTS

In GPA several studies have interrogated the phenotype of CD8+
T cells in the circulation and in affected organs such as the
kidneys and lungs. The frequencies of circulating CD8+ T-cell
differentiation subsets did not differ between GPA patients and
HCs (91). In lung biopsies of untreated newly-diagnosed GPA
patients, CD4+CD45RO+ and to a lesser extent CD8+CD45RO+
cells were found (33). Interestingly, in renal biopsies it has been
reported that two-thirds of the total T-cell infiltrates is
comprised of CD8+ T cells, suggesting differences in
infiltrating CD4/CD8 ratios between affected tissues in GPA (88).

To assess whether CD8+ T cells are active contributors to
disease pathogenesis, cytokine production and expression of
activation markers as well as mechanisms of cell migration
have been studied. Circulating CD8+ T cells in GPA patients
were found to produce more IFN-g compared to those from HCs
(92). Moreover, in lung tissues of GPA patients increased IFN-g
gene expression has been reported compared to disease control
tissue although in this study it was not established whether CD4+
or CD8+ T cells are the main producers of IFN-g in GPA-affected
tissues (33).

In 2008, Iking-Konert and colleagues provided evidence for
the activation of CD8+ T cells during active disease indicated by
the presence of CD11b-expressing CD8+ T cells in GPA and
MPA patients. CD11b was exclusively expressed by CD8+CD28-
cells in patients in remission, whereas in active disease a
population of CD11b+CD28+ within the CD8+ T cell
population appeared that was less prevalent in healthy donors
(mean 8.9% versus 1.2% in HCs). Expression of CD11b, the a-
chain of the b2 integrin Mac-1, is upregulated upon activation of
T cells. Yet, whereas CD11b expression persisted on activated T
cells, these cells were found to show progressive loss of CD28
expression. Therefore, the authors concluded that the CD8+
CD28+CD11b+ cells must be a transient phenotype of activated
T cells (93). However, as absolute numbers were not reported, it
cannot be concluded that there is an actual shift of CD11b+
CD28+CD8+ toward CD11b+CD28-CD8+ T cells in GPA/
MPA patients.

Besides activation markers, additional studies have
demonstrated that circulating CD8+CD45RO+ T cells in GPA
display increased expression levels of the chemokine receptors
CCR3 and CCR5 on CD8+CD45RO+ cells suggesting their
readiness to respond to chemotactic gradients (94).

Furthermore, the expression of XCL1, a chemokine
specifically targeting lymphocytes, was found to be increased in
circulating CD4+ and CD8+ T cells in GPA (95) as well as in the
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renal interstitium of affected kidneys. In these renal tissues, XCL1
was co-expressed by CD4+ and CD8+ T cells (95). As XCL1 is a
strong attractor for T cells, XCL1 expression might induce more
interstitial T-cell infiltration.

In short, in GPA circulating CD8+ T cells appear to have an
activated phenotype defined by CD11b expression, but it remains
unclear if these circulating cells infiltrate the tissues despite the
fact that CD8+ T cells can readily be detected in renal and lung
biopsies. Further studies should investigate whether CD8+ or
CD4+ T cells are the major producers of IFN-g in GPA affected
tissues, as this could aid in unraveling their contribution to
disease pathogenesis. In addition, XCL1 expression could act as
an amplifier of CD4+ and CD8+ T-cell migration to the
renal tissues.
EFFECT OF AGE ON CD8+ T-CELL
PHENOTYPE IN CIRCULATION AND
AFFECTED TISSUES OF GPA PATIENTS

Given that GPA is predominantly a disease of the elderly, there
has been an increased interest in studying the impact of immune
aging on disease pathogenesis. As described previously, immune
aging is associated with a decrease in CD28 expression by CD8+
T cells especially. A number of studies have now confirmed
increased frequencies of CD28- T cells in GPA, particularly
within the CD8+ T-cell compartment (96–99).

Loss of CD28 expression is associated with a poor response to
TCR stimulation, and has therefore been associated with
senescence. Consequently, the telomere length of circulating T
cells in GPA patients has been assessed as well. T cells of GPA
patients demonstrated indeed shorter telomere lengths than age-
matched HCs. However, lack of CD28 and shorter telomere
length was especially observed in GPA patients with long lasting
disease suggesting recurring activation of the same T cells. Also,
since these studies were performed on total T cells, it remains
unclear whether shorter telomere lengths are characteristic of
either CD4+ and CD8+ T cells lacking CD28, or both (96).
Compared to disease controls, increased proportions of CD28
negative cells have also been detected in bronchoalveolar lavage
(BAL) fluid and in biopsies from the upper respiratory tract of
GPA patients. Again, however, it is unclear whether the CD28-
cells in these biopsies were CD4+ or CD8+ T cells (99).

As previously described, the co-stimulatory receptor NKG2D
has been implicated in the disease pathogenesis of several forms
of vasculitis including KD, TA and GCA. As CD8+ T cells
lacking CD28 often upregulate NK-like co-stimulatory receptors,
NKG2D and its ligand MICA have been considered important
markers in age-associated vasculitides such as GPA. In one study
investigating kidney biopsies of active untreated GPA patients,
MICA expression was detected on peritubular and glomerular
capillaries as well as on epithelial cells. In this study, CD8+ T cells
and NKG2D-expressing cells were also found around tubular
and glomerular capillaries although it was not determined
whether the NKG2D-expressing cells were also CD8+ (100).
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Late-stage differentiated cells such as CD8+ TEMRA cells often
express CD57. CD57 expression is increased upon aging and
CD57+ cells can produce pro-inflammatory cytokines. In GPA
and MPA patients younger than 40 years of age, the frequency of
circulating CD8+CD57+ cells was found increased compared to
age-matched healthy donors. Increases in CD8+CD57+ cells were
associated with severe disease and multiple organ involvement
(101). However, another study found no differences in percentages
of CD28- and CD57+ cells in CD4+ and CD8+ T cells in GPA and
MPA patients versus HCs (102).

When interpreting data on phenotypes of immune cells in
general, and CD8+ T cells in particular, it is important to take
CMV serostatus into account. Importantly, the studies described
above did not correct for CMV serostatus, even though CMV
infections generally lead to increased numbers and frequencies of
CD4+CD28- and CD8+CD28- T cells and late stage differentiated
cells (42, 47, 103, 104). Indeed, also in GPA, CMV serostatus has
been associated with high frequencies of CD28- T cells and CD57+
T cells (102). Regarding CD28 expression, concomitant infections
with CMV and EBV, as determined by the presence of antigen-
specific memory T cells, have been associated with a loss of CD28
expression by circulating CD8+ and CD4+ T cells in GPA patients.
Interestingly, cellular positivity for CMV or EBV only was not
associated with this phenotype in GPA patients, nor was CMV and
EBV negativity. However, no differences in frequencies of CMV or
EBV antigen-specific cells were found within the total CD8+ T-cell
and CD8+CD28- population in GPA patients and HCs. This
suggests that CMV and EBV infections exert indirect effects on
CD8+ T cells which causes the expansion of CD8+CD28- cells in
GPA patients, such as through bystander activation and/or
cytokine mediated expansion (97). Expansion of non-antigen-
specific cells by inflammatory processes are especially pronounced
during later stages of disease or infection, whereas initial immune
responses are caused by antigen-specific cells (105).

Another study reported on lower CD28 expression on CMV-
specific CD8+ T cells in GPA patients than in HCs (106). The
CMV-specific CD8+ T cells were either CD28-CD27+ or late
stage memory cells defined by loss of CD28-CD27- expression.
However, frequencies of CD28- cells were also lower in the non
CMV-specific CD8+ T-cell repertoire of GPA patients. The
authors suggested that higher CD28- frequencies in GPA
patients could be a result of the disease itself rather than CMV
status. However, as mentioned before, CMV and EBV infection
could have an indirect effect on the expansion of CD8+CD28-
cells in GPA as well.

In summary, it remains unclear whether markers of aging are
more frequently expressed in GPA patients, as CMV and EBV
status maymodulate the expression of these markers, confounding
data interpretation and comparison, especially with regard to
CD28 expression. Also, methodological differences between
studies such as the use of fresh whole blood versus freshly
isolated or cryopreserved PBMCs may have influenced the
reported CD28 expression data (107). Since NKG2D has been
implicated in several forms of vasculitis, additional studies into the
spatial temporal expression and functional role of this receptor in
the inflammatory response in GPA are warranted.
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FUNCTION OF CD8+ T CELLS IN GPA:
INSIGHTS FROM IN VITRO STUDIES

To better understand if and how CD8+ T cells contribute to GPA
pathogenesis, studies investigating their functionality are
imperative. However, data on the function of CD8+ T cells in
GPA is limited. As mentioned earlier, CD8+CD28+CD11b+ cells
were found to be increased in the circulation of active GPA
patients. These cells are also capable of producing IFN-g in vitro.
Co-cultures with polymorphonuclear neutrophils (PMN)
showed that IFN-g-producing CD8+C11b+ T cells can activate
PMN from GPA patients to express MHC class II (93).
Previously, it was found that PMN of GPA patients acquire
characteristics of antigen presenting cells by expressing MHC class
II, a phenotype not present in HCs (108). As described earlier as
well, circulating CD8+ T cells expressing the chemokine XCL1
were elevated in GPA patients and XCL1 was also expressed in the
renal interstitium. In vitro stimulation of PMN with XCL1 led to
increased production of the pro-inflammatory cytokine IL-8 (95).
Collectively, these studies imply that CD8+CD28+CD11b+ and
CD8+CXCL1+ cells could exert pro-inflammatory effects on
PMN. However, to which extent these processes contribute to
the disease pathogenesis in GPA is currently unknown and
requires further study.
FUNCTION OF CD8+ T CELLS IN GPA:
INSIGHTS FROM TRANSCRIPTOME
STUDIES

Two transcriptome studies from the same group provide
evidence that CD8+ T cells could play a role in GPA/AAV
based on the transcriptional profile of these cells during active
disease. These studies were originally designed to understand the
molecular basis of the considerable variation that exists between
autoimmune patients regarding clinical course and outcome of
their disease. Furthermore, these transcriptome studies aimed to
discover biomarkers that could aid in developing strategies for
personalized medicine. In the first study, microarray analysis of
purified total CD8+ T cells from patients with active disease
revealed that two distinct CD8+ expression signatures may serve
to predict the clinical course of AAV and other autoimmune
diseases such as SLE. Patients with a relapsing course of their
diseases and a poor prognosis were found to have a CD8
transcriptional profile enriched in genes involved in the IL-7R
and TCR pathway and effector memory cells. Further analysis
showed that these patients also had an expanded memory CD8+
T-cell population. Based on these results, the authors postulated
that via enhanced IL-7R and TCR signaling, CD8+ T-cell
proliferation in response to antigens increases leading to an
expanded memory population. In autoimmune diseases,
autoreactive cells with enhanced IL-7R and TCR signaling
pathways expand more easily upon restimulation, which leads
to more effector cells thereby promoting tissue damage (109). In
a subsequent study, McKinney and colleagues demonstrated that
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a transcriptome profile of CD8+ T cells resembling an exhausted
signature correlates with good outcome in autoimmune diseases
such as AAV (110). Based on these results, the authors suggested
that targeted induction of T-cell exhaustion could be a novel
treatment strategy for autoimmune diseases.
FUNCTION OF CD8+ T CELLS IN GPA:
INSIGHTS FROM ANIMAL MODELS

Unlike GCA, animal models have been developed for MPO-
ANCA-associated vasculitis that have been instrumental in
dissecting the various effector mechanisms involved in disease
development. In most of these models the kidney is the main
organ affected mimicking human focal necrotizing crescentic
glomerulonephritis (FNGN).

In one such model, autoimmunity to MPO is induced in
mice by immunization with human MPO which results in a
humoral (MPO-ANCA) as well as a cellular immune response
to autologous mouse MPO. In this model, an additional
challenge with heterologous anti-mouse glomerular basement
membrane antibodies recruits neutrophils to glomeruli causing
local deposition of MPO in glomerular capillaries where it can
be recognized by effector T cells triggering glomerulonephritis
(GN) development. Initial studies in this model demonstrated
an important role for CD4+ effector T cells as CD4+ T-cell
depletion in the effector phase markedly attenuated GN
development (111). More recently, this model has been
employed to study the role of CD8+ T cells in the development
of tissue injury as well. Systemic depletion of CD8+ T cells in the
effector phase reduced GN development accompanied by
diminished renal production of IFN-g and TNF-a and less
glomerular macrophages. In the same study, the authors
generated MPO-specific CD8+ T-cells clones which upon
transfer mediated glomerular injury when MPO was deposited
in glomerular capillaries (112). Collectively, these studies
support a pathogenic role for antigen-specific CD8+ T cells in
AAV pathogenesis

In an attempt to assess the role of CD8+ T cells in glomerular
crescent formation more directly, Chen and colleagues recently
generated mice that express the model antigen EGFP on
podocytes. Upon transfer of EGFP-specific CD8+ T cells these
mice developed crescentic glomerulonephritis but only when
injury to the glomerular filtration barrier was induced
concomitantly by injection of a nephrotoxic serum. These
observations imply that the nephrotoxic serum disrupts the
physical barrier that would otherwise prevent recognition of
EGFP by CD8+ T cells. From these data a model emerges in
which antigen-specific CD8+ T cells can infiltrate the urinary
space through Bowman’s capsule when it is breached. In turn,
these CD8+ T cells may interact with podocytes bearing their
cognate antigen, which accelerates kidney injury and further
stimulates the formation of crescents (113).

However, whether these observations can be translated
to the situation in humans is as yet unclear. Theoretically,
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FIGURE 3 | CD8+ T-cell functions and phenotype in tissue and circulation of GCA and GPA patients. GCA (A) In disease onset, CD8+ Tregs residing in lymph
nodes could be involved, as their function decreases which could lead to unopposed CD4+ T-cell activation. In the circulation of GCA patients several phenotypic
changes are present in CD8+ T cells. The percentages of cytotoxic T cells are increased alongside elevated serum levels of granzyme B and perforin. In vascular
tissues, the hypothesis is that first CD4+ T cells produce IFN-g. IFN-g production leads to CXCL9, -10 and -11 production by vascular smooth muscle cells (VSMCs).
This attracts CXCR3+CD8+ T cells which contribute to the feed forward loop by producing IFN-g. Some studies reported on age-associated changes in CD8+ T
cells, such as increased clonal expansions, a different T-cell receptor repertoire (TCR), increased CD8CD28- and CD8CD28+NKG2D+ frequencies and decreased
absolute numbers CD8+ T cells. But these findings could be confounded by glucocorticoid use and/or CMV infection. GPA (B) CD8+ T cells are present in lung
biopsies but their frequency with regard to CD4+ T cells is higher in renal tissue. In renal tissues, NKG2D expression has been found but it is unclear which cells
express this marker. Furthermore, MICA expression was found. CD8+ T cells could migrate to the tissues by XCL1, and XCL1 also induces IL-8 production by
polymorphonuclear neutrophils (PMN). In the circulation, also CCR3 and CCR5 was upregulated on memory CD8+ T cells, but it remains unclear how this relates to
tissue migration. CD8+ T cells in the circulation show an activated phenotype as CD11b was elevated, and these cells are able to produce IFN-g. IFN-g levels were
also elevated in the circulation and the IFN-g gene was elevated in lung biopsies. From in vitro studies it is known that IFN-g can induce PMN to express MHC-II
molecules. Although CD8+CD28- frequencies seem increased in tissues and circulation of GPA patients, it is likely that these findings are confounded by CMV and/
or EBV infections. Created with BioRender.com.
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podocytes could present ANCA antigens as at least MPO has
been detected in and around podocytes in renal biopsies of
AAV patients (89). Moreover, focal endocapillary inflammation
is commonly observed in early lesions in GPA as well. This
suggests that an initial inflammatory response in the glomerular
capillaries may lead to leakage of ANCA antigen-specific CD8+
T cells through Bowman’s capsule where they may interact with
the PR3 or MPO bearing podocytes and accelerate crescent
formation (114).
DISCUSSION

Are CD8+ T Cells Active Contributors to
Disease Pathogenesis or Just Bystanders?
In GCA, several findings suggest that CD8+ T cells are active
contributors to disease pathogenesis (Figure 3A). First and
foremost, CD8+ T cells are clearly present in TAB tissues and
one study suggested that strong CD8+ T-cell infiltration in TABs
might be associated with a more severe disease course and also
with more visual disturbances. Secondly, in vitro data showed the
importance of CD8+ Tregs in inhibiting CD4+ T-cell activation.
As GCA patients demonstrated impaired functioning of CD8+
Tregs, these cells could render aged adults more susceptible to
disease development. Lastly, possible migratory mechanisms
involving CXCR3+CD8+ T cells have been proposed.
However, none of these findings conclusively confirm a
pathogenic role of CD8+ T cells in GCA pathogenesis.

CD8+ T cells appear to be active contributors to GPA
pa thog ene s i s , e s p e c i a l l y i n th e d ev e l opmen t o f
glomerulonephritis (Figure 3B). Several observations support
this contention. Firstly, CD8+ T cells are present in renal
biopsies, adjacent to Bowman’s capsule. Secondly, CD8+ T
cells seem to outnumber CD4+ T cells in renal biopsies.
Thirdly, CD8+ T cells correlate with decreased renal function.
Circulating CD8+ T cells bear a more activated phenotype and
possible mechanisms involving direct effects on PMNs have been
described. Finally, data from mouse models suggest that CD8+ T
cells can interact with antigen-bearing podocytes in glomeruli,
which accelerates kidney injury. However, the evidence that
immune cells can gain access through Bowman’s capsule is still
correlative, as it was only found that CD8+ T cells were more
commonly present within the glomeruli when Bowman’s capsule
was ruptured (113). No direct proof exists that CD8+ T cells
breach Bowman’s capsule. Furthermore, it remains uncertain
whether podocytes cross-present neo-epitopes or circulating
antigens to CD8+ T cells (115).

Both GCA and GPA susceptibility have been associated with
HLA class II genes. In GCA, associations with HLA-B, a class I
molecule, have been reported as well. However, associations with
HLA class I genes in GCA do not appear to be as strong as in TA.
How HLA class I and/or II genes contribute to disease
susceptibility in GCA and GPA is still unclear. At least in
GPA, associations with HLA class II genes could also just
reflect the role of the HLA molecules in peptide presentation,
such as PR3 (4).
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To What Extent Does Aging Affect the
Function and Phenotype of CD8+ T Cells
in GCA and GPA?
Although several studies have reported that typical aging-
associated phenotypes of CD8+ T cells are more frequent in
GCA and GPA patients than in controls, it cannot be excluded
that data have been confounded by CMV and/or EBV infection,
glucocorticoid treatment and methodological differences (Figure
3). Also, data on clonality and TCR diversity in GCA are likely
confounded by CMV serostatus and/or HLA polymorphisms.
In GPA, the effect of treatment on phenotype and function of
CD8+ T cells is always difficult to assess, as most studies looked
into a heterogeneous group of MPA and GPA patients with
large age-ranges and in different disease states. Whereas in
most studies in GCA the patients were newly diagnosed and
not yet on treatment, in most GPA studies patients received
immunomodulatory therapy. These limitations make it difficult
to compare studies and draw firm conclusions.

In this review, we discussed NKG2D as a possible marker of
aging, as T cells that downregulate CD28 expression often
upregulate other co-stimulatory NK markers. However, NKG2D
is not an exclusive marker of aging as it is also involved in other
forms of vasculitis that affect younger adults and children, such as
KD and TA. Although it is still unclear to what extent NKG2D
and its ligand MICA contribute to disease pathogenesis in GCA
and GPA, it is interesting that NKG2D and MICA have been
implicated in these other forms of vasculitis. This underlines the
possible importance of NKG2D and MICA and the vascular
inflammatory environment and suggests that binding of CD8+
T cells to MICA by virtue of their NKG2D receptor activates
these cells to become proinflammatory.

Future Outlook
To truly understand the role of CD8+ T cells in the pathogenesis
of primary vasculitides, more integrated and in-depth analyses of
CD8+ T cells in both GCA and GPA are required. As in both
GCA and GPA several transcriptome studies have been
performed, a comprehensive analysis of all differentially
expressed genes could open up novel avenues for research on
shared or distinct disease mechanisms and the exploration of
new targets for disease monitoring and therapy. As an example,
longitudinal profiling of GCA patients, revealed differential
expression of the IL-32 gene in CD8+ T cells whereas elevated
serum levels of IL-32 that correlated with disease activity have
been reported in AAV (116). Thus, IL-32 could perhaps
constitute an interesting lead for further study in relation to
disease severity in various vasculitides. In GPA, an exhaustion
profile of CD8+ T cells has been associated with favorable clinical
outcome. More research into this exhausted profile would teach
us more about the involvement of CD8+ T cells in disease
pathogenesis and potentially uncover novel targets for therapy.

Although the standard therapies for GCA and GPA are not
designed to directly target CD8+ T cells, studying the effects of
these treatments on CD8+ T cell function could aid in unraveling
their role in these diseases. As an example, one study in AAV
found that whereas rituximab treatment did not affect CD4+ and
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Treg frequencies, it was associated with reduced CD8+ TEMRA

frequencies and circulating chemokine and cytokine levels.
Interestingly, co-cultures of CD8+ T cells and autologous B
cells from AAV patients resulted in enhanced production of
proinflammatory cytokines indicating a pathogenic crosstalk
between B cells and CD8+ T cells (117).

Studies on CD8+ Tregs in GCA should be confirmed by other
research groups possibly aided by advanced technologies such as
single cell sequencing. If confirmed, revival of these non-
functional CD8+ Tregs would certainly be of interest in
prevention of aging-associated pathologies such as GCA.

In both GCA and GPA, more detailed interrogation of
vasculitic tissues is required ideally employing state of the art
technologies such as imaging mass cytometry. Single cell RNA
sequencing of TAB tissue digests from microdissected
lymphocyte infiltrates can also be performed to investigate CD8
+ T-cell heterogeneity at the single cell level to obtain better
insights into CD8+ T-cell function in the lesional environment.
Furthermore, this would also help to investigate whether CD8+
TRM cells are present and involved in disease pathogenesis.

Aberrant DNA methylation and microRNA expression in
CD8+ T cells have been linked to autoimmune diseases such as
multiple sclerosis, type 1 diabetes and SLE. Thus, for both GCA
and GPA it would be interesting to investigate the epigenetic
profile of CD8+ T cells as well, especially because emerging
evidence suggests that microRNAs, histone modifications and
DNA methylations can lead to dysfunctional CD8+ T cells (118).

Another area of research relevant to delineate the effects of
CD8+ T cells on GCA and GPA includes the microbiome. It is
well known that the microbiome has profound effects on the
wellbeing of people, for instance by regulating immune
homeostasis. Alterations of the microbiome, generally referred
to as dysbiosis, have been linked to states of aberrant immune
activation implicated in various chronic autoimmune diseases
(119). Many studies on the effects of the microbiome on the
immune response are focused on finding anti-tumor properties of
certain bacterial strains. For instance, a recent study in a mouse
model of inflammation-associated tumorigenesis found that gut
microbiota can have direct effects on CD8+ T-cell responses (120).
Furthermore, another study demonstrated that a combination of
Frontiers in Immunology | www.frontiersin.org 13
several bacterial strains isolated from healthy human feces
promoted the development of IFN-g-producing CD8+ T cells in
mice and enhanced the efficacy of immune checkpoint blockade
therapy in tumor models (121). However, these observations also
suggest that dysbiosis of the gut microbiome may enhance auto-
inflammatory effects, for instance by boosting IFN-g production
by CD8+ T cells. So far, data on the microbiome of the gut or
other body niches in GCA and GPA is limited but this certainly
warrants further investigation.
CONCLUSION

Taken together, in vasculitic diseases, CD8+ T cells may be active
contributors to disease pathogenesis via their effector function,
likely to enhance local inflammation and tissue damage, and/or
via their failing regulatory function. Both aspects deserve further
exploration employing novel technologies in concerted actions
involving well-described patient cohorts.
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