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Abstract

Aversive experiences can lead to complex behavioral adaptations including increased levels of 

anxiety and fear generalization. The neuronal mechanisms underlying such maladaptive 

behavioral changes, however, are poorly understood. Here, using a combination of behavioral, 

physiological and optogenetic approaches in mouse, we identify a specific subpopulation of 

central amygdala neurons expressing protein kinase C δ (PKCδ) as key elements of the neuronal 

circuitry controlling anxiety. Moreover, we show that aversive experiences induce anxiety and 

fear generalization by regulating the activity of PKCδ+ neurons via extrasynaptic inhibition 

mediated by α5 subunit-containing GABAA receptors. Our findings reveal that the neuronal 

circuits that mediate fear and anxiety overlap at the level of defined subpopulations of central 

amygdala neurons and demonstrate that persistent changes in the excitability of a single cell type 

can orchestrate complex behavioral changes.

Introduction

Anxiety disorders comprise a very prevalent and complex set of pathologies associated with 

inappropriate fear reactions in response to specific stimuli, but also with less specific, more 
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generalized states of apprehension and vigilance, i.e. anxiety1. The terms fear and anxiety 

refer to two ethologically different defensive behavioral programs. Studies in rodents 

indicate that depending on the physical distance to a predator, acute fear responses or more 

sustained anxiety behavior are observed1, 2. When presented with an immediate, imminent 

and predictable threat, rodents respond with acute freezing, flight or fight responses. In 

contrast, situations providing unspecific and diffuse cues for threat predictions, such as 

contextual stimuli or brightly illuminated and unprotected spaces, promote sustained 

avoidance and risk assessment behavior1. As a consequence, in animals and in humans, 

anxiety states are often associated with fear generalization3, 4, i.e. the generation of acute 

fear responses to stimuli, which do not predict an aversive outcome.

The neuronal circuits underlying the acquisition and expression of acute fear responses have 

been extensively studied using classical auditory fear conditioning as a model paradigm5, in 

which animals learn to associate an initially neutral conditioned stimulus (CS; a tone) with 

an aversive unconditioned stimulus (US; a foot shock). These studies indicate that the 

acquisition of conditioned fear responses depends on activity-dependent plasticity in the 

lateral (LA) and central (CEA) nuclei of the amygdala. The expression of acute fear 

responses depends on output projections from the CEA to downstream targets in the brain 

stem including the periaqueductal gray (PAG)5.

Recent studies combining mouse genetics and viral expression techniques with in vivo 

electrophysiological, pharmacogenetic and optogenetic approaches have begun to shed light 

on the exquisite anatomical and functional organisation of the neuronal circuitry mediating 

and controlling the acquisition, expression, and extinction of conditioned fear responses5,6. 

In the CEA, for instance, distinct cell types have been identified based on functional and 

genetic criteria7-11. In the lateral subdivision of CEA (CEl), PKCδ+ neurons exhibit 

inhibitory CS responses (CSoff responses)8,9. PKCδ+ neurons receive local inhibitory inputs 

from CS-activated PKCδ- neurons and in turn make inhibitory synaptic connections onto 

PAG-projecting CEA output neurons thereby gating acute CEA output through dis-

inhibition8,9.

In contrast to fear circuits, the neuronal circuitry mediating sustained anxiety is poorly 

understood6. In vivo pharmacological and behavioural studies suggest an important role for 

the so-called “extended amygdala”, an extensively interconnected system comprising the 

bed nucleus of the stria terminalis (BNST), the CEA, and parts of the basal forebrain12. 

Even though it has been suggested that acute fear and sustained anxiety responses are 

mediated by separate neuronal systems, strong anatomical connections between the CEA 

and the BNST exist, and anxiety behavior can be regulated by optogenetic manipulations of 

both basolateral amygdala (BLA) and BNST12-14 inputs to the CEA. In vivo single unit 

recordings in the CEA showed that fear conditioning induced increases in the spontaneous 

activity of CSoff neurons, which largely overlap with PKCδ+ neurons, strongly correlate 

with fear generalization8,9, a hallmark of anxiety states. This suggests that CEA PKCδ+ 

neurons might not only be involved in gating acute conditioned fear responses, but also in 

mediating sustained states of anxiety. However, the causal contribution of PKCδ+ neuron 

activity to fear generalization and the underlying mechanism of their change in firing 

behavior remains unknown.
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Results

PKCδ+ neurons regulate anxiety behavior

Fear generalization often correlates with states of anxiety4. Consistent with this, 24 hours 

after differential fear conditioning, we found a negative correlation between fear 

generalization and time spent on the open arms of the Elevated Plus Maze (EPM), a standard 

behavioral test of rodent anxiety (Fig. 1)13-15.

To test whether rapid and reversible modulation of the spontaneous activity of PKCδ+ 

neurons in vivo is sufficient to drive changes in fear generalization, we used an optogenetic 

approach. PKCδ-Cre mice were bilaterally injected with conditional recombinant adeno-

associated virus (rAAV) vectors expressing either Channelrhodopsin 2 (ChR2) or 

Archaerhodopsin (ARCH) in a Cre-dependent manner (Fig. 2a-i; Supplementary Fig. 1). 

Four to five weeks after injection, mice underwent discriminative fear conditioning using a 

tone (CS+) paired with footshock (US) and another, non-reinforced tone (CS-) (Fig. 2j-k). 

Twenty-four hours later, retrieval of fear memory, assessed by tone-induced freezing 

behavior, was tested in the presence or absence of a constant 30 s light pulse, which induced 

a marked and sustained increase in the firing rate of PKCδ+ neurons (Fig. 2; Supplementary 

Fig. 1). We found that consistent with the previously observed correlation between fear 

generalization and activity of PKCδ+ neurons8, blue light stimulation of PKCδ+ neurons 

increased fear generalization, calculated as the ratio of CS- and CS+ freezing (Fig. 2k).

Next, we examined whether optogenetic manipulation of PKCδ+ neurons would also cause 

changes in EPM behavior in naïve animals. In keeping with the effect on fear generalization, 

blue light stimulation of PKCδ+ neurons decreased the relative time spent on open arms, 

corresponding to an anxiogenic effect, whereas yellow light stimulation was anxiolytic (Fig. 

2m,n; Supplementary Fig. 2). To further support the notion that increasing or decreasing the 

spontaneous activity of PKCδ+ neurons has anxiogenic or anxiolytic effects, respectively, 

we assessed light-induced behavioral changes in the Open Field Test (OFT), in which 

anxious animals tend to avoid the center area of an open field arena13,14. Consistent with the 

effect on EPM behavior, we observed that in naïve animals, even though blue light 

stimulation of PKCδ+ neurons decreased the overall locomotion without increasing freezing 

behavior (Supplementary Fig. 2), this resulted in a reduction in the number of visits to the 

center area (per unit track length) and to a decrease in the overall time spent in the center 

area (Fig. 2o,p; Supplementary Fig. 2). Conversely, optogenetic inhibition of PKCδ+ 

neurons resulted in increased locomotion, an increase in the number of visits to the center 

area and an increase in the overall time spent in the center area (Fig. 2o,p; Supplementary 

Fig. 2). Taken together, these data suggest that basal activity of PKCδ+ neurons in CEA 

exerts bidirectional control over anxiety behavior. Moreover, given that in the absence of 

any optogenetic intervention, the degree of fear generalization correlates with both the 

spontaneous activity of PKCδ+ neurons and with anxiety behavior8, suggesting that, under 

physiological conditions, the activity of PKCδ+ neurons might be actively regulated by 

endogenous mechanisms.
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Extrasynaptic inhibition regulates PKCδ+ neurons

Because the neuronal circuitry of the CEA is comprised of spontaneously active GABAergic 

neurons, we hypothesized that, similar to the cerebellum, activation of extrasynaptic 

GABAA receptors (GABAARs) may be an important factor controlling the excitability and 

spontaneous activity of CEA neurons16,17. Whole-cell patch clamp recordings from 

identified PKCδ+ neurons in acute CEA slices revealed the existence of a tonic GABAA 

receptor-mediated conductance which could be blocked by picrotoxin (100 μM), but not 

with the selective competitive GABAAR antagonist SR95531 (2-(3-Carboxypropyl)-3-

amino-6-(4-methoxyphenyl)pyri-dazinium bromide; 1 – 50 μM)18, or with the selective 

GABABR antagonist CGP 52432 (1 – 50 μM)(Fig. 3a; Supplementary Fig. 3). The charge 

transfer mediated by tonically active, extrasynaptic GABAARs, as measured by a change in 

the holding current, was substantially larger compared to the charge transfer of synaptically 

activated GABAARs, as measured by the blockade of spontaneous inhibitory postsynaptic 

currents (sIPSCs)(Fig. 3b). Consistent with this marked difference in charge transfer, 

blocking synaptic GABAARs had no significant effect on the excitability of PKCδ+ neurons, 

whereas blocking both synaptic and tonically active extrasynaptic receptors with PTX 

resulted in a robust increase in spontaneous firing rate recorded in cell-attached 

configuration (Fig. 3c). Additional whole-cell recordings of PKCδ+ neurons revealed that 

blockade of extrasynaptic, but not synaptic, GABAARs led to an increase in input resistance, 

a slight depolarising shift in the resting membrane potential, and an increase in the input-

output function as measured by depolarising current steps or by random current fluctuations 

(Supplementary Fig. 3). These data support the idea that a tonic extrasynaptic GABAAR 

conductance is an endogenous mechanism regulating basal PKCδ+ neuron activity.

Our observation, that extrasynaptic inhibition in CEA PKCδ+ neurons was largely 

insensitive to the competitive GABAAR antagonist SR95531 (1 – 50 μM) suggests either 

that extrasynaptic GABAARs exhibit a very high affinity for GABA18,19 and/or that they 

can open in a spontaneous, ligand-independent manner20,21. Consistent with the latter 

scenario, we found that SR95531 (20 μM) partially antagonised the inverse agonist effect of 

bicuculline (20 μM) on the holding current20 (Supplementary Fig. 4). To further address 

whether extrasynaptic GABAARs in CEA PKCδ+ neurons could additionally report spill-

over of synaptically released GABA, we blocked action-potential-mediated release with 

tetrodotoxin (TTX; 1 μM). Application of TTX reduced the sIPSC frequency in PKCδ+ 

neurons and resulted in a slight reduction in extrasynaptic inhibition, which correlated with 

the effect on sIPSC frequency (Supplementary Fig. 4). These findings suggest that both 

ligand independent receptor opening and GABA spill over contribute to endogenous 

extrasynaptic GABAAR inhibition in these neurons.

Extrasynaptic GABAARs in other brain areas have been shown to contain α4/δ, α6/δor 

α5subunits22. Because α5-containing GABAARs (α5-GABAARs) are abundant in CEA23, 24, 

and their expression level decreases both after fear conditioning24 and in a mouse model of 

increased trait anxiety25, we hypothesised that α5-GABAARs contribute to extrasynaptic 

inhibition in CEA PKCδ+ neurons. Immunohistochemical double labeling of CEA sections 

from PKCδ+-Cre-CFP mice with an anti-α5 subunit antibody and an anti-CFP antibody9 

revealed that about 70% of the PKCδ+ neurons expressed the α5 subunit (Supplementary 
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Fig. 5). No α5 immunohistochemical labeling could be detected in CEA sections obtained 

from mice lacking the gene encoding the α5 subunit (Gabra5-/-) (Supplementary Fig. 5). 

Next, to test for the presence of functional α5-GABAARs in CEA PKCδ+ neurons, we 

applied two distinct α5 inverse agonists. Both L-655,708 (50 nM – 50 μM) and the more 

specific inverse agonist methyl (8-chloro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-α]

[1,4] benzodiazepin-3-yl)methyl ether or PWZ-029 (100 nM - 1 μM)22 significantly reduced 

the extracellular GABAAR conductance (Fig. 3d, Supplementary Fig. 6). In contrast, the 

neurosteroid 3α,5α- tetrahydrodeoxycorticosterone (THDOC; 10 – 100 nM), a modulator of 

δ-containing GABAARs, and Zolpidem (20 – 300 nM), an agonist of α1-containing 

GABAARs, had no significant effect (Supplementary Fig. 6). The effect of PWZ-029 (1 μM) 

was specific for α5-GABAARs, because it was absent in PKCδ+ neurons recorded in slices 

obtained from mice lacking α5 receptors in PKCδ+ neurons (α5
(-/-):PKCδ/CrexGabra5fl/fl 

mice)(Fig. 3d). Similar to PTX, application of PWZ-029 increased the spontaneous activity 

of PKCδ+ neurons recorded in the cell-attached configuration in acute CEA slices (Fig. 3e).

Consistent with the notion that α5-GABAARs underlie a tonically active conductance 

mediated by extrasynaptic receptors, two different inverse agonists of α5-GABAARs, 

L-655,708 and PWZ-029, had no effect on sIPSC frequency or amplitude in PKCδ+ neurons 

(Supplementary Fig. 6). To unequivocally demonstrate the extrasynaptic localization of α5-

GABAARs in PKCδ+ neurons, we performed a pre-embedding electron microscopical 

analysis. Consistent with the electophysiological data, this electron microscopical analysis 

revealed that immunometal particles labelling α5-GABAARs in identified PKCδ+ neurons 

localized predominantly to extrasynaptic dendritic regions with very little synaptic labelling 

(Fig. 3f). Compared to PKCδ+ neurons, PKCδ- neurons exhibited significantly higher levels 

of extrasynapticα5-GABAARs as measured with electrophysiological or electron 

microscopical approaches (Supplementary Fig. 7).

Finally, we performed extracellular single unit recordings in the CEA of freely moving 

animals8 and locally applied PWZ-029 using glass micro pipettes. Local application of 

PWZ-029 significantly increased the spontaneous firing rate of CEA units compared to 

vehicle controls (Supplementary Fig. 8) providing further evidence that endogenous α5 

GABAAR-mediated inhibition controls spontaneous activity of CEA neurons in vivo.

Experience-dependent reduction of extrasynaptic inhibition

To test whether the previously described8, fear conditioning-induced increases in PKCδ+ 

neuron firing rate are paralleled by changes in endogenous, functional extrasynaptic 

GABAAR-mediated inhibition, we compared extrasynaptic GABAAR conductance in 

PKCδ+ neurons recorded in ex vivo slices obtained from fear conditioned animals or from 

control animals, which were only exposed to non-reinforced CSs (Fig. 4a). PKCδ+ neurons 

recorded from animals subjected to CS-US pairings exhibited a marked reduction in the total 

extrasynaptic GABAAR conductance and in the tonic conductance mediated by α5-

containing receptors, with no changes in sIPSC frequency or amplitude, nor in the tonic 

conductance mediated by δ-containing receptors (Fig. 4b,c; Supplementary Fig. 9). In 

addition, this reduction in α5-GABAAR-mediated extrasynaptic inhibition was cell type-

specific, as PKCδ- neurons exhibited the opposite effect (Supplementary Fig. 9).
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A similar reduction in α5-GABAAR-mediated extrasynaptic inhibition in PKCδ+ neurons 

along with increased EPM anxiety was observed in animals exposed to a contextual fear 

conditioning paradigm (US only; Supplementary Fig. 9), indicating that these changes are 

not specifically induced by auditory CS-US associations acquired during cued fear 

conditioning, but are rather a consequence of US exposure. Importantly, in animals 

subjected to discriminative cued or contextual fear conditioning, we observed a striking 

negative correlation between fear generalization, as measured by CS+/CS- or context 

discrimination, and the amplitude of the extrasynaptic GABAAR conductance (Fig. 4d; 

Supplementary Fig. 9). These data suggest that an experience-dependent reduction in 

extrasynaptic inhibition of PKCδ+ neurons may contribute to fear generalization at the 

behavioral level.

Reducing α5-GABAAR expression is anxiogenic

We therefore directly examined whether interfering with the expression of the α5 subunit in 

CEA would be causally related to fear generalization. First, we used a brain area specific 

approach by injection of a pAAV expressing Cre-recombinase bilaterally into CEA of 

conditional α5-floxed animals (α5
(fl/fl))(Fig. 5a). Whole-cell recordings from AAV-Cre 

infected neurons in slices obtained from α5
(fl/fl) animals, α5-GABAAR-mediated 

extrasynaptic inhibition was completely abolished, whereas it was normal in neighboring 

non-infected neurons, or in infected neurons in slices from α5
(+/+) animals (Fig. 5b). 

Behavioral analysis of pAAV-Cre infected α5
(fl/fl) animals showed that genetic deletion of 

α5-GABAARs in CEA was anxiogenic as measured by increased EPM anxiety and enhanced 

fear generalization (Fig. 5c,d). Even though these data are consistent with the notion that α5-

GABAARs regulate anxiety by controlling the activity of PKCδ+ neurons, an obvious caveat 

of this genetic approach is the fact that it is not cell type-specific. Given that upon fear 

conditioning, the α5-GABAAR-mediated extrasynaptic conductance changes in opposite 

directions in PKCδ+ and PKCδ- cells, and consistent with the notion that PKCδ+ cells 

thought to be largely downstream of PKCδ- cells8,9, this also suggests that the conductance 

decrease in PKCδ+ neurons is dominant with regard to the manipulation of PKCδ- cells, and 

possibly sufficient to induce anxiety behavior.

In order to manipulate α5 subunit expression in a brain area- and cell type-specific manner, 

we devised a Cre-conditional shRNA construct targeting Gabra5 mRNA (Supplementary 

Fig. 10). In HEK293T cells, expression of Gabra5-shRNA strongly reduced Gabra5 protein 

levels (Supplementary Fig. 10). We then specifically expressed this shRNA construct in 

CEA PKCδ+ neurons by local injection of a DIO-AAV (DIO, double floxed inverted open 

reading frame) expressing the Gabra5-shRNA or scrambled control shRNA into the CEA of 

PKCδ-Cre mice (Fig. 6a). Comparison of the remaining extrasynaptic GABAAR 

conductance in PKCδ+ neurons infected with Gabra5-shRNA or with scrambled control 

shRNA revealed that expression of the Gabra5-shRNA strongly decreased both total and α5-

mediated extrasynaptic inhibition (Fig. 6b-d), further indicating that extrasynaptic GABAAR 

currents are predominantly mediated by α5-containing GABAARs in these neurons.

To test whether reducing the expression of α5-GABAAR subunits specifically in CEA 

PKCδ+ neurons impacts anxiety behavior and fear generalization, we bilaterally injected 
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PKCδ-Cre animals with DIO-AAV Gabra5-shRNA or scrambled control shRNA. Four 

weeks after injection, mice underwent EPM and open field behavior testing and were 

subsequently subjected to discriminative fear conditioning. Animals injected with Gabra5-

shRNA spent significantly less time on the open arms of the EPM, exhibited fewer center 

crossings and spent less time in the center area in the OFT, and showed enhanced fear 

generalization compared to animals injected with a vector expressing control shRNA (Fig. 

6e-g; Supplementary Fig. 2), thus indicating that reducing α5-GABAAR expression in 

PKCδ+ neurons was sufficient to cause increased anxiety behavior.

Discussion

Together, our results identify the regulation of cellular excitability through extrasynaptic 

inhibition mediated by α5-GABAARs in CEA PKCδ+ neurons as an important mechanism 

for the orchestration of a behavioral program associated with generalized fear and sustained 

anxiety. In principle, regulation of extrasynaptic inhibition might be achieved by changes in 

the numbers and/or properties of α5-GABAARs expressed by CEA PKCδ+ neurons. 

Alternatively, alterations in ambient GABA concentration might also contribute. However, 

given our observations that part of the tonic conductance was mediated by spontaneous 

ligand-independent receptor openings, that fear conditioning induced opposite changes in 

distinct cell types, and that there are α5-GABAARs associated with intracellular 

compartments, an experience-dependent change in the expression and/or trafficking of α5-

GABAARs is the most parsimonious explanation. Previous studies involving genetic or 

systemic pharmacological manipulations leading to reduced or completely absent α5-

mediated extrasynaptic inhibition revealed an improved performance in a number of 

cognitive learning tasks and mild anxiogenic behavior22,26-28. Given that fear conditioning 

and trait anxiety are associated with decreased Gabra5 mRNA levels24,25, this suggests that 

the cell type-specific regulation of α5-GABAARs controls the excitability of CEA PKCδ+ 

neurons in an experience-dependent manner.

Our present findings demonstrate that PKCδ+ neurons are a central gateway not only to the 

circuitry controlling acute fear responses8,9, but also to the circuitry underlying sustained 

anxiety. Moreover, our results suggest that regulation of the cellular excitability of PKCδ+ 

neurons, or upstream CEA neurons, could be a general mechanism by which external or 

internal stimuli, such as aversive experience, stress, nausea, satiety, or drugs of abuse such 

as ethanol, modulate complex behavioral states including anxiety and feeding 

behavior23,29,30. This might involve additional, α5-GABAAR-independent mechanisms, 

such as the regulation of potassium channels through neuropeptide- or neuromodulator-

activated G-protein coupled receptors29.

Studies on cerebellar granule cells indicate that the level of tonic inhibition modulates the 

gain, and hence the signal-to-noise ratio, of sensory-evoked phasic responses16,17,31. Future 

experiments will have to address how tonic inhibition mediated by extrasynaptic GABAARs 

in CEA interacts with phasic responses elicited by acute conditioned or unconditioned 

sensory stimuli. A further important open question is, whether the phasic and sustained 

signals are read out by the same population of downstream neurons, or by different 

populations of neurons, possibly even located in different downstream brain regions.
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In conclusion, our study not only identifies a molecular mechanism underlying the 

regulation of an entire repertoire of concerted behavioral changes associated with anxiety 

states, but also provides a defined cellular entry point into the neuronal circuitry underlying 

a complex behavioral state such as anxiety.

Methods

Animals

Two to three month-old male wild-type C57BL6/J (Harlan Ltd) and mutant mice (all with 

C57BL6/J genetic background) were individually housed for 7 days before behavioral 

experiments prior to ex vivo experiments and anxiety tests. Mice were kept under a 12 h 

light/dark cycle, and provided with food and water ad libitum. For optogenetic and shRNA 

experiments, animals were housed one month before behavioral testing and 

electrophysiological recordings to allow for virus expression. Experiments were performed 

3-11 hours after lights on. All animal procedures were executed in accordance with 

institutional guidelines and were approved by the Veterinary Department of the Canton of 

Basel-Stadt.

Behavior

Auditory and contextual fear conditioning—Fear conditioning and fear retrieval took 

place in two different contexts (context A and B). The conditioning and retrieval boxes and 

the floor were cleaned before and after each session with 70% ethanol or 1% acetic acid 

before and after each session, respectively. To score freezing behaviour, an automatic 

infrared beam detection system placed on the bottom of the experimental chambers 

(Coulbourn Instruments) was used. Mice were considered to be freezing if no movement 

was detected for 2 s and the measure was expressed as a percentage of time spent freezing. 

To ensure that our automatic system scores freezing rather than just immobility, we 

previously compared the values obtained with those measured using a classical time-

sampling procedure during which an experimenter blind to the experimental conditions 

determined the mice to be freezing or not freezing every 2 s (defined as the complete 

absence of movement except for respiratory movements). The values obtained were 95% 

identical and the automatic detection system was therefore used throughout the experimental 

sessions. Tones were presented as CS+ and the CS− (total CS duration of 30 s, consisting of 

50 ms pips repeated at 0.9 Hz, 2 ms rise and fall; pip frequency: 7.5 kHz or white noise, 80 

dB sound pressure level). Discriminative fear conditioning was performed on day 1 by 

pairing the CS+ with a US (1-s foot shock, 0.6 mA, 5 CS+/US pairings; inter-trial interval: 

20–180 s) (CS-US group). The onset of the US coincided with the offset of the CS+. The 

CS− was presented after each CS+/US association but was never reinforced (5 CS− 

presentations, inter-trial interval: 20–180 s). The frequencies used for CS+ and CS− were 

counterbalanced across animals. On day 2, conditioned mice were submitted to fear retrieval 

in context B, during which they received four presentations of the CS− and the CS+ each. 

Control animals (CS only) were treated in the same manner but were not exposed to the US 

and they did not freeze during exposure of the tones (Fig. 4a, b). The US only group was 

exposed to 5 USs. Auditory fear generalization was quantified by calculating the ratio 

between the freezing values during the CS- and CS+ presentations. Contextual fear 
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generalization was quantified by calculating the ratio between the freezing values during 

exposure to a novel context CTX-, and to the conditioning context CTX+.

Open field test—All anxiety tests (open field and elevated plus maze) shown in figure 1 

and 4 were performed before subjecting animals to fear conditioning paradigms. Mice were 

always placed at the periphery of an open field arena (50 cm × 50 cm) placed in a larger, 

sound-attenuated box. Light intensity inside the open field arena was 1.2 LUX. Movements 

were monitored by a camera (Logitech) located on top of the arena. AVI files were analysed 

using ViewerII 5.1 software (BIOBSERVE GmbH). The open field was divided in center 

area (20 cm × 20 cm) and peripheral area. Total track length was calculated with the center 

of the animal's body as the reference while the number of visits to the center area was scored 

when all four paws were located in the center area. Behaviour was scored and statistically 

analysed during the first 5 min.

Elevated plus maze (EPM)—The EPM was composed of two arms enclosed by light 

gray walls and two open arms (length: 230 mm each; elevated 300 mm above ground). Mice 

were placed in the center area between the arms and their behavior was monitored for 10 

min with a camera (Logitech, Newark, CA, USA) placed on the top of the maze. After every 

behavioral session, the maze was cleaned with an ethanol-based disinfectant solution 

(Fugaten®-Spray, Lysoform Dr. Hans Roseann GmbH, Germany). This solution has a 

different smell than ethanol or acetic acid used for cleaning the fear conditioning context. 

Video tracking software (ViewerII 5.1 software, BIOBSERVE GmbH) was used to track the 

animal's location. Compartment visits were scored only when the animal had all the four 

paws in one area. For all the behavioral sessions, the experimental groups were tested in an 

interleaved manner in order to avoid batch effects.

Virus injections and optogenetic experiments

Deeply anaesthetised animals (Isoflurane) were fixed in a stereotactic frame (Kopf 

Instruments) and the skin above the skull was cut. Glass pipettes (tip diameter 10–20 μm) 

connected to a Picospritzer III (Parker Hannifin Corporation) were lowered with a 

Micropositioner (Kopf Instruments) to a depth of 4 mm. About 300 nl virus solution was 

pressure-injected into CEl. For optical activation of PKCδ+ neurons, animals were injected 

into CEl with an rAAV 2/7 EF1α∷DIO-ChR2(H134R)-2A-NpHR-2A-Venus (UPenn, 

Vector Core), at −1.2 mm posterior (AP) and ±2.9 mm lateral to bregma (LAT) at a depth of 

−4 mm (D/V)32. For optogenetic inhibition, animals were injected with rAAV 2/5 

CBA∷DIO-ARCH-GFP. To visualize PKCδ+ neurons in PKCδ-Cre animals, some animals 

were co-injected with an rAAV 2/1 CAG∷DIO-tdTomato.

Optic fibers with a diameter of 200 μm (Thorlabs GmbH) were chronically implanted 

bilaterally above CEl (bregma coordinates: AP, -1.2; LAT, +/- 2.9; D/V, -3.5) at a depth of 

−3.5 mm (S1) and optical connectors were fixed on the skull with cyanoacrylate glue (Ultra 

Gel©, Henkel, Düsseldorf, Germany) and dental cement (Paladur©, Heraeus, Hanau, 

Germany). Mice were given two weeks to recover from surgery. Afterwards they were 

handled daily for five consecutive days (five min each day) to habituate them to the 

behavioral and optogenetic experimental procedures.
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For the fear generalization experiment, mice were placed into a behavioral context B and the 

implanted optic fibers were connected to a blue laser (λ = 473 nm, 100 mW, Extreme 

Lasers) by an optic fiber (Thorlabs GmbH) attached to the connector with a cap nut. During 

retrieval, the mice received a block of 8 CS- and 8 CS+ and eight 30-s pulses of blue light 

were given for four of each tone. Light stimulation during CSs was intermixed for each 

animal to avoid artifact effects. The light started 50 ms before the first pip and ended 50 ms 

after each pip. Freezing with and without light stimulation was quantified as described 

above. For elevated plus maze and open field tests, optical fibers were connected to the 

implanted optical connectors and the animals were monitored for 18-20 min while light 

stimulation was delivered 3 times for 3 min with 3 min intervals. Light power at the tip of 

the optical fiber was ranging between 18-20 mW. After the experiment, optic fibers were 

removed and animals were perfused with PFA (4%) for histological analysis of the injection 

site as previously described5. The brain was removed and cut into 80 μm coronal slices.

Electrophysiology

Slice electrophysiology—Standard procedures were used to prepare 300 μM thick 

coronal slices from 6- to 12-week-old male wild-type, PKCδ-Cre, and Gabra5-/- mice. 

Briefly, the brain was dissected in ice-cold artificial cerebrospinal fluid (ACSF), mounted on 

an agar block, and sliced with a vibrating-blade microtome (HM 650 V, Carl Zeiss, Jena, 

Germany) at 4°C. Slices were maintained for 45 min at 37°C in an interface chamber 

containing ACSF equilibrated with 95% O2/5% CO2 and containing the following (in mM): 

124 NaCl, 2.7 KCl, 2 CaCl2, 1.3 MgCl2, 26 NaHCO3, 0.4 NaH2PO4, 18 glucose, 4 

ascorbate. 15 min after incubation, slices were transferred to another chamber for at least 60 

min at room temperature in another physiological ACSF (pACSF) containing the following 

(in mM): 125 NaCl, 3.5 KCl, 1.2 CaCl2, 1 MgSO4, 26 NaHCO3, 1.25 NaH2PO4, 11 D-

glucose. Recordings were performed with pACSF in a recording chamber at a temperature 

of 35°C at a perfusion rate of 1-2 ml/min. Neurons were visually identified with infrared 

video microscopy using an upright microscope equipped with a 40× objective (Olympus, 

Tokyo, Japan). Patch electrodes (3–5 MΩ) were pulled from borosilicate glass tubing. For 

current clamp experiments, patch electrodes were filled with a solution containing the 

following (in mM): 120 K-gluconate, 20 KCl, 10 HEPES, 10 phosphocreatine, 4 Mg-ATP, 

and 0.3 Na-GTP (pH adjusted to 7.25 with KOH, respectively, 295 mOsm). The phasic and 

extrasynaptic GABAergic postsynaptic currents were recorded using an internal solution 

containing the following (in mM): 110 CsCl, 30 K-gluconate, 1.1 EGTA, 10 HEPES, 0.1 

CaCl2, 4 Mg-ATP, 0.3 Na-GTP (pH adjusted to 7.3 with CsOH, 280 mOsm) and 4 N-(2,6-

Dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314; Tocris-Cookson, 

Ellisville, MO). For cell-attached recordings, pACSF was used inside the recording pipette. 

To exclude glutamatergic inputs, CNQX (6-cyano-7-nitroquinoxaline-2,3-dione, 10 μM: 

AMPA receptor antagonist) and (R)-CPP ((RS)-3-(2-Carboxypiperazin-4-yl)-propyl-1-

phosphonic acid, 10 μM: NMDA receptor antagonist) were added to the pACSF. For all 

patch-clamp recordings, only one cell was recorded per slice to avoid contamination from 

prior drug applications. Whole cell patch-clamp recordings were excluded if the access 

resistance exceeded 13 MΩ and changed more than 20% during the recordings. Seal 

resistance, for cell-attached recordings, was around 20 to 50 MΩ and data were excluded if 

it changed more that 20% from the initial value. Data were recorded with a MultiClamp 
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700B (Molecular Devices) amplifier, filtered at 0.2 kHz, and digitised at 10 kHz. Data were 

acquired and analysed with Clampex 10.0, Clampfit 10.0 (Molecular Devices) and the Mini 

Analysis Program (Synaptosoft, Decatur, GA). All chemicals for the internal and external 

solutions were purchased from Fluka/Sigma (Buchs, Switzerland). Glutamatergic blockers 

were purchased from Tocris Bioscience (Bristol, UK). TTX was from Latoxan (Valence, 

France). Firing frequency elicited by injection of square current pulses shown34 was 

normalised by the maximum value evoked by the maximum current step for each cell.

Single unit recordings and in vivo pharmacology—Single unit recordings and in 

vivo pharmacology were performed in chronically implanted animals. Three to four-month 

old mice were anesthetised with isoflurane (induction: 4%, maintenance: 1.5%, Attane™, 

Minrad Inc., Buffalo, NY, USA) in oxygen-enriched air (Oxymat 3©, Weinmann, Hamburg, 

Germany) and fixed in a stereotaxic frame (Kopf Instruments, Tujunga, USA). Core body 

temperature was maintained at 36.5°C by a feed-back controlled heating pad (FHC, 

Bowdoinham, ME, USA). Analgesia was provided by local injection of ropivacain (200 μl 

of 2 mg/ml, s.c., Naropin©, AstraZeneca, Switzerland) and systemic injection of meloxicam 

(100μl of 5mg/mL, i.p., Metacam©, Boehringer-Ingelheim, Ingelheim, Germany). Mice 

were unilaterally implanted in the CEA with a custom built injectrode consisting of a multi-

wire electrode attached to a guide cannula (26 gauge, with dummy screw caps, Plastics One, 

Roanoke, USA) and aimed at the following coordinates: 1.3 mm posterior to bregma; ±2.9 

mm lateral to midline; and 4 mm to 4.1 mm deep from the cortical surface. The electrodes 

consisted of 16 individually insulated, gold-plated nichrome wires (13 μm inner diameter, 

impedance 30–100 kΩ, Sandvik, Stockholm, Sweden) contained in a 26-gauge stainless steel 

guide canula and attached to a 18-pin connector (Omnetics Connector Corporation, 

Minneapolis, MN, USA). Implants were fixed to the skull with cyanoacrylate glue (Ultra 

Gel©, Henkel, Düsseldorf, Germany) and dental cement (Paladur©, Heraeus, Hanau, 

Germany). Mice were given one week to recover from surgery, during which they were 

handled daily to habituate them to the recording and injection procedures.

Ten minutes before injections, 33 gauge stainless steel injectors attached to 2.5 ml Hamilton 

syringes were inserted into the guide canulae. Electrodes were connected to a headstage 

(Plexon Inc, Dallas, TX, USA) containing sixteen unity-gain operational amplifiers. The 

head stage was connected to a 16-channel computer-controlled preamplifier (gain ×100, 

band-pass filter from 150 Hz to 9 kHz, Plexon). Neuronal activity was digitised at 40 kHz 

and band-pass filtered from 250 Hz to 8 kHz, and was isolated by time–amplitude window 

discrimination and template matching using a Multichannel Acquisition Processor system 

(Plexon Inc, Dallas, TX, USA). Perfusion of Vehicle (78 ng DMSO in ACSF, AMRESCO, 

USA) or PWZ (10 μM PWZ-029 in ACSF, Prof. James Cook, University of Wisconsin)was 

performed using a micro-infusion pump (Stoelting, Wood Dale, IL, USA) and consisted of 

an injection volume of 1 μl delivered within 10-20 min. After completion of the experiment, 

recording sites were marked with electrolytic lesions before mice were transcardially 

perfused with 4% paraformaldehyde in phosphate-buffered saline (PFA), their brains 

extracted and post-fixed in PFA overnight. For histological verification of the injection site, 

80 μm coronal brain sections were made on a vibratome (Leica Microsystems) and imaged 

on a stereo microscope (Leica Microsystems).

Botta et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Single-unit spike sorting was performed using an Offline Sorter (Plexon). Principal 

component scores were calculated for unsorted waveforms and plotted on three-dimensional 

principal component spaces, and clusters containing similar valid waveforms were manually 

defined. A group of waveforms was considered to be generated from a single neuron if it 

defined a discrete cluster in principal component space that was distinct from clusters for 

other units and if it displayed a clear refractory period (>1 ms) in the auto-correlogram 

histograms. To avoid analysis of the same neuron recorded on different channels, we 

computed cross-correlation histograms (NeuroExplorer, Nex Technologies, Madison, AL, 

USA). If a target neuron presented a peak of activity at a time that the reference neuron fires, 

only one of the two neurons was considered for further analysis.

Optogenetic identification of single units in vivo—Optogenetic identification of 

single units was carried out as already described33. Briefly, PKCδ-Cre mice were injected 

with either AAV 2/5 EF1α DIO ChR2(H134R)-mCherry, AAV 2/5 EF1α DIO 

ChR2(H134R)-eYFP or AAV 2/5 CAG FLEX ARCH-GFP as described above. After two 

weeks, the mice were implanted with optrodes allowing for simultaneous single unit 

recordings and light application. The recordings were performed after a minimum recovery 

period of 2 weeks. Units were isolated using standard techniques (see above). Following unit 

isolation, brief pulses of blue (≥60 × 10ms and 60 × 300ms for ChR2) or yellow light (120 × 

300ms; for ARCH) were given to identify PKCδ+ neurons in the recorded population. The 

neurons were classified as PKCδ+, if they responded to the blue light with an increase in 

firing (z-score ≥ 2) within less than 8 ms after light onset.

In order to select the most efficient optogenetic stimulation protocols, we performed in vivo 

single unit recordings from optogenetically identified PKCδ+ neurons and subsequently 

compared ChR2-mediated excitation using either continuous or pulsed30 light stimulation 

protocols. In 5 PKCδ+ neurons from 2 animals, we observed that continued stimulation with 

blue light (> 3 min, 20 mW) induced a marked and sustained increase in firing rate (light 

off: 2.4 ± 1.2 Hz; light on: 8.5 ± 3.9 Hz; z-score light on vs. light off: 78.4). In contrast, 

pulsed stimulation (10 ms pulses, 10 Hz, 20 mW) induced a much smaller increase in firing 

rate (light off: 1.3 ± 0.7 Hz; light on: 2.7 ± 0.8 Hz; z-score light on vs. light off: 27.2, 4 

neurons from 1 animal), which is below the endogenous firing rate of CSoff neurons, which 

strongly overlap with PKCδ+ neurons, in fear conditioned animals (6.1 ± 1.4 Hz, n = 41)8.

Immunohistochemistry

Mice were transcardially perfused with phosphate buffered saline (PBS) followed by 4% 

paraformaldehyde (PFA) in PBS. For the staining of GABAA receptor α5 subunit, brains 

were post-fixed in PFA for 4 hrs at 4°C and then transferred to 30% sucrose in PBS. The 

brains were cut into 50 μm thick coronal slices on a vibratome (Leica Microsystems, 

Heerbrugg, Switzerland). Free-floating sections were rinsed in PBS. Subsequently, sections 

were incubated in blocking solution (20% bovine serum albumin (BSA) and 0.5% Triton 

X-100 in PBS (PBST)) for 2 hrs. Sections were then incubated in blocking solution (3% 

BSA and 0.5% PBST) containing the primary polyclonal rabbit anti-α5 antibody (5 μg/ml, 

gift from W. Sieghart, Medical University of Vienna, Vienna, Austria)33,34 and goat anti-

GFP antibody for PKCδ+-Cre-CFP (1:1000, abcam) for 48 hrs at 4°C. Subsequently, 
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sections were washed with PBS three times (5 min each) and incubated for 4 hrs at room 

temperature with fluorescent donkey anti-rabbit alexa fluor 594 and donkey anti-goat alexa 

fluor 488 (Invitrogen; both are 1:500 in 3% BSA and 0.5% PBST). Finally, immuno-labeled 

sections were rinsed three times with PBS, mounted on gelatin-coated slides, dehydrated and 

coverslipped6. The brains from wild type and Gabra5-/- mice were treated with the same 

staining procedures and imaged with the same settings using a LSM 700 confocal 

microscope (Carl Zeiss AG, Germany). For the other stainings, the brains were post-fixed in 

PFA for 4 hrs at 4°C and then cut into 80 μm thick coronal slices in PBS. Sections were then 

incubated in blocking solution (3% BSA and 0.5% PBST). The immunostaining for PKCδ+-

Cre-CFP were performed on free-floating brain sections by overnight incubation at 4°C with 

goat anti-GFP antibody (1:1000, abcam) and then 2 hrs incubation at room temperature with 

anti-goat alexa 488. The endogenous PKCδ+were stained by overnight incubation with 

mouse anti-PKCδ+ antibody (1:500, BD Transduction Laboratories) at 4°C and then 

overnight incubation at 4°C with goat anti-mouse alexa 568. The NeuN were stained by 

overnight incubation at 4°C with mouse anti-NeuN antibody (1:500, Millipore) and then 

overnight incubation at 4°C with goat anti-mouse alexa 568. Finally, slices were imaged 

with a LSM 700 confocal microscope (Carl Zeiss AG, Germany). The fluorescence intensity 

of AAV tags is strong enough for acquiring clear pictures at the confocal microscope 

without using the specific immuno-staining. Antibodies used: goat anti-GFP antibody for 

PKCδ+-Cre-CFP (1:1000, abcam), catalog number: 194017-1; mouse anti-PKCdelta, BD 

Transduction Laboratories, catalog number: 610398; GABAARα5 antibody, kindly provided 

by from W. Sieghart (as in electron microscopy section, below); donkey anti-goat alexa 

fluor 488. Invitrogen, catalog number: A11055; donkey anti-rabbit alexa fluor 594. 

Invitrogen, catalog number: A-21207; Donkey anti-Mouse IgG Secondary Antibody, Alexa 

Fluor® 568 conjugate, Invitrogen, catalog number: A10037.

Electron microscopy

EM analysis was carried out on adult male C57Bl/6 mice (n = 3; 25–30 g; Charles River, 

Sulzfeld, Germany). Before use, the animals were housed in groups of four to five under 

controlled laboratory conditions (12:12 hrs light/dark cycle with lights on at 07:00 h; 21 ± 

1°C; 60% humidity) with food and water ad libitum for at least 2 weeks after delivery from 

the supplier. Animals were deeply anesthetized by intraperitoneal injection of thiopental 

(100 mg/kg, i.p.) and perfused transcardially with phosphate buffered saline (PBS; 0.9% 

NaCl, pH 7.4) followed by ice-cold fixative made of 4% w/v paraformaldehyde, 0.05% v/v 

glutaraldehyde and 15% v/v of a saturated solution of picric acid in phosphate buffer (PB; 

0.1 M, pH 7.4) for 10 min. Brains were immediately removed from the skull, washed in 0.1 

M PB, and stored in 0.1 M PB containing 0.05% sodium azide at 6°C until 

immunohistochemical experiments were performed. Tissue blocks were cryo-protected in 

20% sucrose in 0.1 M PB overnight at 6°C, and freeze-thawed once to allow antibody 

penetration. The brain tissue blocks were sliced coronally in 70 μm thick sections on a Leica 

VT1000S vibratome (Leica Microsystems, Vienna, Austria). The free floating sections were 

incubated in mouse Ig Blocking Reagent (diluted 1:27.7; Vector Laboratories, Burlingame, 

CA, USA) in tris-buffered saline (TBS; 50 mM, 0.9% NaCl, pH 7.4) for 1 hr at room 

temperature (RT), and then incubated in a blocking solution containing 20% normal goat 

serum (NGS) in TBS for 1 hr at RT. The sections were incubated 3 overnights at 6°C in 
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primary antibodies diluted in TBS, containing 2% normal goat serum. The primary 

antibodies were: rabbit antibody against the α5-GABAAR subunit (kindly provided by Dr. 

W. Sieghart, Medical University of Vienna, Austria)33 and mouse monoclonal antibody 

against PKCδ (Catalog number; 610397, BD Biosciences, Franklin Lakes, NJ, USA), and 

were diluted at 1:200 and 1:300 respectively. After 3 × 10 min washes with TBS, 1.4 nm 

nanogold-conjugated goat anti-rabbit (Nanoprobes, Yaphank, NY, USA) and biotinylated 

goat anti-mouse antibodies (Vector Laboratories) were applied overnight at 6°C at a dilution 

of 1:100 in a buffer with the same composition as for the primary antibody. The sections 

were then washed and incubated in 1% glutaraldehyde and 4% PFA in PB 0.1 M for 10 min 

at RT. After the additional fixation, the sections were rinsed with ultra-pure water. Nanogold 

particles were amplified with silver using the HQ silver™ Enhancement kit (Nanoprobes) 

for 8+5 min at RT under light microscopy control. The sections were washed extensively in 

milliQ water and then with TB, and reacted with 0.015% 3,3′-diaminobenzidine (DAB; 

Sigma, Munich, Germany) and 0.4% Nickel (II) sulphate hexahydrate (Sigma) as 

chromogen and 0.01% H2O2 as the electron donor. The sections were subsequently washed 

with 0.1 M PB and treated with 2% OsO4 in 0.1 M PB for 40 min at RT. After several rinses 

with 0.1 M PB and then with milliQ water, the sections were contrasted with 1% 

uranylacetate in 50% ethanol for 30 min at RT protected from light. The dehydration steps 

were done with graded ethanol (50, 70, 90, and 100%) and propylene oxide at RT prior to 

embedding in epoxy resin. The sections were transferred into weighting boats containing 

epoxy resin (durcupan ACM-Fluka, Sigma) and kept overnight at RT. The sections were 

transferred onto siliconized slides, coverslipped with ACLAR®-film coverslips (Ted Pella, 

Inc., Redding, CA, USA) and incubated for 3 days at 60°C. Pieces containing central 

nucleus of amygdala were trimmed and re-embedded in the resin for 2 days at 60°C. 

Ultrathin sections at 60 nm were examined in a Philips CM120 TEM, equipped with a 

Morada CCD camera (Soft Imaging Systems, Muenster, Germany). Whole images were 

level adjusted, sharpened and cropped in Photoshop (Adobe) without changing any specific 

feature.

Cre regulated knockdown of α5 subunits

Four pairs of DNA oligos targeting the mouse α5GABAAR were designed using RNAi 

Explorer, and tested in HEK293T cells by cotransfecting the rat α5 subunit with the knock-

down constructs. Sequence no. 2 (tccattgcacacaacatgac - NM_176942.4 (765-784)) showed 

the best knockdown (Supplementary Fig. 10). For conditional expression, the RNAi 

construct was inserted into a modified lentilox 3.7 (pLL3.7) dsRed (pSICO) that contains 

loxP sites within the TATAbox sequence35. The oligo for the shRNA was cloned into 

pSICO digested with Xho and Hpa. A scrambled control oligo (catacggtcaatcctcaaca) was 

also synthesised and constructed in the same vector. All constructs were verified by 

sequencing. To test conditional expression HEK293T cells were plated into 24-well plate 

with a density of 8.0×104 cells per well and were transfected with constructs expressing the 

rat α5subunit, α5-GABAAR knock-down or the scrambled control and Cre at a ratio of 1:1:1. 

The cells were washed with PBS and lysed in 200 μl 1× sample buffer. Twenty microliters 

of each sample were used for SDS-PAGE and Western blots. The α5 antibody (Novus) was 

diluted with the ratio of 1:1000.
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Generation of conditional AAV Gabra5-iRNA constructs—The AAV shRNA 

constructs allow for conditional (Cre-LoxP), stable expression of both short hairpin RNAs 

(shRNAs) for RNA interference under the promoter U6, and reporter protein tdTomato 

driven by the promoter EF1a. The sequences of both Gabra5-shRNA and control-shRNA 

were first synthesised with EcoRI/EcoRV restriction sites at each end and inserted into 

pBMH vector (Biomatik USA, LLC).

Gabra5-shRN: 
TGTCCATTGCACACAACATGACTTCAAGAGAGTCATGTTGTGTGCAATGGACTT

TTTTC.

Control-shRNA: 
TGCATACGGTCAATCCTCAACATTCAAGAGATGTTGAGGATTGACCGTATGCTT

TTTT.

The pBMH-shRNA constructs were digested with EcoRI/EcoRV initially and the shRNA-

containing segments were recycled and purified for ligation with the pAAV-EF1α-DIO-

hChR2YFP (Deisseroth Lab, Stanford University) to insert the shRNA sequences after the 

second lox2711/loxP site. Mouse U6 promoter was synthesised with EcoRI and EcoRV for 

inserting into pAAV-EF1α-tdTomato-WPRE-pA to generate segment of mU6-Tdtomato, 

which later replaced the hChR2YFP of pAAV-EF1α-DIO-hChR2YFP-shRNA-WPRE-pA 

backbone designed with Asc1 and Nhe1 restriction sites. The expression of both tdTomato 

and shRNA driven by EF1 and mU6 respectively is achieved at the same time upon Cre 

recombination33 (Supplementary Fig. 10). The constructs were sequenced before being 

amplified with endonuclease-free column (Macherey-nagel; Germany) and were further 

validated in cultured cells by co-transfecting a Cre construct (data now shown). Two AAVs 

(serotype9; Vector Core; University of Pennsylvania) for the expressions of Gabra5-shRNA 

(pAAV-EF1α-DIO-tdTomato-U6-Gabra5.shRNA) and control shRNA (pAAV-EF1α-DIO-

tdTomato-U6-control.shRNA) were injected into the CEA of the PKCδ-Cre-EYFP 

transgenic animals, to ensure cell-type specific knockdown of α5 subunit in PKCδ+ cells in 

CEl.

Statistics

Normal data distribution and equal variance was formally tested using SigmaPlot 13.0 or 

GraphPad Prism 6 for all statistical analyses. No statistical methods were used to 

predetermine sample sizes but our sample sizes are similar to those reported in previous 

publications8,13,30,31. Data collection and analysis were not performed blind to the 

conditions of the experiments. Data were collected and processed randomly apart from the 

data collected from grouped animals. SigmaPlot does not allow to extract precise P values if 

P < 0.001 for every statistical analyses reported in the manuscript. GraphPad Prism does not 

allow to extract precise P values when performing post- hoc multiple comparison tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Fear conditioning enhances anxiety. a, Schematic illustrating the experimental paradigm. 

Animals were exposed to five CSs or five CS-US pairings. Twenty four hrs later, anxiety 

behavior was assessed on the EPM, and fear generalization was quantified in a retrieval test 

carried out in a novel context. b, Freezing values (percent of time) of the two experimental 

groups (CS only, n =11 mice, and CS-US, n =12 mice) during CS+ and CS- exposure. ***P 

< 0.001, paired t-test for the CS-US group, t = 8.599, 11 degree of freedom. c, Left, Example 

EPM trajectories of animals previously exposed to CS only or to CS-US pairings. Right, 

Animals subjected to CS-US pairings (n = 12 mice) exhibit enhanced anxiety behavior on 

the EPM as compared to animals exposed to CS only (n = 11 mice; ***P < 0.001, Mann-

Whitney rank sum unpaired t-test). d, Overall EPM track length is the same for CS only and 

CS-US groups (P = 0.865, unpaired t-test, t = 0.144, 21 degrees of freedom). e, Regression 

analysis reveals a significant correlation between EPM anxiety behavior and fear 

generalization for individual animals. White symbols represent values from individual 

animals. Black symbols represent binned averages of animals exhibiting different levels of 

fear generalization (0-0.2, 0.2-0.4, and > 0.4). Linear regression: R = 0.6, P = 0.003, n = 12 

mice (CS-US group). f, There was no correlation between EPM anxiety behavior and 

freezing to the CS+ and CS- for the CS only group (n = 11 mice, CS only group; freezing to 
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the CS- vs. time spent in open arms: R = 0.298, P = 0.260; freezing to the CS+ vs. time spent 

in open arms: R = 0.287, P = 0.335. White symbols represent values from individual 

animals. All error bars indicate mean ± s.e.m.
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Figure 2. 
Bi-directional regulation of fear generalization and anxiety through optogenetic control of 

CEA PKCδ+ neurons. a, Stainings for Cyan Fluorescence Protein (CFP, green) and 

endogenous PKCδ(red) confirm overlap of CFP with endogenous PKCδ (98% CFP+ cells 

were PKCδ+; 100% PKCδ+ cells were CFP+). White dashed lines denote the contour of 

CEA (CEl and CEm). b, Left, Representative cartoon illustrating the injection of conditional 

AAVs expressing ChR2-YFP or ARCH-GFP into CEA. Middle, Overlap of endogenous 

PKCδ (red) and ChR2-YFP (green). Right, Overlap of endogenous PKCδ (red) and ARCH-

GFP (green). Arrows indicate cells with overlap, red triangles point to cells stained only for 

PKCδ. Scale bar: 20 μm. c, Top, Experimental configuration illustrating in vivo optrode 

implants; Bottom, Light-responsive units were identified using 300 ms light pulses followed 

by 3 min continued test stimulations as used during behavioral experiments. d, Top, Raster 

plot illustrating firing of an identified ChR2-expressing PKCδ+ neuron before, during and 

after 300 ms blue light stimulation; Bottom, PSTH of the z-score shows a marked increase in 

firing during the 300 ms light pulse. Inset, z-score of the short-latency light-induced 

responses. e, Rate histogram average before, during and after 3 min light stimulation on 

identified ChR2-expressing PKCδ+ neurons (n = 5 cells/2 mice). f, z-score histogram 

illustrating increased firing of ChR2-expressing PKCδ+ neurons during 3 min light 

stimulation (n = 5 cells/2 mice). g, Top, Raster plot illustrating firing of an identified 

ARCH-expressing PKCδ+ neuron before, during and after 300 ms yellow light stimulation; 

Bottom, PSTH of the z-score shows a marked decrease in firing during the 300 ms light 

pulse. h, Rate histogram average before, during and after 3 min light stimulation on 

identified ARCH-expressing PKCδ+ neurons (n = 6 cells/3 mice). i, z-score histogram 

illustrating increased firing of ARCH-expressing PKCδ+ neurons during 3 min light 

stimulation (n = 6 cells/3 mice). All error bars indicate mean ± s.e.m. j, Schematic 

representation of a freely moving mouse bilaterally implanted with optical fibers after 

injection of DIO-AAVs expressing either ChR2 or ARCH. k, Coronal sections of a mouse 
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brain indicating the location of CEA and the expression of a conditional rAAV expressing 

ChR2 and mCherry. White dashed lines indicate anatomical boundaries of BLA, CEl and 

CEm. The blue dashed line indicates the insertion of the optical fiber. Scale bar: 500 μm. l, 
Top, Schematic of the experimental paradigm. Bottom, Bar graph illustrating increased fear 

generalization upon stimulation with blue light in PKCδ-Cre animals infected with DIO-

AAV-ChR2 (n = 7 mice), but not in control animals (n = 6 mice; Two way ANOVA: F(1,11) 

= 11.83, P= 0.005 for the interaction injection × light stimulation; post-hoc Sidak's multiple 

comparison test: P = 0.01 for lighton vs. lightoff in DIO-AAV-ChR2 injected mice). **P = 

0.008, paired t-test between lightoff and lighton in ChR group, t = -3.952, 6 degrees of 

freedom. = 0.946, paired t-test between lightoff and lighton in control group, t = 0.0707, 5 

degrees of freedom. m, Top, Schematic representation of the experimental protocol used for 

analyzing optogenetic manipulations of PKCδ+ neurons during EPM behavior. EPM and 

open field behaviour was analyzed prior to subjecting animals to fear conditioning. Bottom, 

Example EPM trajectories of PKCδ-Cre animals injected with rAAV 2/7 EF1α∷DIO-

ChR2(H134R)-2A-NpHR-2A-Venus (top) or rAAV 2/5 CBA∷DIO-ARCH-GFP (bottom) 

under lighton or lightoff conditions. n, Enhancing the activity of PKCδ+ neurons decreases 

the percentage of time animals spend on open arms (n = 7 mice, **P = 0.006, paired t-test, t 

= -3.952, 6 degrees of freedom between lightoff and lighton for ChR2 group.), whereas 

decreasing the activity of PKCδ+ neurons has the opposite effect (n = 6 mice, **P = 0.005, 

paired t-test, t = -4.702, 5 degrees of freedom between lightoff and lighton for ARCH group.). 

The behavior of control animals was not altered by light stimulation (n = 9 mice, P = 0.214, 

aired t-test, t = 1.349, 8 degrees of freedom between lightoff and lighton for control group.). 

Two-way ANOVA: F(2, 19) = 26.72, P < 0.001 for the interaction injection × light 

stimulation; post-hoc pairwise Sidak's tests revealed significant differences between lighton 

in the ARCH group, lighton in the ChR2 and control group. o, Top, Schematic representation 

of the experimental protocol used for analyzing optogenetic manipulations of PKCδ+ 

neurons during open field behavior. Bottom, Example open field trajectories of PKCδ-Cre 

animals injected with rAAV 2/7 EF1α∷DIO-ChR2(H134R)-2A-NpHR-2A-Venus (top) or 

rAAV 2/5 CBA∷DIO-ARCH-GFP (bottom) under lighton or lightoff conditions. p, 

Enhancing the activity of PKCδ+ neurons decreases the number of center crossings (red 

square) per unit track length (n = 7 mice, **P = 0.006, paired t-test between lightoff and 

lighton for ChR group, t = 4.124, 6 degrees of freedom), whereas decreasing the activity of 

PKCδ+ neurons has the opposite effect (n = 8 mice, **P = 0.007, aired t-test between lightoff 

and lighton for ARCH group, t = -3.956, 6 degrees of freedom.). The behavior of control 

animals was not altered by light stimulation (n = 7 mice, P = 0.408, paired t-test between 

lightoff and lighton for control group, t = 0.880, 7 degrees of freedom.). Two-way ANOVA: 

Two-way ANOVA: F(2, 19) = 8.587, P = 0.002 for the interaction injection × light 

stimulation; post-hoc pairwise Sidak's tests revealed significant differences between lighton 

in the ARCH group, lighton in the ChR2 and control group. All error bars indicate mean ± 

s.e.m.
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Figure 3. 
Extrasynaptic inhibition mediated by α5-GABAARs controls the spontaneous firing of 

PKCδ+ neurons. a, Representative whole-cell current trace (Vh = -75.5 mV) recorded from a 

PKCδ+ neuron in vitro illustrating the successive blockade of phasic (synaptic) and tonic 

(extrasynaptic) GABAergic currents (scale bar: 5 pA, 2 min.). Application of 1 μM 

SR-95531 and 100 μM PTX is indicated by the pink and brown areas, respectively. Lower 

dashed line indicates baseline holding current that fits with the average mean of two all-

point histograms for baseline (gray) and SR-95531 (pink). PTX caused a shift of the holding 

current indicated by the upper dashed line that fits the average of a Gaussian distribution 

(brown). b, Charge transfer of synaptic and extrasynaptic GABAergic currents (n = 6 cells/6 

slices/3 mice each; **P = 0.005, two-tailed paired t-test, t = -4.691, 5 degrees of freedom). 

c, Top, Traces show spontaneous firing of PKCδ+ neurons recorded in cell-attached 

configuration (scale bar: 100 pA, 5 s). Bottom, Spontaneous firing of PKCδ+ neurons is 

enhanced by PTX but not by SR-95531 (n = 4 cells/4 slices/2 mice; *P = 0.028, One-Way 

ANOVA followed by Dunn's multiple comparisons test between baseline and PTX, P = 

1.000 between baseline and SR-95531). d, Top, Representative recordings illustrating the 

shift in the holding current induced by PWZ-029 (1 μM) in wild-type (α5
+/+), but not in 

mice lacking α5 receptors in PKCδ+ neurons (α5
-/-: PKCδ-Cre × Gabra5fl/fl)(scale bar:- 10 

pA, 10 s). Bottom, α5GABAAR mediated extrasynaptic inhibition is completely absent in 

PKCδ+ neurons recorded in slices from PKCδ-Cre × Gabra5fl/fl mice (n = 5 cells/5 slices/2 

KO mice and n = 4 cells/4 slices/2 wild type mice; *P = 0.003, two-tailed unpaired t-test, t = 

4.172, 6 degrees of freedom). e, Top, Spontaneous firing of a representative PKCδ+ neuron 

recorded in cell-attached configuration before and during the application of PWZ-029 (scale 

bar: 100 pA, 5 s). Bottom, Spontaneous firing of PKCδ+ neurons is enhanced by application 

of PWZ-029 (1 μM; n = 5 cells/5 slices/3 mice; **P = 0.015, two-tailed paired t-test, t = 

-4.049, 4 degrees of freedom). f, Pre-embedding double-labeling electron microscopy 

reveals extrasynaptic α5GABAAR expression (gold/silver particles) in dendrites of PKCδ+ 

neurons (shown in orange; HRP-DAB reaction) of the CEl. Immunometal particles were 
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observed both at the plasma membrane (indicated by arrows) and at cytoplasmic locations. 

Synapses are indicated by arrowheads. The axon terminal at1 forms a symmetric (Type II) 

synapse whereas axon terminals at2 and at3 form asymmetric (Type I) synapses. Scale bar: 1 

μm. The lower panel shows a reconstruction of segments (from 5 sections) of the two 

PKCδ+ dendrites and of the axon terminals at1 (blue) and at2 (green). Surface immunometal 

particle density on PKCδ+ dendrites was 0.17 ± 0.02 particles/μm, n = 70 segments. It can be 

appreciated that the immunometal particles, shown as red dots, are not associated with 

synaptic specializations. mc: mitochondrion. All error bars indicate mean ± s.e.m.
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Figure 4. 
Experience-dependent reduction of extrasynaptic inhibition predicts fear generalisation. a, 

Freezing levels before (baseline) and during the presentation of the CS- and the CS+ 24 hrs 

after training for animals exposed to CS only (n = 8 mice) and animals subjected to CS+-US 

pairings (n = 8 mice; ***P < 0.001 for CS+ in CS-US group, H = 81.715, 2 degrees of 

freedom; P = 0.412 for CS only group, H = 1.771, 2 degrees of freedom; Kruskal-Wallis 

One-Way ANOVA followed by Dunn's pairwise multiple comparison test). b, 

Representative current traces recorded in vitro from PKCδ+ neurons in slices obtained from 

control (CS only) and fear conditioned (CS-US) animals. Traces illustrate the sequential 

application of L-655 (50 nM) and PTX (100 μM). Scale bar: 50 pA, 10 s. c, Left, Total 

extrasynaptic inhibition is reduced in PKCδ+ neurons of fear conditioned animals (n = 26 

cells/26 slices/8 mice) compared to control animals (CS only, n = 14 cells/14 slices/8 mice). 

***P < 0.001 by Mann-Whitney Rank Sum unpaired t-test. Right, α5-mediated 

extrasynaptic inhibition is reduced in PKCδ+ neurons of fear conditioned animals (n = 28 

cells/28 slices/8 mice) compared to control animals (CS only, n = 14/14 slices/8 mice). ***P 

< 0.001, Mann-Whitney Rank Sum unpaired t-test. d, Total extrasynaptic inhibition 

inversely correlates with fear generalization. Each dot represents the average of the 

extrasynaptic inhibition recorded from several PKCδ+ neurons for an individual animal (n = 

2-4 cells per animal; n = 8 animals). Linear regression: R = 0.7; P = 0.041. All error bars 

indicate mean ± s.e.m.
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Figure 5. 
Brain area-specific conditional genetic deletion of α5-GABAAR expression induces fear 

generalization and anxiety behavior. a, Top, Scheme showing the experimental protocol. 

Anxiety tests were performed before subjecting animals to fear conditioning. Bottom, AAV-

mediated expression of Cre recombinase and GFP (green staining) in CEA neurons after 

injection of α5-floxed animals (α5
(fl/fl)) with AAV-Cre. Scale bar: 50 μm. b, Top, 

Representative current traces illustrating Cre-induced loss of extrasynapticα5-mediated 

inhibition in infected CEA neurons of α5-floxed animals (right,α5
(fl/fl), green) compared to 

wild-type animals injected with the same virus (left, α5
(+/+), black). Scale bar: 20 pA, 15 s. 

Bottom, PTX- and PWZ-sensitive extrasynaptic inhibition in CEA neurons is strongly 

reduced by expression of Cre-GFP (n = 6 cells/6 slices/3 mice, **P = 0.006, One-Way 

ANOVA followed by Dunnett's multiple comparisons test vs. PTX in α5
(+/+)) compared to 

control (n = 5 cells/5 slices/3 mice,α5
(+/+)) and non-infected cells in α5

(fl/fl)animals (n = 5 

cells/5 slices/2 mice). c, Top, Schematic representation of the behavioral protocol. Bottom, 

Brain area-specific genetic deletion of α5-GABAARs (n = 13 mice, α5
(fl/fl)) in CEA reduces 

the time spent in the open arms on the EPM compared to control animals injected with the 

same virus (n = 9 mice, α5
(+/+)). **P = 0.008, Mann-Whitney rank sum two-tailed unpaired 

t-test. d, Top, Schematic representation of the behavioral protocol. Bottom, Brain area-

specific genetic deletion of α5-GABAARs (n = 8 mice, α5
(fl/fl)) in CEA enhances fear 

generalization compared to controls (n = 9 mice, α5
(+/+)). *P = 0.04, two-tailed unpaired t-

test, t = -2.269, 14 degrees of freedom. All error bars indicate mean ± s.e.m.
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Figure 6. 
Brain area- and cell type-specific knock-down of α5-GABAAR expression induces anxiety 

behaviour and fear generalization. a, Conditional expression of Tdtomato and shRNA in 

PKCδ+ neurons (CFP staining, green) after infection of PKCδ-Cre-CFP mice with an AAV 

containingDIO-α5-shRNA. Scale bar: 50 μm. b, Representative current traces illustrating 

shRNA-induced knock-down of extrasynaptic inhibition in PKCδ+ neurons (α5-shRNA) 

compared to control animals injected with a virus expressing scrambled shRNA. Scale bar: 

20 pA, 15 s. c, PTX-sensitive total extrasynaptic inhibition in PKCδ+ neurons is strongly 

reduced by expression of α5-shRNA (n = 8) compared to cells expressing scrambled shRNA 

(n = 7). ***P < 0.001, Mann-Whitney Rank Sum unpaired t-test. d, PWZ-029-sensitive α5-

GABAAR-mediated extrasynaptic inhibition in PKCδ+ neurons is strongly reduced by 

expression of α5-shRNA (n = 8 cells/8 slices/3 mice) compared to cells expressing 

scrambled shRNA (n = 7 cells/7 slices/3 mice). ***P < 0.001 by Mann-Whitney Rank Sum 

unpaired t-test. e, Top, Schematic representation of the experimental protocol. Bottom, Cell-

type specific expression of α5-shRNA (n = 7 mice) in PKCδ+ neurons reduces the 

percentage of time spent in the open arms of the EPM compared to animals infected with an 

AVV expressing scrambled shRNA (n = 7 mice). ***P < 0.001, two-tailed unpaired t-test, t 

= 5.514, 12 degrees of freedom. f, Top, Schematic representation of the experimental 

protocol. Bottom, Cell-type specific expression of α5-shRNA (n = 7 mice) in PKCδ+ 

neurons reduces the normalized number of center crossings in the open field paradigm 

compared to animals injected with an AAV expressing scrambled shRNA (n = 7 mice). 

***P < 0.001, two-tailed unpaired t-test, 4.611, 12 degrees of freedom. g, Top, Schematic 

representation of the experimental protocol. Bottom, Cell-type specific expression of α5-

shRNA (n = 5 mice) in PKCδ+ neurons enhances fear generalization compared to animals 

infected with an AAV expressing scrambled shRNA (n = 5 mice). **P = 0.015, two-tailed 

unpaired t-test, t = -3.088, 8 degrees of freedom. All error bars indicate mean ± s.e.m.
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