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Abstract: Background: The great saphenous vein (GSV) is the most commonly used conduit for
coronary arterial bypass graft. However, the status of the GSV, including metabolic dysfunction
such as diabetes mellitus (DM) complication, is strongly associated with vein graft failure (VGF). To
date, the molecular mechanism underlying VGF remains elusive. Detailed characterization of the
cellular components and corresponding expression regulation in GSVs would be of great importance
for clinical decision making to reduce VGF. Methods: To this end, we performed single-cell RNA
sequencing to delineate cellular heterogeneity in three human GSV samples. Results: Scrutinization of
cellular composition and expression revealed cell diversity in human GSVs, particularly endothelial
cells (ECs). Our results unraveled that functional adaptation drove great expression differences
between venous ECs and valvular ECs. For instance, cell surface receptor ACKR1 demarcated
venous Ecs, whereas ACRK3/ACKR4 were exclusively expressed by valvular ECs. Differential gene
expression analysis suggested that genes highly expressed in venous ECs were mainly involved
in vasculature development and regulation of leukocyte adhesion, whereas valvular ECs have
more pronounced expression of genes participating in extracellular matrix organization, ossification
and platelet degranulation. Of note, pseudo-time trajectory analysis provided in silico evidence
indicating that venous ECs, valvular ECs and lymphatic vessels were developmentally connected.
Further, valvular ECs might be an importance source for lymphatic vessel differentiation in adults.
Additionally, we found a venous EC subset highly expressing IL6, which might be associated with
undesirable prognosis. Meanwhile, we identified a population of ANGPTL7+ fibroblasts (FBs), which
may be profibrotic and involved in insulin resistance in human GSVs. Additionally, our data suggest
that immune cells only accounted for a small fraction, most of which were macrophages. By assessing
the intertwined remodeling in metabolic dysfunction that potentially increases the gene expression
regulatory network in mural cells and leukocytes, we found that transcription factor KLF9 likely
operated a proinflammatory program, inducing the transcription of metallothionein proteins in
two mural cell subsets and proinflammatory immune cells. Lastly, cellular communication analysis
revealed that proinflammatory signaling, including TRAIL, PVR, CSF and GDF, were uniquely
activated in patients with metabolic dysfunction. Conclusions: Our results identified critical cell-
specific responses and cellular interactions in GSVs. Beyond serving as a repertoire, this work
illustrates multifactorial likelihood of VGF.

Keywords: great saphenous vein; single-cell RNA sequencing; vessel; cell–cell interaction; vein
graft failure

1. Introduction

Cardiovascular diseases are one of the most prevalent disorders causing global morbid-
ity and mortality, among which occlusive arterial disease severely threatens patients’ health
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and leads them to a high risk of adverse outcomes [1]. Bypass graft surgery is the most used
clinical intervention that efficiently improves the long-term survival of patients suffering
occlusive arterial disease, in particular coronary arterial disease (CAD) [2]. By far, the great
saphenous vein (GSV) is the major conduit for coronary arterial bypass graft (CABG), with
advantages of availability and length [3]. However, GSV graft exposed to an increased
pressure flow microenvironment and maladaptation would ultimately develop vein graft
failure (VGF) [4]. Risk factors associated with VFG include diabetes, age, chronic kidney
disease and metabolic dysfunction such as mellitus (DM) and hypercholesterolemia [5–8].
The adverse remodeling process in VGF includes endothelium releasing proinflammatory
and profibrotic cytokines and growth factors promoting intima hyperplasia formation [9].
Several clinical studies have demonstrated optimized preservation of GSV to maintain
normal endothelial function, and integrity of the GSV can reduce VGF [10,11]. Therefore, in-
depth characterization of GSV at a cellular level with high resolution is vital to investigate
the intervention target to ameliorate VGF.

To this end, single-cell RNA sequencing (scRNA-seq) is a powerful tool to elucidate
cellular composition in tissues of interest, the transcriptional profile of an individual
cell, cell type-specific expression regulation and cellular communications under different
conditions. Recent studies have been dedicated to multiple organs such as brain, heart,
liver, lung, kidney and large cardiac vessels in mammalians [12–15]. Interorgan comparison
has revealed that endothelial cells (ECs) are largely influenced by tissue microenvironment
and exhibit great differences among ECs of specific origin [14]. Nevertheless, cellular
components and their corresponding expression profiles in the GSV or any peripheral vein
are not known yet. Herein, by taking advantage of state-of-the-art technology and precious
human samples, we aim to establish a comprehensive atlas for the human GSV at single-cell
resolution, and hopefully this map would potentially pave a path to the therapeutic avenue
for VGF prevention.

2. Materials and Methods
2.1. Ethical Approval

This study was approved by the Ethics Committee of Beijing Anzhen Hospital. All
participants signed their informed consent before being enrolled in our study and the
experiments were performed in accordance with the approved study protocol.

2.2. Tissue Dissociation and Single-Cell RNA Sequencing

Human great saphenous vein (GSV) was harvested in the procedure of coronary artery
bypass graft. Upon excision, GSV was immediately transferred into ice-cold RPMI1640
medium (Thermo Fisher, 11875101, Waltham, MA, USA). GSV was not dilated and was
cut into small pieces, rinsed with cold PBS buffer three times and then subjected into colla-
genase II solution for 30~60 min at 37 ◦C. Enzymatic reaction was stopped by RPMI1640
medium supplemented with 10% fetal bovine serum (HyClone, SH30071, Logan, UT,
USA). Cell debris was removed by centrifugation and supernatant was further filtered
by 40 µm strainer. Then, live cells were selected by Miltenyi Biotec Dead cell removal
kit (Cat No. 130-090-101, Bergisch Gladbach, Germany). After cell counting, approx-
imately 10,000~15,000 cells were mixed with ChromiumTM Single-Cell platform using
ChromiumTM Single-Cell 3′ Library and Gel Bead Kit v3.1 (10× Genomics, Pleasanton,
CA, USA) and single-cell RNA sequencing libraries were constructed according to the
manufacturer’s instructions. Finally, all libraries were ultimately sequenced on Illumina
Novaseq system.

2.3. Bioinformatic Analysis

Raw expression matrices were calculated by CellRanger toolkit (version.5.0 10× Ge-
nomics, Pleasanton, CA, USA) via alignment to human genome reference build GRCh38 (En-
sembl 88). The low-quality cells were discarded according to following criteria:
(1) cells had unique molecular identifier (UMI) less than 800 or more than 20,000;
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(2) cells had no more than 500 expressed genes; and (3) the mitochondrial genes should
account for less than 15% UMI. Subsequently, the batch effect of donors was removed
by applying integration workflow wrapped in Seurat (version 4.0, New York, NY, USA).
Briefly, we first constructed a reference with finding “anchors” among batches/individuals
by reciprocal PCA reduction. Then, we split the combined object by each donor and per-
formed log normalization prior to finding anchors. The UMI count was normalized by the
“NormalizeData” function. The top 3000 highly variable genes (HVGs) were calculated
with “FindVariableFeatures” and selected for downstream analysis. Data were scaled with
the “ScaleData” function, setting the parameter “vars.to.regress” to “percent.mito” and
“nUMI”. Principal component analysis (PCA) was performed using the “RunPCA” function
with the top 3000 HVGs. To cluster single cells into subsets, we adopted unsupervised
graph-based clustering algorithm implemented in Seurat package. “PCElbowPlot” function
was used to choose the number of PCs and a shared nearest-neighbor (SNN) graph was
constructed using the “FindNeighbors” function with the top 35 PCs. Lastly, cells were
clustered by the “FindClusters” and “RunUMAP” functions. “FindAllMarkers” function
was applied to detect signature genes for each cluster with setting the parameter “min.pct”
to 0.3 and “logfc.threshold” to 0.4. Subsequently, cell clusters were annotated manually to
the major cell types according to known markers. Any cluster with multiple markers of
two types of cells was manually discarded as a doublet.

2.4. Functional Enrichment Analysis

For gene ontology (GO) enrichment analysis, we obtained differential expressed genes
(DEGs) for each cell subset by setting log2foldchange as 0.4 and observed in at least 30% of
cells via FindAllMarkers function wrapped in Seurat package. Then, enrichment analysis
was performed with DEGs using clusterProfiler packages.

The proinflammatory score of endothelial cell subsets was carried out by calculating
mean expression of genes involved in cell adhesion that promoted leukocyte infiltration:
SELE, SELP, CSF3, CCL14, IL6, ICAM1 and HMOX1.

2.5. Transcriptional Noise Analysis

Transcriptional noise analysis was first introduced by Enge et al. [16]. Briefly, for
each cell subset, raw UMI counts for each cell were extracted. The cell subsets were
downsampled so that all cell subsets had equal number of total UMI. Then, all genes were
divided into ten bins based on average expression. Bins at extremity were discarded, and for
each rest bin, genes were sorted by coefficient of variation and 10% of genes at the bottom
were selected for downstream analysis. Next, down-sampled cell subsets were further
reduced to bottom 10% of genes with the lowest coefficient of variation, and UMI counts
were square-root-transformed. Lastly, the Euclidean distance was calculated between each
cell within a cell subset as a measurement for transcriptional noise.

2.6. Pseudotime Trajectory Analysis

The monocle R package (version 2.12.0, Seattle, WA, USA) was used to construct
cell-subset pseudo-time trajectory analysis. The cell clusters of interest were selected using
the “subset” command of Seurat, and then a CellDataSet object was created with the “as.
CellDataSet” function of monocle. After calculating size factors and estimating dispersions,
differentially expressed genes among clusters along the trajectory were identified via
the “differentialGeneTest” function. To determine significance, we set q-value cutoff as
1E-40 for EC, 1E-25 for FB and mural cells for selecting most differentially expressed
genes. “DDRTree” method was adopted in dimension reduction. After cell ordering, the
“plot_cell_trajectory” functions were used for visualization.

2.7. Regulatory Analysis of Transcription Factors

To infer transcription factor (TF)–target interactions, single-cell regulatory network
inference and clustering (SCENIC) algorithm was run with raw expression matrices to
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identify regulons specifically involving different cell subsets. TF activities (AUCell) for each
cell were calculated with motif collections version mc9nr. The significantly upregulated
regulon was defined as log fold change of more than 0.1 and adjusted p-value < 10−5.

In this study, we retrieved targeted genes that were positively correlated with selected
TF) from SCENIC output “regulon” file for network analysis visualization. The transcrip-
tional network of TF and predicted target genes were visualized by Complexheatmap
package and Cytoscape (v3.8, Seattle, WA, USA).

Additionally, we performed coexpression analysis to further support abovementioned
gene expression network analysis. In brief, the log-transformed normalized expression
matrix was extracted from cell subset of interest. Then, Pearson correlation was calculated
for all genes, and only genes with correlation greater than 0.15 and p value lower than 0.05
were kept.

2.8. Cell–Cell Interaction Analysis

Cellular crosstalk was calculated with CellChat package [17]. Briefly, we separated ob-
ject by diabetic mellitus and examined corresponding cell–cell interaction weight, strength
and signaling. Only cellular communications in at least 10 cells were kept for downstream
analysis. We calculated both outgoing signaling and incoming signaling for both groups.
We mainly focused on signaling pathways that were uniquely in GSVs complicated with
metabolic dysfunction. For each selected pathway, we analyzed the roles of cell subsets
by “netAnalysis_contribution” function. Then, we used “plotGeneExpression” function to
visualize ligands and receptors in the selected signaling.

2.9. Bulk RNAseq Data Validation

To validate KLF9 upregulation in diabetes mellitus, we downloaded bulk tissue RNA-
sequencing data from GEO database under the accession GSE179231 and GSE162391.
GSE179231 was derived from lacrimal gland of three wild-type mice and three diabetic
mice. Additionally, GSE162391 was generated from swine coronary artery segments for
which 4 nondiabetic and 4 diabetic samples were included.

2.10. Data Visualization

Microsoft R Open (version 3.6.1, https://mran.microsoft.com/) (accessed on 5 July
2019) was used. The R packages ggplot2 (version 3.1.0 by Hadley Wickham, Houston, TX,
USA), pheatmap (version 1.0.12 by Raivo Klode, Tartu, Estonia) and clusterProfiler (version
3.10.1 by GuangChuang Yu, Guangzhou, China) were used to generate graphs of the data.

2.11. Data Availability Statement

The original contributions presented in the study are included in the article/
Supplementary Material, further inquiries can be directed to the corresponding authors.
The raw data associated with this study has been deposited in the Sequence Read Archive
(SRA) under the accession PRJNA835590.

3. Results
3.1. Transcriptomic Identification of Human Great Saphenous Vein Landscape

To gain insight on the comprehensive cellular heterogeneity on the human great
saphenous vein (GSV), we performed single-cell RNA sequencing (scRNA-seq) on GSVs
derived from coronary artery bypass graft (CABG) procedures (Figure 1A). In total, three
patients who underwent CABG were included in this study. All patients had hyperlipemia
(HLP), and patient P2 was further complicated with metabolic dysfunction, including
hypertension (HP) and diabetes mellitus (DM). Patient P2 unfortunately did not survive the
perioperative period, while P1 and P3 recovered after a six-month follow-up (Figure 1A).
Harvested GSVs were subjected to enzymatic dissociation, and single-cell suspension was
subjected to droplet-based 10X Genomics Chromium controller for scRNA-seq library
preparation and sequencing (Figure 1B). By applying stringent data filtering (details seen in

https://mran.microsoft.com/
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Methods section), a comprehensive cellular map consisting of 12 cell types was established
with 18,957 cells (Figure 1C). No cell type was specific to an individual, reflecting no
significant bias in data integration (Figure 1C). The endothelial cells (EC) accounted for the
majority of cells in the GSVs, followed by fibroblast (FB), smooth muscle cells (SMC) and
pericytes. The most prevalent immune cell type was macrophages (Mac). Lymphoid cells
including T cells, natural killer cells and B cells were observed in all samples (Figure 1D).
Myeloid lineages such as monocytes (Mono), mast cells (Mast) and neutrophils (Neutro)
and a small population of Schwann cells were also detected in all samples (Figure 1D). We
selected the five most differentially expressed genes in each cell subset as signatures to
further validate the robust clustering (Figure 1E and Table S1).
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Figure 1. The workflow and overall clustering results. (A) Baseline information of patients included
in this study. (B) The workflow of our study. (C) The clustering of all cells identified 12 main cell
types in human great saphenous veins. EC: endothelial cells, FB: fibroblasts, SMC: smooth muscle
cells, Neutro: neutrophils, Mast: mast cells, Mac: macrophages, Mono: monocytes, LEC: lymphatic
endothelial cells, TNK: T cells and natural killer cells, B: B cells. (D) Cell composition for each patient
was plotted. (E) Dotplot shows the signature genes for each cell types. Circle sizes stand for the
percentage of cells that expressed genes of interest.
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3.2. Venous ECs, Valvular ECs and Lymphatic EsC Had Distinct Expression Programs

Endothelial cells form the inner lining of all vessels; recently, studies have demon-
strated the interorgan and intraorgan cellular plasticity of EC subsets and tissue type
contribute more weight in EC heterogeneity [14,18]. The length of the GSVs recruited in
our study varied from 3 cm~5 cm; therefore, valves could be digested and pooled in the
single-cell suspension (Figure S1A). Some animal-model-based studies have illustrated
that lymphatic endothelial cells could be derived from venous ECs; we therefore included
lymphatic endothelial cells (LECs) for further analysis [19,20]. Reclustering of ECs and
LECs identified eight distinct subsets, including venous ECs (VECs), IL6hi VECs, FABP4hi

VECs, HEY1+ ECs, LECs and three subsets of valvular ECs (Figure 2A). Valvular iden-
tity was determined by EFNB2 and ITGA9, which were necessary for the maintenance of
venous valves [21] (Figure S1B). PROX1 was a canonical marker for lymphatic lineage;
FOXC2 controlled development of lymphatic valve and venous valve in lower limb [22,23]
(Figure S1B). Therefore, based on those markers we defined LECs, valvular ECs, MMRN1+

valvular ECs and lymphatic valvular ECs. By calculating the signature gene expression, we
found that ACKR1 was uniquely expressed in all venous ECs while ACKR3 and ACKR4
were exclusively expressed in valvular EC subsets (Figure 2B). This was also in consistence
with their molecular roles, as ACKR1 participated in aiding leukocyte infiltration into tissue
across vessels, whereas ACKR3 was involved in thrombosis [24,25]. Moreover, TEK, also
known as TIE2, was highly expressed in MMRN1hi valvular ECs (Figure S1B). As TEK was
involved in response to flow shear, we speculated that MMRN1hi valvular ECs were on
the edge of the valvular leaflet [26]. Most approaches in valvular endothelial cells were
focused on the aortic valve; little is known on the peripheral vessel valve. Hence, we
compared transcriptional profiles of venous ECs (VECs and IL6hi VECs) and valvular ECs
(all three valvular EC subsets). Genes involved in vasculature development for tight and
gap junctions (CLDN5, LRG1, TJP1, ADAMTS9 and APLNR), antigen representation (MHC
class II molecules) and cellular response to interferon-γ and stress (MT1E, MT2A, SOCS3,
HMOX1, HIF1A and KLF4) were upregulated in venous ECs, while genes were enriched in
extracellular matrix (FN1, FGF2, DCN, ELN and POSTN), platelet degranulation (SRGN,
APP, MMRN1, CD9 and CLU), ossification (BMP4, BMP6, MMP2 and MGP) and endothe-
lial cell migration (TEK, ITGB1, VEGFA and EFNB2) were highly expressed in valvular
ECs. Therefore, those results reflected that venous endothelial cells were more involved
in vasculature development and responses to stimuli or inflammation; however, valvular
endothelial cells adapted an expression program in response to shear stress. Notably, genes
participating in lymph vessel development such as PTPN14, FOXC1 and FOXC2 were
highly expressed in valvular ECs (Figure 2C and Table S2).

Next, we assessed cellular composition in each individual, as shown in Figure 2D;
nonetheless, the cellular composition was frequently biased in scRNA-seq experiments
resulting from many factors including tissue, physiological state of specimen and cell
types [27]. To gain an in-depth understanding of EC heterogeneity, we estimated the
transcriptional noise of each cell subset, as introduced by Enge et al. [16]. Higher tran-
scriptional noise positively correlated with higher diversity in gene expression regulation.
Lymphatic valvular ECs had the most diverse transcriptional noise, while IL6hi VECs had
the most concordant expression variety (Figure 2E). Herein, we inferred that less noise
in IL6hi VECs may reflect its concentrated roles. To associate EC subset function with
transcriptomic patterns, we carried out functional enrichment of each EC subset marker
list. Results showed that IL6hi VECs had pronounced apoptotic and inflammatory features
(Figures 2F and S1B). We further compared EC migration and proinflammatory score
among EC subsets and pinpointed that IL6hi VECs had lower expression in EC migration
but higher expression in proinflammatory signature (Figures 2G and S1C). In summary,
IL6hi VECs may be prone to association with adverse remodeling [28].
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Figure 2. Endothelial cell diversity in human GSVs. (A) The UMAP plot of EC cell subsets.
(B) Heatmap showing the signature genes for each EC subset. (C) Gene ontology enrichment
of differential expressed gene between venous ECs and valvular ECs. Only upregulated genes were
selected for analysis. (D) EC cell subset ratio in each patient. This result suggested that IL6hi VECs
were enriched in patients complicated with hypertension and type 2 diabetes. (E) Transcriptional
noise analysis showing that IL6hi VECs had the least heterogenous expression. (F) Functional enrich-
ment of highly expressed genes for each EC subset. Results infer that valvular EC subsets possessed
profound signatures in extracellular matrix organization, whereas venous EC subsets were involved
in cell infiltration. (G) Comparison of EC migration ability and endothelium proinflammatory score
among EC cell subsets. (H,I) Inference of EC cell subset developmental connection by pseudo-time
trajectory analysis. Valvular EC subsets and EC subsets exhibit distinct cell fates. The mast regulators
for venous fate (NR2F2), arterial fate (HEY1), panvalvular fate (CREB5), vascular bed differentiation
(MEOX1), venous EC fate (ZNF385D), lymphatic fate (TBX1) and lymphatic valvular fate (FOXC2)
are plotted along trajectories and in cell subsets.

Pseudo-time analysis is a useful tool to decipher cell fate connection. Herein, we
included lymphatic ECs (LECs) into our pseudo-time trajectory, revealing the intertwined
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relation among those EC subsets: valvular ECs shared tight connections and were not
independent from venous ECs in the left branch (Figures 2H and S1D). Additionally,
LECs and Lymphatic valvular ECs completely overlapped with valvular ECs in the left
branch extremity, indicating that valvular ECs might be a source for lymphangiogenesis
in adults (Figure 2H). In a good agreement with previous study, NR2F2 was a master
regulator of venous fate, whilst HEY1 participated in arterial fate and TBX1 controlled
lymphatic lineage (Figure 2I) [29]. Our results also inferred that CREB5 was a pan-valvular
regulator but had higher expression in vascular valves, while FOXC2 was mainly involved
in lymphatic valve development (Figure 2H,I). Moreover, by taking advantage of single-cell
analysis, we demonstrated that transcription factor ZNF385D uniquely regulated venous
EC differentiation and MEOX1 influenced vascular bed (neither valve nor lymph vessel)
differentiation (Figure 2H,I). In addition, our analysis gave evidence that MAF may only
impact the lymphatic vascular bed differentiation, which is consistent with the repressive
role of MAF in blood vascular endothelial cell development [30] (Figure 2H,I).

3.3. ANGPTL7+ FBs with Antiangiogenic Potential Was Identified in GSV

Fibroblasts from vascular beds are typically located in the adventitia and produce
extracellular matrix to protect the integrity of veins. Different from arteries, veins con-
tain valves that are populated with fibroblasts [31]. Further clustering analysis divided
fibroblasts into eight subsets (Figure 3A). We calculated the signature expression genes and
identified a new FB subset, termed ANGPTL7+ FB, which had a very distinct expression
compared to other FB subsets (Figure 3B). All FB subsets but ANGPTL7+ FBs have been
identified in multiple tissues in mouse and human [32]. To further explore heterogeneity of
FB subsets, we assessed the transcriptional noise and showed that ANGPTL7+ FBs had the
highest variable expression and were present in all patients (Figure 3C,D). Subsequently,
we examined highly expressed genes in ANGPTL7+ FB, which were mainly enriched in
the ossification (TAC1, FZD1 and ASPN), negative regulation of phosphorylation (SOCS3,
JUN and DDIT4) and fat cell differentiation (KLF5, RARRES2 and ADIRF) (Figure S2A).
ANGPTL7 can promote lymphatic drainage, and upregulation in hair follicular stem cells
suppresses stemness [33]. In addition, ANGPTL7 exhibited a strong antiangiogenic effect
in vitro [34]. A recent mechanistic study reported that overexpression of ANGPTL7 could
upregulate SOCS3, which inhibited the phosphorylation of AKT, promoted ERK1/2 phos-
phorylation and ultimately led to insulin resistance and type 2 diabetic mellitus (T2DM) in
mouse [35]. This study also confirmed that ANGPTL7 increased in T2DM patients’ serum.
Moreover, in eyes, ANGPTL7 plays an essential role in cross-linked actin networks and
overexpression of ANGPTL7 reduces tissue permeability [36,37]. Together with higher
fraction of ANGPTL7+ FBs in P2, we speculated that this subset might be associated with
dysfunctional endothelium.

In silico trajectory analysis yielded a trifurcated differentiation route for all FB subsets
(Figure 3E). As a valvular marker, we speculated that ACKR3+ FBs would be distributed
in valves. In addition, previous studies stated that fibroblasts in valves had a differentia-
tion potential reminiscent of mesenchymal stem cells in in vitro culture [38]. The highly
expressed SOX4 and LEPR supported that ACKR3+ FBs were probably located in valves
(Figure S2B). Overlapped distribution of ACKR3+ FBs and PRG4+ FBs in the upper branch
might suggest that both FB subsets were valve-derived and regulated by CREB5 (Figure 3E).
Interestingly, aforementioned results in ECs also indicated that CREB5 was involved in
valve differentiation. We speculated that COMP+ FBs and TFPI2+ FBs at the left branch
appeared to belong to lymphatic lineage due to FOXC2 regulation (Figure 3E). Hence, we
speculated that the right branch where ANGPTL7+ FBs were located might involve cells
constituting a vascular bed. To further test our hypothesis, we applied single-cell regulatory
network inference and clustering (SCENIC) to investigate cell-type-specific transcriptional
control [39]. Our data illustrated that SMAD3, KDM4B and SOX13 may act as a universal
TF for FB lineage, whereas lymphatic TF FOXC2 regulated COMP+ FBs and TFPI2+ FBs
and FOXD1 controlled ANGPTL7+ FBs (Figures 3F and S2B).
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Figure 3. Fibroblast heterogeneity in human GSVs. (A) The UMAP plot showing all FB cell subsets.
(B) Heatmap showing the signature genes for each FB subset. (C) Transcriptional noise analysis show-
ing that ANGPTL7+ FBs had the most variable expression patterns, reflecting a highly heterogenous
nature in gene expression. (D) Cell ratio comparison identifying that ANGPTL7+ FBs were enriched
in patient P2. (E) Pseudo-time analysis revealing that the connection of FB cell subsets was line
with their spatial distribution. CREB5 regulated valvular FB development and FOXC2 impacted on
lymphatic FB. (F) Identification of cell-subset-specific regulon by SCENIC. The regulons of SMAD3,
KDM4B and SOX13 were universally switched on in all FB subsets.
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3.4. KLF9 Regulated Proinflammatory Programs in Mural Cells

Smooth muscle cells (SMC) and pericytes are mural cells that play different roles in
vasculature. SMCs keep contractile function for fluid flow, whilst pericytes stabilize the
vessel wall [40]. We further clustered SMCs and pericytes into five subsets, including
SCN3A+ SMC and VIRP1+ pericytes (Figure 4A). In the absence of PECAM1 (also known
as CD31), canonical SMC marker ACTA2 and MYH11 were highly expressed in SMCs
and conventional pericyte markers (ABCC9 and KCNJ8) identified the pericyte population
(Figure 4B). SCN3A encodes a sodium channel protein that is highly expressed in the
brain and affects neuron migration [41]. VIPR1 produces a small vasoactive neuropep-
tide. SCN3A+ SMC and VIRP1+ pericytes accounted for a small fraction of mural cells
(Figures 4C and S3). Additionally, we identified a group of pericytes that highly expressed
CCL2, which could facilitate monocyte infiltration via CCR2 signaling (Figure 4B). To further
understand the developmental connections among those cells, we performed pseudo-time
trajectory analysis. We found that SMC subsets and pericytes were independent on trajec-
tory, thus suggesting that they may not be derived from a common progenitor (Figure 4D).
Subsequently, we applied SCENIC analysis to investigate gene expression regulation in
those SMCs and pericytes. Indeed, regulatory analysis supported that SMCs and pericytes
were developmentally distinct cell types that were under unique transcriptomic control
(Figure 4E). Unexpectedly, we identified that the KLF9 regulon was active in patient P2,
who was complicated with metabolic dysfunction (Figure 4E). Consistently, KLF9 had a
higher expression level in mural cells in patient P2 (Figure 4F). This finding was supported
by the observation that an increased KLF9 expression was also seen in diabetic mice and
swine models (GSE179231 and GSE162391, respectively, Figure S4), indicating that KLF9
upregulation was probably associated with metabolic dysfunction, including DM. We fur-
ther carried out gene expression analysis by SCENIC to investigate KLF9 regulated genes
in mural cells. In addition, we only focused on genes which were positively regulated by
KLF9. In parallel, we performed gene coexpression analysis in all mural cells. Combining
results from both methods, we constructed a gene regulation network (Figure 4G, Table S3).
Our results illustrated that IL6ST, a signaling transducer for various inflammatory cy-
tokines and risk gene for CAD, was a direct target downstream of KLF9 [42] (Figure 4G).
Furthermore, another target, CDKN1A, in the downstream of KLF9, reflected that mural
cells were under cell-cycle arrest (Figure 4G). In conclusion, our analysis inferred that
upregulation of KLF9 may increase the likelihood of adverse remodeling via facilitating
inflammation and hindering cell proliferation and arterialization after CABG.
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Figure 4. Single-cell analysis of smooth muscle cells and pericytes. (A) The UMAP plot of smooth
muscle cell (SMC) and pericyte subsets. (B) Violin plot of SMC and pericyte conventional markers
(upper row) and unique markers identified in our data (bottom row). (C) Mural cell composition
in each patient is shown. (D) Pseudo-time analysis reveals that SMC and pericytes were minimally
connected, suggesting that SMC and pericytes might be of different origins. (E) Gene expression
regulation analysis by SCENIC infers SMC- and pericyte-specific transcription regulator. Transcrip-
tion factors (TFs) including PGAM2 and KLF2 controlled express programs in SMC while TFs such
as NR2F1 and ZNF138 impacted on pericyte transcription. KLF9 regulon was specifically active in
patient complicated with hypertension and diabetes. (F) Violin plot of KLF9 expression in descending
order, showing that KLF9 was upregulated in P2. The patient was complicated with hypertension
and diabetes. (G) Network analysis shows direct targets of KLF9 in both SMCs and pericytes.

3.5. Investigation of Immune Cell Diversity in Human GSV

The immune cell compartment is not fully characterized in peripheral vessels; hereby,
we performed reclustering of macrophages and T cells. Our results indicated that immune
cells accounted for less than 1% cell composition in human GSV. Macrophages could be
further divided into three subsets of macrophage and a group of dendritic cells (Figure 5A).
Proinflammatory M1 macrophages had a specific subgroup, designated as M1_C2, which
highly expressed metallothionein protein MT1G. While for M2 macrophages it was highly
expressed MRC1 (Figure 5B). As the origin of dendritic cells is controversial, we only
included M2, M1_C1 and M1_C2 or pseudo-time trajectory analysis. The trajectory of the
three macrophage subsets showed that the pro-repair M2 macrophage partially overlapped
with M1_C1, while M1_C2 was likely a terminal differentiated status derived from M1_C1
macrophages (Figure 5C). Moreover, M1_C2 had a tendency to be enriched in patient P2
(Figure S5). Reclustering of T cells only defined central memory CD4+ T cells and effector
CD8+ T cells (Figure 5D,E). As patient P2 failed to survive after CABG, we then compared
gene expression between patient P2 and patients P1/P3 to investigate possible molecular
alterations related to this failure. Both macrophages and T cells showed alleviated metal-
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lothionein protein expression in GSVs affected with metabolic dysfunction (Figure 5F,G).
Moreover, macrophages in GSVs affected with metabolic dysfunction upregulated NLRP3,
the key regulator of NLRP inflammasome, indicating that metallothionein upregulation
was in line with augmented inflammation. To gain insight in such proinflammatory expres-
sion programs, we constructed a TF-target network in immune cells and further identified
CREM and KLF9 as possible master regulators by SCENIC analysis (Figure 5H).
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Figure 5. Single-cell analysis of major immune cells in human GSVs. (A) The UMAP plot of
macrophages and dendritic cells in this study. DC: dendritic cells; M1_C1: proinflammatory M1
macrophage cluster 1; M1_C2: proinflammatory M1 macrophage cluster 2; M2: proreparative M2
macrophages. (B) Violin plot of signature genes for macrophages and DC subsets. (C) Trajectory
analysis of three macrophage subsets. (D) The UMAP plot of T-cell subsets and natural killer cells.
NK: natural killer cells. CD8 TEFF: effector CD8 T cells. CD4 TCM: central memory CD4 T cells.
(E) Dot-plot of signature genes for T-cell and NK subsets. (F) Volcano plot showing the differentially
expressed genes (DEG) in macrophages and DC between diabetic patients and nondiabetic patients.
Red dots represent upregulated genes in diabetic patient (P2). (G) Volcano plot showing DEG in
lymphocytes between P2 and P1P3. Red dots are genes upregulated in P2. (H) Network analysis
inferred from SCENIC demonstrates that transcription factors CREM and KLF9 were involved in
proinflammatory response in lymphocytes. KLF9 was one of the downstream targets of CREM.

3.6. Cell–Cell Interaction Analysis Unraveled Proinflammatory Programs under
Metabolic Complications

Clinical studies have demonstrated a strong association between metabolic diseases
including DM and VGF; therefore, a rewiring of cell–cell interaction in such conditions
would ignite mechanistic studies for translational treatment to prevent VGF [43,44]. We
adopted the CellChat toolkit and calculated the interaction weight and strength of all cell
subsets in the patient with DM/HP (herein called GSV with DM) and non-DM patients
separately. Of note, we found that venous ECs and SMCs complicated with DM received
increased signals from most of the other cell subsets (Figure 6A). To further explore such
altered communication, we compared signaling pathways between the two groups, re-
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vealing that TRAIL, CSF, PVR, OSM and GDF signals were uniquely presented in GSV
with DM, most of which were associated with inflammatory responses (Figure S6). TRAIL
signaling was increased in many cell types in GSV with DM; we thereafter implemented
net analysis. This suggests that most EC and FB subsets were involved as ligand donors,
whilst IL6hi ECs were major receivers (Figure 6B). We then analyzed the signaling pathways
enriched in EC subsets. The PVR-CD226 interacting ligand–receptor pair from PVR signal-
ing mainly involved IL6hi ECs and cytotoxic NK cells, this interaction may be responsible
for endothelial cell dysfunction (Figure 6C). Moreover, IL6hi ECs also can send CSF3 and
interact with proinflammatory M1 macrophages, monocytes and neutrophils via CSF3R
(Figure 6C). This interaction could further facilitate adverse remodeling in GSVs. GDF
signaling was specifically involved in FB subsets with DM (Figures 6D and S6). GDF15,
the only ligand detected in our study, was associated with systematic inflammation, DM
and obesity [45–48]. Our results showed that ANGPTL7+ FBs and SFRP1+ FBs expressed
GDF15 and acted on a variety of cells (Figure 6D). GDF15-TGFBR2 interaction was reported
to induce apoptosis in vitro; therefore, we speculated that ANGPTL7+ FBs further induced
endothelium damages under DM [48]. Taken together, metabolic dysfunctions, including
DM, would increase the likelihood of VGF through a multifaceted interaction involving
proinflammatory EC, FB, cytotoxic NK and myeloid cell subsets.
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Figure 6. Cell–cell interaction analysis of all cell subsets in human GSV. (A) The interaction strengths
among all cell subsets were compared between diabetic patient (P2) and nondiabetic patients. Red
dots stand for interaction strength that was increased in P2, whereas blue dots are decreased interac-
tion in P2. (B) The plot demonstrates the signaling role of cell subsets in TRAIL signaling, and results
imply that IL6hi VECs were major receivers for this inflammatory pathway. (C) Heatmap represents
roles of PVR and CSF signaling that were specific to diabetic venous EC subsets. Circular plot at
the bottom shows the signaling strengths of ligand–receptor in PVR and CSF3 signaling pathway.
(D) Heatmap represents roles of GDF signaling that was enriched in ANGPTL7+ FB. Violin plot at the
bottom shows the GDF signaling ligand (GDF15)–receptor (TGFBR2) in all cell subsets.
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4. Discussion

The GSV is the major vessel donor for CABG and other occlusive arterial diseases,
although recent studies have demonstrated that artery-derived donors may result in better
outcomes [49]. Here, for the first time, we have leveraged state-of-the-art techniques to
unravel the heterogeneity of the human great saphenous vein. In contrast to other tis-
sues, ECs in GSVs exhibited highly heterogenous phenotypes. The observation that an
artery-like HEY1+ EC in vein was identified further highlighted that vessels are highly
plastic. Considering that valve formation requires arterial gene expression, we reasonably
assumed that coexistence of arterial ECs in vein probably gave rise to valves and to better
adaptation when arterialization occurred [21]. Further, as stated by recent studies that
the tissue microenvironment played essential roles in shaping cell-type-specific expres-
sion, we therefore inferred the cell population in valves by checking the valvular marker
ACKR3 [50,51]. Likewise, SCN3A was expressed in both some SMC and pericytes; we
reasonably assumed that SCN3A+ SMC and VIRP1+ pericytes had similar tissue locations.
Therefore, our results added valuable evidence to diverse cellular heterogeneity in vessels.

More importantly, our results provided clues at a single-cell resolution about to which
extent metabolic dysfunction impacted peripheral veins. Although only one sample was
affected with metabolic dysfunction, upregulation of IL6 and KLF9 had been supported
with other metabolically dysfunctional tissues in humans and other mammalians [52].
In addition, we compared IL6 expression among three patients, and P2 had the highest
IL6 expression (Figure S7). We therefore concluded that multifactorial adaptation under
metabolic dysfunction in GSVs likely orchestrated adverse remodeling as follows: IL6hi

VEC content had the least transcriptional noise and most-highly expressed CDKN1A and
other proinflammatory molecules, indicating that IL6hi VECs had decreased potential in
proliferation or angiogenesis and thereby probably dampened graft survival. As FOXD1
could promote pulmonary and kidney fibrosis, we therefore suspected that ANGPTL7+

FBs were profibrotic FBs across the vessel wall [53,54]. Hence, together with profibrotic
ANGPTL7+ FBs, graft appeared to fail dramatically after CABG. Nevertheless, our con-
clusion should be strengthened via in vitro or in vivo validations with vascular tissues.
Immune cells had significantly higher metallothionein proteins, which are induced by
many stimuli, including cytokines and oxidative stress, and may function as a negative
regulation for apoptosis in cancer [55]. An scRNA-seq study in human adipose tissues
reported that metallothionein proteins were positively associated with adipose dysfunction
and potentially insulin resistance [56]. Furthermore, KLF9 was specifically activated in
GSVs with metabolic dysfunction, regulating the proinflammatory program in mural cells
and proinflammatory immune cells, including M1 macrophage and cytotoxic effector T
cells. Combined with a recent mechanism study for KLF9 in dexamethasone-induced
DM, we believe that KLF9 deserves consideration as a preventative therapeutic target for
ameliorating endothelium damage in metabolic dysfunction [57]. Cell–cell interaction
analysis deduced unique cell communications in GSVs affected with metabolic dysfunction
and particularly highlighted several signaling networks coordinating diabetic milieu. In
fact, this result pointed that IL6hi VECs and ANGPTL7+ FBs could serve as central hubs
to transmit inflammatory signals and facilitate leukocyte infiltration and endothelium
dysfunction. Despite these novel findings in our study, due to technical difficulties in
cell isolation and the unavailability of long human GSV specimens, the major limitation
was limited samples, especially for veins affected with metabolic dysfunction. Increased
sample size would empower our findings for experimental validations. Hopefully, with
ongoing scRNA-seq data, we hope that our current observation could be validated by other
datasets and ultimately stimulate a series of mechanism studies and pave a path to novel
translational approaches.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11172711/s1, Figure S1: A: representative picture of human
great saphenous vein enrolled in our study. B. Violin plot of endothelial cells canonical genes.
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C. Endothelium inflammation score comparisons among all defined cell subsets. D. pseudo-time
trajectory analysis of EC subsets. The trajectory was split by EC subsets on the left and shown as in
pseudotime on the right. Figure S2: A: GO enrichment for upregulated genes expressed in ANGPTL7+
FB. B. Violin plot of mesenchymal cell canonical genes and FOXD1. Figure S3: Split UMAP plots
of mural cells. Figure S4: Klf9 expression was upregulated in diabetic mice (A) and diabetic pigs
(B). Figure S5: Cell ratio assessment for immune cells. Figure S6: The outgoing signals for each cell
subsets in patient affected with diabetes mellitus. and non-diabetic patients were plotted separately.
Cells of the same type were shown as the same color. DM: diabetes mellitus. Non_DM: non-diabetic
patients. Results showed that CSF3, GDF, OSM, PVR and TRAIL signaling pathways were specifically
found in patients with DM. Figure S7: Comparison IL6 expression between DM and non-DM in all
cells and endothelial cells. Table S1: Signature expression of each cell subset. Table S2: DEG analysis
of venous EC and valvular EC. Pct.1: venous EC, pct2. valvular EC. Table S3: co-expressed genes
with KLF9 in mural cells.
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