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Although genome-wide association studies (GWAS) have a dramatic impact

on susceptibility locus discovery, this univariate approach has limitations in

detecting complex genotype-phenotype correlations. Multivariate analysis is

essential to identify shared genetic risk factors acting through common biological

mechanisms of autoimmune/autoinflammatory diseases. In this study, GWAS

summary statistics, including 41,274 single nucleotide polymorphisms (SNPs)

located in 11,516 gene regions, were analyzed to identify shared variants of seven

autoimmune/autoinflammatory diseases using the metaCCA method. Gene-based

association analysis was used to refine the pleiotropic genes. In addition, GO term

enrichment analysis and protein-protein interaction network analysis were applied to

explore the potential biological functions of the identified genes. A total of 4,962 SNPs

(P < 1.21 × 10−6) and 1,044 pleotropic genes (P < 4.34 × 10−6) were identified by

metaCCA analysis. By screening the results of gene-based P-values, we identified

the existence of 27 confirmed pleiotropic genes and highlighted 40 novel pleiotropic

genes that achieved statistical significance in the metaCCA analysis and were also

associated with at least one autoimmune/autoinflammatory in the VEGAS2 analysis.

Using the metaCCA method, we identified novel variants associated with complex

diseases incorporating different GWAS datasets. Our analysis may provide insights for

the development of common therapeutic approaches for autoimmune/autoinflammatory

diseases based on the pleiotropic genes and common mechanisms identified.
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INTRODUCTION

Autoimmune/autoinflammatory diseases are chronic conditions
initiated by loss of immunological tolerance to self-antigens
(1). In Europe and North America, these conditions occur
with an estimated incidence of ∼90 cases per 100,000 person-
years and a prevalence of between 7.6 and 9.4% (2, 3). The
chronic nature of such diseases has a significant impact in
terms of the utilization of medical care, direct and indirect
economic costs and quality of life. In addition, extensive
clinical and epidemiologic observations have shown that

autoimmune/autoinflammatory diseases are characterized
by familial clustering of multiple diseases, epidemiological

co-occurrence, overlapped autoantibody level, and the efficacy

of therapies across diseases. These observations provide
evidence that different autoimmune/autoinflammatory diseases
share a substantial portion of their pathobiology and genetic
predisposition underlies disease susceptibility (4–6).

The genetic effect of a single nucleotide polymorphism (SNP)
or gene on two or more phenotypic traits can be described
as pleiotropic and the outcome is genetically correlated. In
general, this concept concerns across-trait architecture (7).
To date, 186 statistically significant susceptibility loci have
been identified in genome-wide association studies (GWAS)
of autoimmune/autoinflammatory diseases (2, 8). These were
confirmed in subsequent studies, with more than half of
the susceptibility genes found to be shared by at least two
distinct autoimmune/autoinflammatory diseases (9–12). For
example, PTPN22 c.1858C>T (rs2476601) was identified as
a susceptibility gene in independent GWAS across multiple
autoimmune/autoinflammatory diseases (13). In addition, there
is evidence that loci associated with predisposition to one
disease can have effects on the risk of a second disease,
although the risk alleles for the two diseases may not be
the same (9). However, the evidence for specific shared risk
variants is modest, and consequently the genetic mechanisms
underlying the patterns of disease aggregation remain unclear.
It is, therefore, important to identify shared genetic risk
factors acting through common biological mechanisms and
to assess the overlapping pathophysiological relationships
among autoimmune/autoinflammatory diseases using effective
analytical approaches.

GWAS is a standard univariate approach used to investigate
and identify potentially causal or risk-conferring genetic variants
associated with common human diseases at the level of
individual measurements (14, 15). GWAS, especially those
with large sample size, and meta-analysis of multiple studies,
have a dramatic impact on susceptibility locus discovery and
in addition, highlight and extend the previously observed
commonality among autoimmune/autoinflammatory diseases.
However, with the identification of millions of SNPs and a
growing number of phenotypes, this univariate approach has
been used to detect complex genotype-phenotype correlations
with limited success. Furthermore, studies of statistical methods
have confirmed that multivariate analysis provides higher
statistical power for the detection of unexplained heritability due
to the consideration of correlations not only among multiple

SNPs, but also among different traits or diseases (16). In previous
studies, bivariate analysis has been used to investigate genetic risk
factors associated with complex traits, and multivariate analysis
of this aspect of complex diseases is rare (17, 18). Therefore,
multivariate analysis of the publicly available GWAS summary
statistics in particular is highly essential and relevant to the
identification of pleiotropic genes.

Cichonska et al. (19) recently employed meta-analysis using
canonical correlation analysis (metaCCA) to allow multivariate
representation of both genotypic and phenotypic variables based
on the published univariate GWAS summary statistics. This new
approach has been applied to identify potential pleiotropic genes
associated with lipid-related measures, psychiatric disorders, and
chronic diseases (19–22). In this study, the genetic pleiotropy-
informed metaCCA method was used to identify shared variants
and pleiotropic effects in seven autoimmune/autoinflammatory
diseases: celiac disease (CEL), inflammatory bowel disease
(IBD), which includes Crohn’s disease (CRO) and ulcerative
colitis (UC), multiple sclerosis (MS), primary biliary cirrhosis
(PBC), rheumatoid arthritis (RA), systemic lupus erythematosus
(SLE) and type 1 diabetes (T1D). In addition, gene-based
association analysis was used to refine pleiotropic genes. GO term
enrichment analysis and protein-protein interaction network
analysis were applied to explore the potential biological function
of the identified genes.

MATERIALS AND METHODS

GWAS Datasets
All the GWAS summary statistics of seven
autoimmune/autoinflammatory diseases investigated in the
present study were downloaded from ImmunoBase (website:
https://www.immunobase.org/), which is a web-based resource
focused on the genetics and genomics of immunologically-
related human diseases. The CEL data were obtained from a
second-generation GWAS of 4,533 cases and 10,750 control
subjects including 523,402 SNPs (23). The association summary
statistics of IBD, including 9,735,446 imputed SNPs, were
obtained from a meta-analysis with a total sample size of 59,957
subjects (24). The MS dataset consisted of 464,357 genotyped
or imputed SNPs from a collaborative GWAS involving 9,772
cases and 17,376 controls of European descent collected by
23 research teams from 15 different countries (25). The PBC
dataset including 1,134,141 SNPs were obtained from a meta-
analysis (2,764 cases and 10,475 controls) and an independent
cohort study (3,716 cases and 4,261 controls) (26). The RA
dataset was also obtained from a GWAS meta-analysis of 5,539
autoantibody-positive RA cases and 20,169 controls of European
descent, followed by replication in an independent set of 6,768
RA cases and 8,806 controls, which included a total of 8,254,863
SNPs (27). The SLE dataset comprised 7,219 cases and 15,991
controls of European ancestry, yielding a total of 7,915,250 SNPs
from a new GWAS, meta-analysis of published GWAS and a
replication study (28). The T1D dataset consisting of 8,781,607
SNPs was extracted from a Mendelian randomization analysis
with 5,913 T1D cases and 8,828 reference samples (29). All the
samples in the present study came from Northern and Western
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European ancestry (CEU) population. The summary statistics
have been undertaken genomic control in the individual study
or meta-analysis. Furthermore, the ImmunoBase was searched
using a global cutoff for minor allele frequency (MAF) <99%
for all datasets. Further details of the inclusion criteria and
quality control methods used in the different GWAS studies
are described in the original publications (23–29). It should be
noted that the summary statistics of GWAS or meta-analysis
were required to include P-values, regression coefficients and
standard error.

Data Preparation
When dealing with the various datasets, we first combined
the seven summary statistics for the common SNPs studied
in all datasets. The result of 324,031 overlapping SNPs was
then selected to for multivariate analysis. Second, gene
annotation was completed according to the 1,000 Genome
datasets (website:https://www.cog-genomics.org/static/
bin/plink/glist-hg19) using PLINK1.9. Third, the linkage
disequilibrium (LD)-based SNP pruning method was used to
remove SNPs with large pairwise correlations. This SNP pruning
method was performed using 50 SNPs as a window where the
LD was calculated between each pair of SNPs. The MAF was
also used as a criterion in the SNP pruning method to remove
the SNPs with smaller MAFs for pairs with R2 > 0.2. Following
this initial removal of SNPs in high LD, each sliding window
of five SNPs forward and the process was repeated until there
were no pairs of SNPs with MAFs > 0.2 (30). All datasets were
pruned using the HapMap 3 CEU genotypes as a reference panel
(website: http://www.sanger.ac.uk/resources/downloads/human/
hapmap3.html). Following this pruning procedure, 41,274 SNPs
located in 11,516 gene regions remained and were included in
the metaCCA analysis. Finally, the regression coefficient beta was
normalized before conducting the metaCCA analysis in instance
when the individual-level dataset genotype and phenotype
matrices were not standardized. Standardization was achieved
subsequently according to the following equation:

βSTANDR
gp =

1
√
nSEgp

× βgp (1)

where SEgp is the standard error of βgp, as given by the original
GWAS result, g is the number of genotypic variables, p is the
number of phenotypic variables, and n is the sample number for
each disease.

MetaCCA Analysis
MetaCCA is an extension of the CCA method, which requires
a full covariance matrix (

∑

), consisting of four covariance
matrices, which can be obtained using the following formula:
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In metaCCA,
∧
∑

XX is calculated using a reference database

representing the study population, such as the 1,000 Genomes
database, or other genotypic data available for the target

population. More accurate results will be obtained if
∧
∑

XX is

estimated from the target population or a population of the same
ethnicity instead of interracial populations (19). In our study,
∧
∑

XX was estimated using the reference SNP dataset of the

HapMap 3 CEU.

The phenotypic correlation structure
∧
∑

YY was computed

based on
∑

XY , with each
∧
∑

YY corresponding to a Pearson

correlation coefficient between the vector of β estimates from
p phenotypic variables across g genetic variants. It has been
demonstrated that the accuracy of estimate increased with the

value of g. Thus,
∧
∑

YY values were calculated from summary

statistics of 324,031 overlapping SNPs, even if 41,274 of them
were used for subsequent analysis.

We next determined whether the full covariance matrix
was positive semidefinite (PSD); if not, an iterative
procedure was used to shrink the full covariance matrix
until

∑

became PSD. In the next analysis, the PSD of
the full covariance matrix was entered into the CCA
framework to determine the final genotype-phenotype
association (19), where the correlation between genotype
and phenotype is defined as the canonical correlation,
r (31).

In this study, two types of multivariate analysis were
evaluated and the conservative Bonferroni correction method
was used as the threshold for nominal significance. If the
P-value of the canonical correlation r of any SNP was
smaller than 1.21 × 10−6 (=0.05/41,274), it was deemed
significantly associated with the seven diseases. Second,
multivariate SNP-multivariate phenotype association analysis
at the gene level was performed to identify any potential
pleiotropic gene. Similarly, genes with a P-value of canonical
correlation smaller than 4.34 × 10−6 (=0.05/11,516) were
identified as potential pleiotropic genes associated with multiple
autoimmune/autoinflammatory diseases.

Gene-Based Association Analysis
VEGAS2 (Versatile Gene-based Association Study−2) is a
method of gene-based association analysis used to calculate
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FIGURE 1 | Manhattan plot of –log10(metaCCA) values for univariate SNP-seven autoimmune/autoinflammatory diseases analysis. The red line marks the

–log10(metaCCA) value of 5.92 corresponding to P < 1.21 × 10−6. If the –log10(metaCCA) value of a certain SNP was >5.92, this SNP was identified as a pleiotropic

SNP for seven diseases.

the correlation of multiple SNPs in a gene region with
one phenotype using original GWAS summary statistics
(32). This method has been widely applied in the genetics
studies and has been shown to offer higher sensitivity
and lower false positive rates compared to other gene-
based approaches (33). In the present study, the VEGAS2
method was combined with the metaCCA to refine the genes
identified using the metaCCA by computing the gene-based
P-value for each specific disease. This analysis was performed
using https://vegas2.qimrberghofer.edu.au/, with a threshold
of 1.00E-06.

GO Term Enrichment Analysis
In clarifying polygenic associations, it is useful to determine
whether or not the implicated genetic variants occur in
genes involved in a biological pathway (34). GO term
enrichment analysis classifies gene functions based on three
main categories: molecular function, cellular component
and biological process. We conducted GO term enrichment
analysis to determine which GO term were over- or under-
represented). All significant genes re-identified by VEGAS2
in our study were annotated and enriched (website: http://
amp.pharm.mssm.edu/Enrichr/). An adjusted P < 0.05 in
the enrichment analysis was considered to indicate nominal
significance (35).

Protein-Protein Interaction Network
Protein-protein interactions (PPIs) are crucial for all biological
processes and the networks provide many new insights into
protein function (36, 37). In order to detect interactions
and associations of all putative pleiotropic genes, PPIs
analysis were conducted by searching the Search Tool
for the Retrieval of Interacting Genes/Proteins (STRING)
database (website: http://string-db.org/), which comprises
known and predicted associations from curated databases or
high-throughput studies, in addition to other associations
derived from text mining, co-expression, and protein
homology (38).

RESULTS

Potential Pleiotropic SNPs and Genes
Identified by metaCCA Analysis
After gene annotation and SNP pruning, 41,274 SNPs located
in 11,516 gene regions were available for the metaCCA analysis.
The size of SNP representation among the genes ranged from
1 to 213 SNPs, and the median number of SNPs in each
gene was 3.72. For the univariate SNP-multivariate phenotype
analysis, 4,962 SNPs reached the Bonferroni corrected threshold
(P < 1.21 × 10−6), and the canonical correlation r between
each SNP and phenotype ranged from 0.0372 to 0.6586. The
results are presented in a Manhattan plot in Figure 1. For the
multivariate SNP-multivariate phenotype analysis, 1,044 genes
with a significance threshold of P < 4.34 × 10−6 were identified
as potential pleiotropic genes. The canonical correlation r
between genotype and phenotype ranged from 0.0322 to 0.5899.

Refining the Pleiotropic Genes by
Gene-Based Association Analysis
The VEGAS2 algorithm based on original GWAS summary
statistics was used to identify association of one gene with a
specific disease. In the gene-based association analysis, 19 genes
were identified for CEL, 111 for IBD, 16 forMS, 20 for PBC, 19 for
RA, 20 for SLE, and 33 significant genes for T1D (P = 1.00E-06).

By screening the results of gene-based analysis P-values,
we identified 67 putative pleiotropic genes yielding statistical
significance in the metaCCA analysis and found to be associated
with at least one disease in the VEGAS2 analysis. In particular,
17 genes were found to be associated with more than one disease
in the original GWAS. The results of the metaCCA and VEGAS2
analysis are summarized in Table 1.

Specifically, 27 of these 67 putative pleiotropic genes had
previously been reported to be associated with more than one
of these seven diseases. Of these 27 confirmed pleiotropic
genes, six genes (ADAD1, CIITA, CLEC16A, IL23R, MAGI3,
and PTPN2) were associated with more than one disease
in the VEGAS2 analysis of the original GWAS summary
statistics. Of the 40 novel putative pleiotropic genes detected,
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TABLE 1 | The 67 pleiotropic genes identified by the metaCCA and VEGAS2 analysis.

Locus Gene MetaCCA

P-value

VEGAS P-value

CEL IBD MS PBC RA SLE T1D

1 ADAD1a 1.05E-30 1.00E-06 1.00E-06 0.29 1.23E-02 1.10E-05 2.58E-02 6.97E-03

2 ADCY5 1.44E-06 2.40E-02 3.91E-02 1.00E-06 3.75E-02 1.29E-02 1.32E-02 0.87

3 AHI1 2.03E-87 5.05E-02 0.30 1.00E-06 0.36 0.54 1.94E-03 4.75E-02

4 ATG5 1.53E-16 0.33 7.00E-06 0.53 1.87E-03 1.54E-03 1.00E-06 0.94

5 C1orf106 1.82E-33 0.09 3.09E-02 7.79E-02 1.22E-02 1.00E-06 5.30E-05 3.73E-02

6 C1orf141a 7.70E-11 0.44 1.00E-06 0.87 1.00E-06 9.85E-03 2.93E-03 0.53

7 C5orf56 1.87E-16 2.07E-03 1.00E-06 0.29 0.67 9.41E-02 1.86E-02 6.48E-02

8 CALUa 2.10E-10 0.20 1.75E-02 2.21E-02 1.00E-06 1.00E-06 1.00E-06 7.18E-02

9 CCDC136a 3.51E-25 0.030 2.90E-02 0.38 1.00E-06 1.00E-05 1.00E-06 0.39

10 CD58 5.43E-13 0.520 2.44E-02 0.158 0.71 1.00E-06 0.60 6.64E-02

11 CIITAa 4.85E-28 4.05E-03 0.21 1.00E-06 1.00E-06 0.54 1.47E-04 1.00E-06

12 CLEC16Aa 9.26E-85 1.28E-02 2.12E-03 1.00E-06 1.00E-06 0.62 1.00E-06 1.00E-06

13 CUL2 2.56E-19 0.40 1.00E-06 0.39 2.91E-02 0.78 4.12E-04 5.76E-02

14 CUX2 2.28E-34 0.45 7.00E-06 0.119 2.60E-03 3.06E-02 0.12 1.00E-06

15 DEAF1 7.99E-14 0.40 9.22E-02 0.85 9.31E-02 0.86 1.00E-06 0.42

16 DGKQ 1.61E-15 0.88 0.43 2.18E-03 1.00E-06 9.95E-02 4.57E-03 0.32

17 DNMT1 6.97E-07 0.39 6.87E-04 7.82E-04 2.00E-06 5.03E-04 1.00E-06 9.33E-02

18 EFR3Ba 1.70E-99 0.34 1.00E-06 2.72E-02 1.00E-06 2.78E-03 0.47 1.54E-02

19 ERAP2 1.77E-49 0.98 1.00E-06 0.25 6.88E-04 0.45 0.57 4.76E-02

20 EVI5 4.08E-19 0.39 0.23 1.00E-06 0.65 1.18E-02 0.23 1.50E-02

21 FGF2a 1.78E-08 1.00E-06 1.00E-06 9.08E-03 0.39 3.04E-03 0.18 1.40E-05

22 FYCO1 2.73E-11 1.00E-06 2.45E-02 1.00E-02 0.74 0.49 0.57 0.86

23 GRIP1 2.20E-62 1.39E-02 1.00E-06 0.20 0.25 0.25 4.43E-02 0.73

24 HNF1B 2.17E-10 0.14 5.60E-03 0.44 0.11 2.94E-02 0.31 1.00E-06

25 IKZF1 4.37E-10 0.02 0.42 7.70E-02 0.29 4.02E-04 0.49 1.00E-06

26 IKZF3 2.57E-203 0.41 1.00E-06 9.31E-02 0.47 0.43 0.54 2.63E-02

27 IL22RA2 1.55E-11 0.19 0.46 1.00E-06 2.85E-03 0.67 3.28E-02 0.12

28 IL23Ra 1.00E-232 0.90 1.00E-06 0.45 1.00E-06 0.11 8.16E-02 0.91

29 INPP1 3.40E-06 0.35 0.25 0.695 4.30E-05 3.65E-03 1.00E-06 0.56

30 IRF1 6.56E-72 9.87E-03 1.00E-06 4.58E-02 0.42 3.38E-02 0.53 5.98E-02

31 ITGAM 2.41E-48 5.22E-02 0.80 7.03E-02 0.17 0.20 1.00E-06 0.23

32 JAK2 6.34E-118 0.18 1.00E-06 2.21E-03 0.63 0.40 8.33E-02 0.53

33 KIAA1109 5.27E-16 2.00E-06 1.00E-05 1.79E-03 0.12 4.27E-02 0.35 1.00E-06

34 LINC00271 1.22E-08 1.63E-02 0.97 1.00E-06 0.48 0.26 1.16E-03 1.78E-03

35 LOC101927051a 5.60E-11 0.55 1.00E-06 0.13 1.00E-06 3.00E-06 4.24E-04 4.84E-03

36 LOC285626 3.83E-97 0.50 1.00E-06 5.05E-02 0.40 0.74 0.94 0.51

37 LTF 5.48E-09 1.00E-06 0.17 0.33 0.76 5.55E-02 0.93 1.51E-04

38 MACROD2 9.46E-07 0.35 4.60E-05 2.91E-02 1.00E-06 6.85E-03 0.12 1.88E-02

39 MAGI3a 7.55E-24 0.65 1.10E-02 0.27 0.81 1.00E-06 8.90E-05 1.00E-06

40 MAP3K7 2.77E-66 0.30 1.00E-06 0.31 7.85E-02 0.25 0.48 0.46

41 MAP4K4a 3.30E-24 1.00E-06 1.00E-06 0.15 5.08E-02 0.73 9.30E-03 7.47E-02

42 MPZL3a 5.37E-09 1.45E-02 0.86 6.22E-04 1.00E-06 1.00E-06 1.45E-03 0.18

43 MST1R 3.72E-37 0.93 1.00E-06 0.56 0.4588 0.84 1.27E-02 5.08E-02

44 NSD1 1.16E-25 0.55 1.00E-06 1.00E-05 0.16 1.42E-02 0.55 1.44E-02

45 PAPOLGa 7.00E-08 4.00E-06 1.00E-06 1.07E-02 0.11 1.00E-06 4.40E-02 0.50

46 PLCL2 2.97E-17 0.18 0.22 1.50E-02 3.00E-06 1.00E-06 0.62 0.72

47 PRKAA1 4.54E-18 0.12 1.00E-06 3.90E-02 0.371 0.34 0.12 0.30

48 PTPN2a 1.06E-09 6.00E-06 1.00E-06 7.66E-03 9.56E-02 1.00E-06 0.15 1.00E-06

49 PUS10 5.93E-101 7.00E-06 1.00E-06 1.60E-02 0.40 0.20 0.16 7.89E-02

(Continued)
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TABLE 1 | Continued

Locus Gene MetaCCA

P-value

VEGAS P-value

CEL IBD MS PBC RA SLE T1D

50 RBM17a 2.49E-25 0.252 3.36E-02 3.10E-05 0.64 1.00E-06 0.47 1.00E-06

51 RNASET2 1.22E-08 0.162 1.00E-06 0.99 4.08E-04 1.77E-02 8.93E-02 0.24

52 SH3BP1a 5.60E-11 0.562 1.00E-06 0.11 1.00E-06 3.00E-06 4.39E-04 4.35E-03

53 SHISA5 5.12E-118 3.68E-02 1.00E-06 0.32 0.70 0.60 0.46 0.14

54 SLC26A4 1.29E-35 0.90 1.00E-06 2.79E-02 0.17 0.90 0.23 9.07E-02

55 THADA 9.70E-149 0.48 1.00E-06 0.30 0.51 0.83 4.70E-02 2.17E-03

56 TNFAIP3 6.86E-33 0.48 0.38 1.99E-04 2.60E-03 9.00E-06 1.00E-06 5.88E-02

57 TNIK 3.66E-54 1.00E-06 0.198 5.73E-04 8.17E-02 0.34 2.71E-03 8.36E-02

58 TNIP1 3.52E-34 0.12 0.158 0.49 4.82E-04 9.01E-04 1.00E-06 0.39

59 TNS1 1.56E-18 0.11 1.00E-06 0.64 3.03E-02 8.87E-02 0.88 2.76E-02

60 TP63 1.05E-26 1.00E-06 2.00E-06 2.85E-02 0.33 0.68 0.25 7.99E-02

61 TRPV4 2.37E-09 3.43E-04 3.74E-02 0.15 1.46E-03 1.13E-03 0.25 1.00E-06

62 TTC34 1.98E-09 5.60E-05 1.19E-02 1.00E-06 4.60E-05 1.30E-04 4.65E-02 0.46

63 TYK2 1.06E-06 0.11 1.00E-06 3.00E-06 2.80E-05 5.00E-06 7.00E-06 3.82E-03

64 USP34 9.72E-217 4.00E-06 1.00E-06 4.59E-02 0.38 1.15E-02 0.40 0.35

65 WDR78 4.90E-52 2.04E-03 1.00E-06 0.12 8.53E-03 1.30E-02 0.85 0.76

66 WNT11 4.60E-19 0.19 1.00E-06 0.83 0.19 0.33 0.47 0.45

67 ZNF365 1.41E-164 0.25 1.00E-06 0.16 0.55 0.12 4.37E-02 0.36

aThis gene was associated with more than one disease in the VEGAS2 analysis.

16 were previously reported to be associated with only one
autoimmune/autoinflammatory disease. EFR3B and RBM17
were reported to be associated with T1D only in published
studies but were shown to be associated with multiple diseases
in the VEGAS2 analysis. The remaining 24 significant genes
were implicated as candidate novel pleiotropic genes for these
seven diseases. More significantly, nine genes (C1orf141, CALU,
CCDC136, FGF2, LOC101927051, MAP4K4, MPZL3, PAPOLG,
and SH3BP1) were associated with more than one disease in the
VEGAS2 analysis, although they had never been reported to be
associated with any autoimmune/autoinflammatory disease. The
detailed features of 67 significant pleiotropic genes are shown
in Table 2.

GO Term Enrichment Analysis
GO enrichment analysis revealed that the biological functions of
these pleiotropic genes were involved mainly in the metabolism
of lipids. When the 67 pleiotropic genes associated with
autoimmune/autoinflammatory diseases were used as the gene
sets for the GO term enrichment analysis, several functional
terms were identified as being enriched. For the GO biological
process and molecular function, there were 63 and 5 terms were
identified to be significantly enriched in the development of
autoimmune/autoinflammatory diseases, respectively. Details of
the top five significant GO terms are shown in Table 3.

Protein-Protein Interaction Network
Analysis in String
The 67 putative pleiotropic genes identified were retrieved
from the STRING database. Of these, 63 genes were clearly
enriched in two confirmed clusters: JAK2 and MAP3K7 clusters

(Figure 2). Three of the novel putative pleiotropic genes detected,
FGF2, IL22RA2, and ITGAM, are involved in the JAK2 cluster,
which participates in various processes such as cell growth,
development, differentiation or histone modifications, and
mediates essential signaling events in both innate and adaptive
immunity. Three other novel genes, MAP4K4, PRKAA1, and
TNIK, were involved in the MAP3K7 cluster, which acts as
an essential component of the MAP kinase signal transduction
pathway and plays a role in the response to environmental stress
and cytokines such as TNF-alpha.

DISCUSSION

In the present study, a novel analytical approach—
metaCCA—was used to explore the common genetic
variants associated with autoimmune/autoinflammatory
diseases by combining seven available independent GWAS
or meta-analysis summary statistics. A total of 67 putative
pleiotropic genes were successfully identified after verification
using gene-based analysis. In particular, 27 confirmed
genes were identified as pleiotropic in previous different
types of studies and were validated in the present study,
16 novel pleiotropic genes were previously reported to
be associated with one autoimmune/autoinflammatory
disease, and 24 candidate novel pleiotropic genes that
had never been reported to be associated with any
autoimmune/autoinflammatory disease. The improved
detection of pleiotropic genes and the associated
biological pathways may provide novel insights into
the shared genetic factors involved in development of
autoimmune/autoinflammatory diseases.
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TABLE 2 | The features of 67 significant pleiotropic genes.

Locus Gene Chr Number

of SNPs

r-value MetaCCA

P-value

Gene type

1 ADAD1a 4 3 0.08 1.05E-30 Confirmed

2 ADCY5 3 11 0.05 1.44E-06 Novel*

3 AHI1 6 13 0.12 2.03E-87 Confirmed

4 ATG5 6 19 0.05 1.53E-16 Confirmed

5 C1orf106 1 14 0.08 1.82E-33 Confirmed

6 C1orf141a 1 1 0.05 7.70E-11 Novel

7 C5orf56 5 12 0.06 1.87E-16 Novel*

8 CALUa 7 6 0.05 2.10E-10 Novel

9 CCDC136a 7 2 0.08 3.51E-25 Novel

10 CD58 1 8 0.05 5.43E-13 Confirmed

11 CIITAa 16 8 0.07 4.85E-28 Confirmed

12 CLEC16Aa 16 47 0.10 9.26E-85 Confirmed

13 CUL2 10 9 0.06 2.56E-19 Novel*

14 CUX2 12 42 0.08 2.28E-34 Novel*

15 DEAF1 11 9 0.05 7.99E-14 Novel*

16 DGKQ 4 1 0.05 1.61E-15 Novel*

17 DNMT1 19 10 0.04 6.97E-07 Novel

18 EFR3Ba 2 11 0.13 1.70E-99 Novel*

19 ERAP2 5 11 0.09 1.77E-49 Confirmed

20 EVI5 1 15 0.06 4.08E-19 Novel*

21 FGF2a 4 13 0.06 1.78E-08 Novel

22 FYCO1 3 6 0.05 2.73E-11 Novel

23 GRIP1 12 67 0.12 2.20E-62 Novel

24 HNF1B 17 4 0.06 2.17E-10 Novel*

25 IKZF1 7 17 0.05 4.37E-10 Confirmed

26 IKZF3 17 2 0.18 2.57E-203 Confirmed

27 IL22RA2 6 3 0.04 1.55E-11 Novel*

28 IL23Ra 1 9 0.23 1.00E-232 Confirmed

29 INPP1 2 1 0.04 3.40E-06 Novel

30 IRF1 5 1 0.11 6.56E-72 Confirmed

31 ITGAM 16 8 0.09 2.41E-48 Novel*

32 JAK2 9 11 0.14 6.34E-118 Confirmed

33 KIAA1109 4 24 0.05 5.27E-16 Confirmed

34 LINC00271 6 9 0.04 1.22E-08 Novel*

35 LOC101927051a 22 8 0.05 5.60E-11 Novel

36 LOC285626 5 2 0.12 3.83E-97 Novel

37 LTF 3 5 0.04 5.48E-09 Novel

38 MACROD2 20 15 0.04 9.46E-07 Novel*

39 MAGI3a 1 18 0.06 7.55E-24 Confirmed

40 MAP3K7 6 2 0.11 2.77E-66 Confirmed

41 MAP4K4a 2 32 0.07 3.30E-24 Novel

42 MPZL3a 11 2 0.04 5.37E-09 Novel

43 MST1R 3 1 0.08 3.72E-37 Confirmed

44 NSD1 5 9 0.07 1.16E-25 Novel

45 PAPOLGa 2 5 0.04 7.00E-08 Novel

46 PLCL2 3 23 0.05 2.97E-17 Confirmed

47 PRKAA1 5 3 0.06 4.54E-18 Novel

48 PTPN2a 18 11 0.05 1.06E-09 Confirmed

49 PUS10 2 10 0.13 5.93E-101 Confirmed

50 RBM17a 10 5 0.06 2.49E-25 Novel*

(Continued)

TABLE 2 | Continued

Locus Gene Chr Number

of SNPs

r-value MetaCCA

P-value

Gene type

51 RNASET2 6 2 0.04 1.22E-08 Confirmed

52 SH3BP1a 22 8 0.05 5.60E-11 Novel

53 SHISA5 3 2 0.14 5.12E-118 Novel

54 SLC26A4 7 2 0.08 1.29E-35 Novel

55 THADA 2 50 0.15 9.70E-149 Confirmed

56 TNFAIP3 6 2 0.08 6.86E-33 Confirmed

57 TNIK 3 44 0.11 3.66E-54 Novel

58 TNIP1 5 23 0.07 3.52E-34 Confirmed

59 TNS1 2 11 0.07 1.56E-18 Novel

60 TP63 3 31 0.07 1.05E-26 Novel

61 TRPV4 12 11 0.04 2.37E-09 Confirmed

62 TTC34 1 2 0.04 1.98E-09 Confirmed

63 TYK2 19 5 0.04 1.06E-06 Confirmed

64 USP34 2 11 0.18 9.72E-217 Novel

65 WDR78 1 13 0.10 4.90E-52 Novel

66 WNT11 11 3 0.06 4.60E-19 Novel*

67 ZNF365 10 39 0.17 1.41E-164 Novel*

Confirmed: This gene was previously reported to be associated with more than one

autoimmune/autoinflammatory disease.

Novel*: This gene had been reported to be associated with only one

autoimmune/autoinflammatory disease.

Novel: This gene had never been reported to be associated with any

autoimmune/autoinflammatory disease.
aThis gene was associated with more than one autoimmune/autoinflammatory disease in

the VEGAS2 analysis.

Among the 27 confirmed pleiotropic genes, 6 genes
(ADAD1, CIITA, CLEC16A, IL23R, MAGI3, and PTPN2),
which play an important role on the pathomechanism of
autoimmune/autoinflammatory diseases, were shown to be
associated with more than one autoimmune/autoinflammatory
disease not only in the literature review, but also in the
VEGAS2 analysis using original GWAS summary statistics. For
example, common genetic variants of CLEC16A, also known as
C-type lectin-like domain family 16A, had been reported to be
associated with CEL, IBD, MS, PBC, and T1D (10). As the non-
HLA genome-wide significant risk gene, CLEC16A is essential
for autophagosomal growth and autophagy processes, which are
of major importance for proper immune regulation, including
regulation of inflammasome activation (39, 40). Moreover, recent
data from murine studies and our PPIs analysis indicated that
CLEC16A plays a key role in beta cells functions by regulating
mitophagy/autophagy and mitochondrial health (41). PTPN2 is
another important and confirmed pleiotropic gene associated
with several autoimmune/autoinflammatory diseases we studied
(10). The GO term enrichment analysis results suggested that
PTPN2 encodes T-cell protein tyrosine phosphatase, acting
as a negative regulator of the JAK/STAT signaling pathways
downstream of cytokines and playing a prominent role in
T-cell activation, signaling and/or effector function, which
may represent potential targets for the pharmacotherapy
of autoimmune diseases. In addition, Mei et al. (42) also
showed that, in the Northeastern Chinese population, PTPN2
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TABLE 3 | Top five significant GO term enrichment of the 67 pleiotropic genes.

Term (GO_biological_process) P-value Adjusted P-value Genes

Positive regulation of gene expression (GO:0010628) 1.41E-06 1.32E-03 CIITA; DNMT1; PRKAA1; HNF1B; FGF2; GRIP1; CUX2;

WNT11; DEAF1; DGKQ; IRF1; NSD1; TP63

Interleukin-23-mediated signaling pathway (GO:0038155) 4.24E-06 1.98E-03 IL23R; TYK2; JAK2

Activation of protein kinase activity (GO:0032147) 1.31E-05 4.09E-03 PRKAA1; TNIK; JAK2; FGF2; MAP3K7; ADCY5; MAP4K4

Cellular response to cytokine stimulus (GO:0071345) 2.07E-05 4.85E-03 ITGAM; IL23R; IRF1; CD58; TYK2; JAK2; FGF2; PTPN2;

IL22RA2

Regulation of tyrosine phosphorylation of STAT protein

(GO:0042509)

5.54E-05 7.40E-03 IL23R; JAK2; PTPN2; IL22RA2

Term (GO_molecular_function) P-value Adjusted P-value Genes

Growth hormone receptor binding (GO:0005131) 3.06E-04 1.98E-02 TYK2; JAK2

Kinase activity (GO:0016301) 3.55E-04 1.98E-02 PRKAA1; DGKQ; TNIK; JAK2; MAP3K7; MAP4K4

Protein kinase activity (GO:0004672) 3.11E-04 1.98E-02 PRKAA1; MST1R; TNIK; TYK2;

JAK2; FGF2; MAP3K7; MAP4K4

MAP kinase kinase kinase kinase activity (GO:0008349) 7.14E-04 2.98E-02 TNIK; MAP4K4

Phosphotransferase activity, alcohol group as acceptor

(GO:0016773)

1.64E-03 4.58E-02 PRKAA1; DGKQ; TNIK; JAK2; MAP3K7

FIGURE 2 | Protein-protein interactions between 67 pleiotropic genes associated with seven autoimmune/autoinflammatory diseases.

polymorphisms are associated with psoriasis, which is another
chronic immune-mediated disease with a complex etiology.

Sixteen novel putative pleiotropic genes detected in this
study had previously been confirmed to be associated with one
form of autoimmune/autoinflammatory disease. Interestingly,

EFR3B and RBM17 had been reported to be associated only
with T1Din published studies, but were confirmed to be
associated with other diseases in the VEGAS2 analysis (13,
43–45). EFR3B is an associated gene located in 2p23, which
probably acts as the membrane-anchoring component and
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is involved in responsiveness to G-protein-coupled receptors.
Although Bradfield et al. (13) have confirmed that EFR3B is an
associated loci and protein-protein interaction network analysis
also provided some protein information, it is still unclear whether
this role is direct or indirect. RBM17, which is involved in
the regulation of alternative splicing and the utilization of
cryptic splice sites, is essential for survival and cell maintenance.
Fortunately, genetic and serologic data suggest that the inherited
altered genetic constitution located between IL2RA and RBM17
may predispose to a less destructive course of RA (46, 47).
Although the 14 remaining genes were identified associated
with one form of autoimmune/autoinflammatory disease in the
literature review and VEGAS2 analysis, further experimental
studies are required to confirm their role as pleiotropic genes
associated with autoimmune/autoinflammatory diseases. CUL2,
which is associated with response to the hypoxic environment
and activation of tumor immunity, has been identified in
association with CRO in nine independent case-control series
(48). Zhang et al. (49) suggested that human immunodeficiency
virus type 1 and simian immunodeficiency virus viral infectivity
factor form a CRL5 E3 ubiquitin ligase complex that suppresses
virus restriction by host APOBEC3 proteins, and that CUL2
eventually suppresses this pathway and increases the risk of
autoimmune/autoinflammatory diseases (50).

Significantly, nine genes (C1orf141, CALU, CCDC136, FGF2,
LOC101927051, MAP4K4, MPZL3, PAPOLG, and SH3BP1) were
found to be associated withmore than one disease in the VEGAS2
analysis, although these genes had never been reported to be
associated with any autoimmune/autoinflammatory disease in
previous GWAS.MAP4K4 has been enriched in several GO terms
including MAP kinase c kinase activity (GO:0008349), which
is an important contributor to the risk of developing type 2
diabetes mellitus in a Chinese Han population (51). In addition,
Aouadi et al. (52) demonstrated that orally delivered small
interfering RNA targeting macrophage MAP4K4 suppresses
systemic inflammation, thus implicating this technology as a new
strategy to attenuate inflammatory responses in human disease.
C1orf141 is another significant candidate novel pleiotropic gene
found to be associated with IBD and PBC in our study. It has
been recently shown that C1orf141 is a susceptibility variant in
psoriasis, a chronic inflammatory hyperproliferative cutaneous
disease (53). Further studies are required to confirm our findings
and provide a detailed description of each candidate novel gene
and the associated pathomechanism.

Systematic and comprehensive searches for pleiotropic
genes and their effects are essential for an understanding
of the mechanisms underlying the development of
autoimmune/autoinflammatory diseases (4). Compared to
the univariate GWAS analysis based on a cross-sectional
population, our study was cost-effective and reliable, not only

due to the increased sample size achieved by integrating the
summary statistics of seven large GWAS. This approach also
increased the statistical power of the study and provided a wealth
of information by the simultaneous analysis of multiple related
autoimmune/autoinflammatory diseases. However, because of
a lack of detailed original individual measures, we were unable
to determine whether the effects of pleiotropic genes on risk of
these diseases are direct or indirect. Alternative approaches and
experimental studies are required to validate these novel genes
identified in this study.

In summary, we have provided convincing evidence
of the existence of 27 confirmed pleiotropic genes and
highlighted 40 novel pleiotropic genes associated with
autoimmune/autoinflammatory diseases by performing a
systematic multivariate analysis of the open GWAS data using
metaCCA. Furthermore, we have illustrated potential biological
functions of these pleiotropic genes and our results contribute
to a better understanding of common genetic mechanisms, and
eventually the development of improved diagnosis, prognosis
and targeted therapies.
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