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Studies across vertebrates have revealed significant insights into the processes that drive
craniofacial morphogenesis, yet we still know little about how distinct facial morphologies
are patterned during development. Studies largely point to evolution in GRNs of cranial
progenitor cell types such as neural crest cells, as the major driver underlying adaptive
cranial shapes. However, this hypothesis requires further validation, particularly within
suitable models amenable to manipulation. By utilizing comparative models between
related species, we can begin to disentangle complex developmental systems and identify
the origin of species-specific patterning. Mammals present excellent evolutionary
examples to scrutinize how these differences arise, as sister clades of eutherians and
marsupials possess suitable divergence times, conserved cranial anatomies, modular
evolutionary patterns, and distinct developmental heterochrony in their NCC behaviours
and craniofacial patterning. In this review, I lend perspectives into the current state of
mammalian craniofacial biology and discuss the importance of establishing a new
marsupial model, the fat-tailed dunnart, for comparative research. Through detailed
comparisons with the mouse, we can begin to decipher mammalian conserved, and
species-specific processes and their contribution to craniofacial patterning and shape
disparity. Recent advances in single-cell multi-omics allow high-resolution investigations
into the cellular and molecular basis of key developmental processes. As such, I discuss
how comparative evolutionary application of these tools can provide detailed insights into
complex cellular behaviours and expression dynamics underlying adaptive craniofacial
evolution. Though in its infancy, the field of “comparative evo-devo-omics” presents
unparalleled opportunities to precisely uncover how phenotypic differences arise during
development.
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1 INTRODUCTION

One of the most remarkable, yet enigmatic aspects of the vertebrate skull is the broad diversity of
craniofacial shapes observed between species. While our understanding of craniofacial biology has
been significantly enhanced through investigations across several vertebrate models, we still know
very little about the processes that drive the development of distinct craniofacial adaptations.
Comparative embryology and developmental biology in jawed and jawless vertebrates have revealed
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that craniofacial morphogenesis is driven by a transient
population of embryonic progenitors called the neural crest
(Kuratani et al., 2018; Fish, 2019). Multipotent neural crest
cells (NCCs) direct patterning and development of the head
and neck, amongst other structures, and are controlled by
deeply conserved gene regulatory networks (GRNs)
constituting a species-generic program (Green et al., 2015;
Martik and Bronner, 2021). The combination of these
developmental and evolutionary observations, with forward
genetics and human clinical models of craniofacial disease,
have provided a holistic understanding of how the craniofacial
prominences are patterned and skull bones develop (Wilkie and
Morriss-Kay, 2001; Szabo-rogers et al., 2010; Murillo-Rincón and
Kaucka, 2020). However, despite this fundamental understanding
of craniofacial biology across vertebrates, we still know
remarkably little about how species-specific diversity arises
and is patterned during development.

One way we can begin to address this phenomenon is by
utilizing comparative models to quantitatively examine how
disparities or similarities arise during development. These
models need to be suitably chosen depending on the
hypothesis being tested. i.e., examining closely related species
with unique skull morphologies (disparity), versus distantly
related species with similar skull morphologies (convergence).
Mammals provide excellent examples to address these
hypotheses, owing to their conserved anatomy yet remarkable
craniofacial disparity or convergence, shared developmental
patterns, heterochrony and lineage-specific constraints, and
appropriate divergence times, e.g., within orders or across
clades. Through application of these models, we can begin to
tease apart how facial morphogenesis and shape diversity is
regulated at the cellular and molecular level (Newton et al.,
2017; Usui and Tokita, 2018; Newton and Pask, 2020),
informing new models of development.

In this article, I outline my perspectives on establishing new
comparative mammalian models for investigations into the
developmental basis of craniofacial patterning. I discuss the
underlying biology of craniofacial morphogenesis, including
NCC biology, its influence on patterning, and heterochrony
between therian mammals. I emphasize the importance of
establishing an appropriate marsupial model for comparative
investigations with the eutherian laboratory mouse, including

FIGURE 1 | Neural crest and craniofacial development between therian
mammals. Craniofacial heterochrony between therian mammals arises from
altered neural crest cell behaviours. (A) In placental mammals, the neural crest
forms in the neural folds and delaminates from the neural tube to migrate
throughout the embryo. In marsupials however, the neural crest forms and
delaminates from the neural plate border, leading to accelerated migration in

(Continued )

FIGURE 1 | the early embryo—redrawn from (Martik and Bronner, 2021). (B)
Neural crest migration pathways are shared between therian mammals,
though are accelerated in marsupials relative to developmental stage.
Note marsupials display rapid development of the facial complex and
forelimbs, while the CNS and hindlimbs are rudimentary. (C) The facial
prominences of newborn marsupials resemble those observed in an
embryonic mouse (credit FaceBase.org) (Samuels, B. D., 2020). (D)
Comparative images of newborn mouse and dunnart, demonstrating the
altriciality of the dunnart at birth. The adult dunnart superficially resembles
a mouse. Image credits: dunnart newborn—Laura Cook; Dunnart
Adult—David Paul—Museums Victoria; mouse pup—created with
BioRender.com. Abbreviations: fl, forelimb; FNP, frontonasal process; hl,
hindlimb; ht, heart; md, mandibular process; mx, maxillary process; pa,
pharyngeal arch; pm, paraxial (head) mesoderm.
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the establishment and utilization of transgenic approaches.
Finally, I discuss how single-cell multi-omic approaches,
regularly utilized in developmental biology, should be applied
to comparative craniofacial models to scrutinize differential cell
and molecular behaviours underlying mammalian craniofacial
patterning and shape diversity. Establishing a marsupial model
for comparative mammalian biology will strengthen our
understanding of craniofacial development and how
morphological diversity is generated throughout evolution.

2 Neural Crest Cells and Patterning of the
Head
Development of the vertebrate head and craniofacial skeleton is
achieved largely through the contribution of migratory NCCs.
NCC specification is regulated through a deeply-conserved GRN
comprised of shared suites of core transcriptional regulators,
constituting a species-generic program (Green et al., 2015;
Martik and Bronner, 2021). During early embryogenesis,
NCCs arise within the neuroectoderm at the neural plate
border (Figure 1A). Initially, WNT, FGF, and BMP signalling
pathways define the border and initiate pre-migratory NCC
specification in response to activation of SOX9 (Cheung and
Briscoe, 2003). Committed NCCs undergo activation of
epithelial-to-mesenchymal transcription factors, SOX10, SNAIL
and SLUG, and other NCC-specific transcription factors such as
MSX1 and TFAP2A (Martik and Bronner, 2021), causing the cells
to delaminate and migrate away from the forming neural tube
(Figure 1A). The spatial location of NCCs along the anterior-
posterior axis of the embryo predefine their paths of migration.
The anterior-most cranial NCCs of the forebrain and hindbrain
populate the frontonasal process and maxillary arch (Figures
1B,C), contributing to development of the facial skeleton,
whereas more posterior cranial NCCs populate the pharyngeal
arches to form the musculoskeletal elements of the lower jaw and
neck (Figures 1B,C). NCC migration into their target primordia
occur in response to cues within the local extracellular
environment. Here, as NCCs populate the developing
prominences, reciprocal FGF, BMP, SHH, and retinoic acid
signalling interactions between mesenchymal NCCs and the
epithelial ectoderm and endoderm direct their spatial
organization and activate GRNs responsible for proliferation,
outgrowth and differentiation of the craniofacial skeleton
[(Creuzet et al., 2004; Minoux and Rijli, 2010; Dash and
Trainor, 2020; Murillo-Rincón and Kaucka, 2020) and
references within].

2.1 The Origin of Species-Specific Pattern
The specific influence of NCCs patterning the vertebrate head
has been showcased through cross-species transplantations
and xenografts. These experiments have revealed that NCCs
possess intrinsic programming and autonomous behaviours
which drive species-specific patterning (Schneider, 2018).
NCC transplantation chimeras in avian embryos see
recipient species develop donor-specific patterning, bone
formation and craniofacial morphology (Schneider and
Helms, 2003; Chen et al., 2012; Hall et al., 2014; Ealba

et al., 2015). Such morphological outcomes are driven via
intrinsic NCC behaviours, including donor-specific
regulation of the cell-cycle and distinct expression of
transcriptional regulators and signalling factors (Hall et al.,
2014). These unique NCC behaviours are further suggested to
influence their local environment to produce distinct
morphological outcomes. Here, NCC-derived signals
modulate activation of reciprocal signalling pathways to the
surrounding ectoderm and endoderm which determine gene
expression and spatiotemporal patterning of the facial
primordia (Schneider, 2018). In agreement with this, while
shared (species-generic) genes and patterning factors are
active in the developing facial prominences, each species
displays distinct expression profiles during beak outgrowth
and development (Wu et al., 2004; Wu et al., 2006; Brugmann
et al., 2010). Together, these data suggest that intrinsic species-
specific NCC programming influences interactions with their
local environment, regulating differentiation of craniofacial
cells and tissues and the development of distinct
morphological identities.

2.2 Marsupial Heterochrony, Accelerated Neural Crest
Cell Specification and Migration
The mechanisms underlying mammalian neural crest
patterning and craniofacial development have been largely
ascertained from studies in mouse. However, while these
findings may be relevant for eutherian mammals,
comparative studies in marsupials have revealed pronounced
heterochrony in their NCC behaviours. During specification at
the neural plate border, marsupial NCCs undergo rapid
delamination and migration prior to neural plate folding
(Figure 1A) (Smith, 1997; Smith, 2001; Smith, 2020; Vaglia
and Smith, 2003; Wakamatsu et al., 2014), leading to large
accumulations of NCCs within the forming facial prominences
at an earlier equivalent developmental stage to that seen in
eutherians (Figure 1B) (Smith, 2001). Remarkably, very little is
known about the molecular regulation of marsupial NCCs
during development. Two related studies revealed that in the
opossum embryo, NCC specification and delamination is
accelerated as a result of sequence alteration in a SOX9
enhancer which drives early activation of SOX9 in the neural
plate border (Wakamatsu et al., 2014; Wakamatsu and Suzuki,
2019). This accelerated activation likely influences the
heterochronic migration, proliferation, and ossification
observed in marsupials, though no other studies have
interrogated these processes or drawn comparisons with
eutherians. This represents a large gap in our understanding
of how NCC behaviours influence development and differ
between distinct mammalian clades. Future studies should
address the genetic underpinning of these behavioural
differences and their contribution to craniofacial patterning.
Curiously, it remains to be seen whether transplantation of
marsupial NCCs into recipient mouse embryos (or vice versa)
would retain their heterochronic behaviours and promote
differential establishment of the facial prominences and
skeleton. As such, observations into marsupial NCC biology
and comparative heterochrony between eutherians are required
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for a complete understanding of mammalian NCC patterning
and craniofacial development.

3 Craniofacial Patterning, Disparity, and
Convergence in Therian Mammals
Mammals have evolved unique cranial adaptations which
distinguish them from other vertebrates. Evolutionary novelties
such as a hinged jaw, middle ear bones andmuzzle or semi-motile
snout (Higashiyama et al., 2021) have allowed mammals to adapt
to a diverse range of ecological niches. However, since diverging
~160 million years ago (Bininda-Emonds et al., 2007), therian
mammals (marsupials and eutherians) have evolved distinct
reproductive and developmental strategies, resulting in
heterochrony and lineage-specific constraints (Smith, 1997).
The marsupial mode of reproduction requires well-developed
jaws and forelimbs at a comparatively early stage to allow the
altricial neonate to crawl from the birth canal into pouch and
attach to the teat for an extended period of suckling. These
distinct functional requirements require differences in the
onset of development of the olfactory and central nervous
system, and musculoskeletal element of the head body and
limbs (Smith, 1997; Nunn and Smith, 1998; Weisbecker et al.,
2008; Sears, 2009; Keyte and Smith, 2010; Keyte and Smith, 2012;
Chew et al., 2014). Particularly, during craniofacial development,
ossification and suture closure of the facial bones are advanced to
meet the functional requirements associated with suckling
(Sánchez-Villagra et al., 2008; Rager et al., 2014; Spiekman
and Werneburg, 2017; Cook et al., 2021). Overall, these
constraints imposed on the marsupial orofacial bones are
suggested to limit evolvability of their cranial anatomy.

Marsupials have evolved altered patterns of cranial
modularity (Goswami, 2006; Goswami, 2007; Goswami
et al., 2009; Goswami et al., 2012; Goswami et al., 2016)
which are thought to reduce their overall skull shape diversity
compared to eutherians (Bennett and Goswami, 2013; Fabre
et al., 2021). For example, the marsupial jaws form a
functionally constrained module, while the frontonasal
bones and neurocranium are under relaxed constraint and
can evolve more freely (Goswami et al., 2016). On the other
hand, eutherian mammals largely lack these constraints
during development, thus their cranial bone groups are
free to evolve independently producing a greater range of
morphological adaptations. Importantly, these frontonasal,
jaw and neurocranium bone groups (anatomical modules)
possess distinct embryonic origins, arising from the cranial
NC, first arch NC, or head mesoderm, respectively
(developmental modules) (Couly et al., 1993; Jiang et al.,
2002; Yoshida et al., 2008). These semi-independent origins,
known as mosaicism, allow flexibility in how different cranial
morphologies can evolve and change (Felice and Goswami,
2018), even in the presence of functional constraints.
Importantly, the combination of cranial mosaicism with
cell-autonomous programming of NCCs provide clues as
to how particular cranial adaptations can arise during
evolution. Specifically, it can be hypothesized that

evolution within GRNs associated with cranial progenitor
cell types can produce adaptive morphological outcomes.

These evolutionary hypotheses have been recently applied,
investigating the origins of the remarkable craniofacial
convergence observed between the marsupial thylacine and
eutherian wolf (Goswami et al., 2011; Feigin et al., 2018).
During postnatal ontogeny, the thylacine and wolf frontonasal
and neurocranial bones develop with strong shape convergence,
whilst the thylacine’s maxillary bones (upper jaw) possess
constrained shape shared with other marsupials and disparate
patterns to that seen in the wolf (Newton et al., 2021). This
supports the notion that adaptive evolution (similarity and
disparity) of the mammalian skull is modular (Goswami, 2006;
Goswami and Polly, 2010), facilitated by mosaic evolution of
select bone groups. Furthermore, the distinct embryological
origins of the convergent bone groups observed between the
thylacine and wolf suggest their underlying GRNs may be
convergently targeted by selection. Indeed, comparative
genomic investigations of the loci underlying the thylacine and
wolf’s cranial convergence revealed enrichment of homoplasy in
GRNs associated with cranial mesenchyme migration,
differentiation, and ossification (Feigin et al., 2019). Taken
together, these studies support the hypothesis that evolution
within GRNs of embryonic cranial precursors may specify
species-specific patterning of the facial primordia, ultimately
influencing craniofacial shape. However, this hypothesis
requires further validation, particularly into the role of
mammalian NCC heterochrony during early facial
development and patterning. As such, establishing a marsupial
model of NCC patterning and craniofacial biology that is
amenable to manipulation is essential to our understanding of
how evolutionary adaptations are produced during development.

4 A Marsupial Model to Investigate
Mammalian Heterochrony
Modern studies of NCC development and craniofacial patterning
in mammals have leveraged the mouse Cre-Lox system, with
several transgenic reporter lines established to target various
stages of the NCC or skull developmental pathway (Zhang
et al., 2002; Rodda and McMahon, 2006; Yoshida et al., 2008;
Stine et al., 2009; Rauch et al., 2010; Lewis et al., 2013). Of these,
the Wnt1-cre strain has been widely utilized for NCC
developmental biology to uncover the spatiotemporal decisions
underlying NCC differentiation (Soldatov et al., 2019), defining
tissue boundaries between NCC and non NCC-derived cranial
structures (Jiang et al., 2002; Hu et al., 2004; Lewis et al., 2013), as
well as a multipotent NCC line to define models of differentiation
(Ishii et al., 2012; Nguyen et al., 2018). In addition, chromatin
profiling of mouse NCCs and craniofacial prominences have
annotated the regulatory landscape of craniofacial enhancers
and putative GRNs (Visel et al., 2009a; Visel et al., 2009b;
Attanasio et al., 2013; Pennacchio et al., 2018). Yet while these
tools provide powerful and valuable outcomes, they are scarcely
utilized outside murine models, limiting comparative
mammalian research. Recently however, several new marsupial
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resources are actively being established, including a pioneering
study to generate the first genetically modified
marsupials—founder lines of tyrosinase knockout opossums
(Kiyonari et al., 2021). Though marsupial transgenic resources
are still in their infancy, these advances have primed the
generation of new marsupial Cre-Lox resources for
developmental investigations. Of note, the generation of a
marsupial orthologous WNT1-cre line would allow targeted
labelling of neural crest cells and their craniofacial derivatives,
opening the door for comparative developmental studies and
investigations into mammalian heterochrony.

4.1 The Dunnart as the Gold-Standard Marsupial
Model
In the past, several marsupial species have provided insights to
various aspects of mammalian biology, reproduction, and
development (Selwood and Coulson, 2006), with the American
opossum (Monodelphis domestica) informing models of NCC
and limb development (Martin and Mackay, 2003; Vaglia and
Smith, 2003; Goswami et al., 2012; Beiriger and Sears, 2014).
However, Monodelphis are basal American marsupials
(superorder Ameridelphia) possessing an 80-million-year
divergence from Australian marsupials, similar to times shared
between human and mouse. Therefore, an Australian laboratory-
based marsupial model with similar easy husbandry, year-round
breeding and experimental manipulation is still required for a
more complete understanding of mammalian (and marsupial)
biology. Dunnarts (Sminthopsis sp.; superorder Australidelphia)
are small, carnivorous, mouse-like marsupials that are easy to
maintain, possess simple husbandry and are polyovular, poly-
oestrous and spontaneous ovulators which produce multiple
litters of up to 10 pouch young year round (Frigo and
Woolley, 1996; Frigo and Woolley, 1997; Suárez et al., 2017;
Cook et al., 2021). Owing to this, several new resources are being
established for the fat-tailed dunnart (S. crassicaudata, hereafter
referred to as the dunnart) as the gold-standard model for next-
gen marsupial biology. These include a chromosome level
assembly, transcriptomic and gene regulatory datasets, induced
pluripotent cells, inbred strains, and transgenic laboratory lines
(Eldridge et al., 2020). Furthermore, like other marsupials, the
dunnart possesses significant heterochrony in development of its
head, brain and limbs compared with eutherian species, making it
an excellent model for comparative mammalian research.

One of the most remarkable features of dunnart biology is its
rapid gestation and ultra-altricial state at birth (Suárez et al., 2017;
Cook et al., 2021). Dasyurid marsupials, including the dunnart,
represent some of the most altricial of all extant mammals. Dunnart
neonates are born after a rapid 13.5-day gestation, compared to
~20 days in mouse (Figure 1D), and superficially resemble a
eutherian foetus. At birth, the dunnart orofacial region appears as
rudimentary facial prominences akin to an embryonic day 11.5–12
mouse (Figure 1C), despite being functional to accommodate
suckling. The newborn dunnart lacks a developed brain and has
paddle-like hindlimbs, but possesses highly developed, muscularized
forelimbs with claws to accommodate crawling (Figure 1D) (Suárez
et al., 2017; Cook et al., 2021). Remarkably, newborn dunnarts lack
mineralized bone in the facial skeleton and forelimbs, which rapidly

ossify within the first 24 h, while the hindlimbs do not start to ossify
until ~D5 (Cook et al., 2021). This extreme heterochrony and
altriciality at birth allows direct manipulations of these
developmental systems ex utero, at equivalent eutherian
embryonic stages (Paolino et al., 2018). Critically, the ultra-
altricial birth of dasyurids demand additional acceleration of the
onset of NCC specification, migration and proliferation, compared
to the opossum (Smith, 2020). These features distinguish the
dunnart as an exceptional mammalian model to investigate
NCC-derived craniofacial patterning and ossification. However,
detailed analyses which substantiate these early NCC behaviours
in Sminthopsis have yet to be performed, representing an important
first step to understand their NCC biology and thus heterochrony in
mammals.Nevertheless, the dunnart is well positioned to determine
how altered developmental timing influences ontogeny and
craniofacial morphogenesis, providing new insights into the
origin of species-specific pattern.

5 A Look to the Future: Comparative
Evo-Devo-Omics
The age of comparative and functional genomics has accelerated
investigations into the molecular basis of mammalian trait
evolution. Comparative genomics has allowed identification of
genes and regulatory regions under selection within and between
lineages (Capra et al., 2013; Parker et al., 2013; Foote et al., 2015;
Feigin et al., 2018, 2019); comparative bulk RNA-seq has revealed
differentially expressed genes between tissues or developing
structures (Eckalbar et al., 2016; Cooper et al., 2020); and
chromatin pulldown or accessibility assays (ChIP, HiC, or
ATAC-seq) define the gene regulatory landscape associated
with these tissues or developing structures (Visel et al., 2009a;
Attanasio et al., 2013). However, though powerful, individually
these analyses are static andmay overlook dynamic processes that
contribute to development of complex traits. For example, while
identification of differentially expressed genes or enhancers active
in the embryonic orofacial region may constitute components
that contribute to mammalian facial shape diversity (species-
generic), such analyses are unable to capture dynamic regulation
of these and the GRNs that influence development of unique
anatomical features (species-specific) (Schneider, 2018)—as
exemplified in avian models (Schneider and Helms, 2003;
Chen et al., 2012; Hall et al., 2014; Ealba et al., 2015). As such,
alternative approaches are required to disentangle the complex
landscape of craniofacial development between disparate species.

The advent of single-cell omics has revolutionized
developmental biology, producing high-resolution atlases of
diverse developmental processes (Cao et al., 2019). To date,
single-cell studies have been applied to multiple aspects of
neural crest patterning and craniofacial development (Li et al.,
2019; Soldatov et al., 2019; Farmer et al., 2021; Morrison et al.,
2021; Pagella et al., 2021; Tatarakis et al., 2021), providing unique
insights into how these complex developmental processes are
regulated. Single-cell transcriptomics (scRNA-seq) allow detailed
characterization of transcriptional profiles and cell-types present
within developing structures, fate decisions and gene expression
dynamics underlying differentiation of progenitors into mature
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FIGURE 2 | Workflow for comparative craniofacial single-cell multiomics. (A) Single cells can be isolated from dunnart and mouse NCCs and developing
craniofacial prominences for multiplexed isolation and sequencing of RNA and open chromatin. Facial tissue sections can be processed for in situ spatial transcriptomics
or MERFISH (Xia et al., 2019). Single-cell RNA and ATAC-seq data can be readily integrated using pipelines such as Seurat (Butler et al., 2018). (B) Dunnart and mouse
datasets can be individually clustered or integrated to generate an atlas of homologous cell type populations—adapted from (Stuart et al., 2019). Cell transcriptomic
and epigenetic profiles can be further mapped back to their spatial organization in the embryo. (C) The combination of these methods allows sophisticated downstream
workflows to examine differential expression between species-specific clusters (pseudobulk) or cell lineage differentiation (pseudotime), inference of cell-cell signalling
relationships (Jin et al., 2021), or construction of GRNs and species-specific patterns of gene regulation (Martik and Bronner, 2021).
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cell types (Trapnell et al., 2014), and cell-cell signalling
interactions between adjacent tissues (Jin et al., 2021).
Importantly, scRNA-seq data can be integrated with genome-
wide assays for Transposase-Accessible Chromatin (ATAC-seq)
to define regulatory elements active within their underlying cell
types (Buenrostro et al., 2015; Cao et al., 2018; Stuart et al., 2019),
or spatial transcriptomics to resolve cellular gene expression
profiles in individual cells (Xia et al., 2019) or developing
tissues in situ (Marx, 2021). Used in combination, these
techniques provide powerful methods to integrate
developmental biology with gene expression dynamics and
construction of species-specific GRNs.

Despite their potential, single-cell multi-omic approaches have
been scarcely applied in comparative evolutionary biology. Such
studies of “comparative evo-devo-omics” between taxa are
becoming rapidly viable to investigate the molecular
mechanisms underlying convergence, constraint, or innovation
in specific developmental processes (Shafer, 2019; Mahadevaiah
et al., 2020). However, the lack of these applied studies are largely
in response to significant technical limitations surrounding
integration and batch correction of disparate datasets,
specificity and stage-matching of tissues and homologous cell
types between disparate species, and quality of the underlying
genome and transcriptome—reviewed by (Shafer, 2019).
Nevertheless, these limitations can be mitigated through
application of tools aiding dataset integration, sequencing
depth and batch correction, as well as issues with
transcriptome quality and gene orthology (Butler et al., 2018;
Haghverdi et al., 2018). Furthermore, new applied methodologies
are being produced to better identify and match homologous cell
and tissue types (Tosches et al., 2018;Welch et al., 2019; Feregrino
and Tschopp, 2021) and their proportions between distantly
related species and datasets (Phipson et al., 2021). Given the
rapid rate by which these limitations are being resolved by the
community, comparative evo-devo-omics presents a powerful
platform to interrogate the cell, molecular and developmental
mechanisms underlying heterochronic NCC specification and
facial patterning between marsupial and eutherian mammals.

5.1 Mammalian Craniofacial Heterochrony at Single
Cell Resolution
Using the above examples, I present a hypothetical workflow for
detailed investigations into mammalian craniofacial

heterochrony and evolution through a comparative lens. First,
sampling of single-cell RNA, chromatin and spatial profiles of
stage-matched dunnart and mouse embryos (Figure 2A) will
allow generation of species-specific transcriptional atlases,
building on existing datasets (Soldatov et al., 2019) and
producing novel mammalian resources. The resulting
transcriptomic, epigenetic and spatial profiles can be clustered
and integrated for detection of homologous and novel cell types
(Tosches et al., 2018; Welch et al., 2019), conserved and disparate
gene co-expression modules (Feregrino and Tschopp, 2021), cell
type proportions (Phipson et al., 2021) and spatial quantification
of genes in situ (Figure 2B). From here, evolutionary hypotheses
can be tested through identification of dynamic transcriptional,
signalling, epigenetic and spatial relationships, revealing shared
(species-generic) and unique (species-specific) processes
underlying facial development and evolution (Figure 2C).
Through application of these approaches, we can begin to
determine how NCC gene regulatory architecture differs
between therian mammals, and their influence on
heterochronic craniofacial patterning. Ultimately, this will not
only provide valuable data into how diverse facial shapes are
produced during development, but also provide novel insights
into how mammalian craniofacial diversity arises during
evolution.
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