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Abstract: Infection prevention in dental practice plays a major role, especially during the COVID-19
pandemic. This study aimed to measure the quantity of aerosol released during various dental
procedures (caries and prosthetic treatment, debonding of orthodontic brackets, root canal irrigation)
while employing the Er:YAG lasers combined with a high-volume evacuator, HVE or salivary
ejector, SE. The mandibular second premolar was extracted due to standard orthodontic therapy
and placed in a dental manikin, to simulate typical treatment conditions. The particle counter was
used to measure the aerosol particles (0.3–10.0 µm) at three different sites: dental manikin and
operator’s and assistant’s mouth area. The study results showed that caries’ treatment and dental
crown removal with a high-speed handpiece and the use of the SE generated the highest aerosol
quantity at each measured site. All three tested Er:YAG lasers significantly reduced the number of
aerosol particles during caries’ treatment and ceramic crown debonding compared the conventional
handpieces, p < 0.05. Furthermore, the Er:YAG lasers generated less aerosol during orthodontic
bracket debonding and root canal irrigation in contrast to the initial aerosol quantity measured in
the dental office. The use of the Er:YAG lasers during dental treatments significantly generates less
aerosol in the dental office setting, which reduces the risk of transmission of viruses or bacteria.

Keywords: COVID-19; dentistry; erbium laser; Er:YAG; high-volume evacuator; SARS-CoV-2

1. Introduction

Dental workers are exposed to the risk of viral airborne infection [1,2]. With the
COVID-19 wave running through the world, all medical professionals are at the highest
risk of infection by the SARS-CoV-2, which causes sickness ranging from symptoms like
the common cold to severe respiratory diseases because of the direct contact of the virus
with the eyes, nose, and oral cavity through their mucous membranes as the main infection
route [3]. A common feature of dental professional activity is working in the environment
where human bioaerosols mix with water sprays, the particles of which then increase their
velocity and scatter in the office [4–7]. The primary sources of contamination in dental
offices are respiratory particles (breathing, coughing, sneezing) and saliva mixed with
patients’ blood. The second source that can spread the infection in the office are rotary
instruments such as high- and low-speed handpieces, dental sandblaster, ultrasonic scalers,
or lasers [3,8].

Most dental procedures using handpieces generate aerosols [9]. The highest aerosol
concentration is observed during treatment performed by a contra-angle handpiece [3,10,11].
Among them, dental procedures with the highest splatter and aerosol generation are associ-
ated with conservative treatment, tooth prosthetic preparation, and ultrasonic scaling [12].
The aerosols produced during dental procedures can be divided into three subgroups [6].
The first group contains respiratory aerosols formed while sneezing or coughing. The water
sprays produced by dental rotary instruments, ultrasonic tools, and lasers constitute the
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second group. The last group contains a mixture of water sprays with respiratory aerosols
that have a high velocity and can be spread quickly in the office. The aerosols contain a
mixture of air with water particles greater than 50 µm formed during splatter [11]. The
most prominent hazard in the dental office is smaller particles with diameters of 0.5 to
10 µm. These particles can be transported when they are inhaled to terminal bronchioles
and alveoli of the human lungs [4].

Healthcare professionals have the responsibility to introduce updated innovations
with safety protocols for the prevention of transmission of all infections to patients and
staff. Additionally, it is more crucial today in this current worldwide COVID-19 pandemic.
Our consideration was to focus on lasers that we can apply in many dental treatment
procedures [13–15]. Among different wavelengths used in dentistry, the highest efficiency
in treating both hard and soft tissues have erbium family lasers [16,17]. Er:YAG (2940 nm)
and Er,Cr:YSGG (2780 nm) lasers have excellent absorption coefficient in water and, thus,
are useful in treating tooth caries, ablating bone, and vaporizing soft tissues of the oral
mouth [18–21]. The laser irrigation increases water particles vibration, which raises the
thermal energy of the water and causes its evaporation after exceeding the temperature
of 100 ◦C [20,22]. The photothermal effect produced by high-power lasers allows efficient
cutting of hard and soft tissues [23]. However, erbium laser operation in a water spray,
which is needed for tissue cooling, carries a potential risk of spreading the virus. Moreover,
in the medical market we can find a different erbium laser with various cooling systems that
can raise aerosols’ concentration. Thus, the assessment of the number of aerosols released
during dental treatments when using various erbium laser systems should be addressed.

The amount of aerosol produced by conventional dental handpieces is related to the
rotor torque speed and the water pressure delivered to the tip [24]. Although the operation
with erbium lasers requires continuous cooling with a water spray, the lack of rotation and
vibration of the laser tip itself, placed in the applicator socket, does not cause additional
centrifugal dispersion of water spray particles. The principal operation of erbium lasers in
tissues is based on similar effects. Notwithstanding that, various cooling supply methods
used in erbium lasers available on the medical market may result in different aerosol
particle sizes and amounts released. The cooling system installed in laser devices differs
in delivering the coolant to the working tip, the type of coolant transported, the length of
the liquid supply lines, and the type of compressors used. Different erbium family lasers
have been provided within one or more supply lines having exit canals in the handpiece
for compressed air and water’s concurrent application to the target tissue. This feature
regulates the flow of the sprays [25,26].

This work aimed to test a null hypothesis that there is no difference in the number
of aerosols generated by three various Er:YAG lasers compared to conventional high-
and low-speed handpiece for tooth preparation. Furthermore, the differences in aerosol
generation among the lasers during prosthetic crowns’ retrieval, orthodontic ceramic
brackets debonding, and endodontic root canal irrigation was tested.

2. Materials and Methods

The experiment was conducted using a dental manikin head. In the area of a lower-left
second premolar (35 FDI classification, World Dental Federation), a natural tooth extracted
due to standard orthodontic therapy was placed to simulate typical treatment conditions.
The measurement of generated aerosols was done at three sites: (1) 2 cm from manikin’s
mouth, (2) 2 cm from the assistant’s mouth, and (3) 2 cm from the operator’s mouth.
The distance from the manikin’s mouth to the operator and the assistant’s mount was
measured with a ruler and amounted to 40 cm (Figure 1). The protocol of the experiment
was prepared by the authors of the paper.
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Figure 1. Aerosol particle sensor positions (created in BioRender.com).

2.1. Aerosol Measurement Protocol

The PC200 laser counter was applied (Trotec GmbH, Schwerin, Germany) to estimate
the aerosol particles at the conducted sites. The particle sensor works by measuring the
light dispersion effect in a medium. The intensity of scattered light is measured at a
specified angle in particulate matter, allowing calculation of the aerosol particles’ amount.
The particle counter used in the test had the current calibration certificate issued by the
manufacturer and was compliant with the ISO 21501-4 standard, which specifies the
measurement accuracy of 95%. The PM200 sensor allowed us to measure six aerosol
fractions with a diameter of 0.3–10.0 µm (0.3, 0.5, 1.0, 2.5, 5.0, 10.0 µm). The nozzle of the
counter was placed 2 cm from the operator’s, assistant’s, and manikin’s mouth. The PM 200
sensor was turned 1 min after the beginning of each procedure. Time measurements were
done using a stopwatch. Each measurement was repeated six times during the experiment.
The number of measured particles (different fractions) was summarized, and the mean
results found in six repeated measurements were compared among study groups.

2.2. Technical Features of Er:YAG Lasers and Cooling System Applied in These Devices

The characteristic of three common erbium lasers used in dentistry were compared
in the study, as shown in Table 1. The lasers applied in the study were equipped with
a cooling delivery system, described in Figure 2. One of the lasers applied in the study
(AdvErL Evo) used 0.7% saline solution as a coolant. The saline solution was transported
from the container located inside the device by a supply line to the exit located in the
modified laser tip. The target tissue was cooled by only a single coolant stream. The other
two types of erbium lasers (LiteTouch and LightWalker lasers) were used to transport the
coolant (distilled water) supply lines, with three ends located in the handpiece’s head.
Thus, when using these two lasers the tissue was cooled by three streams of water.
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Table 1. The characteristic of three common erbium lasers used in dentistry and compared in the study.

– AdvErL Evo Laser LiteTouch Laser LightWalker Laser

Laser class class 4 class 4 class 4
Mode pulsed pulsed pulsed
Wavelength 2940 nm 2940 nm 2940 nm
Transmission system flexible waveguide reduced articulated arm articulated arm
Air compression system built in external built in

Types of coolant supply
modified laser tip with water
and air supply lines built in
the tip

conventional laser handpiece
with water supply lines in the
handpiece and with the lines’
exits in the head of the
handpiece

conventional laser handpiece
with water supply lines in the
handpiece and with the lines’
exits in the head of the
handpiece

Coolant saline solution distillated water distillated water
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Figure 2. Types of coolant supply in erbium family lasers. (A) Modified laser tip with water and air supply lines built in the
tip. (AdvErL Evo laser); (B) Conventional laser handpiece with water supply lines in the handpiece and with the lines’ exits
in the head of the handpiece (next to the tip socket (LiteTouch and LightWalker lasers).

2.3. Dental Treatment Procedures and Suction Systems Used in the Study

All procedures were repeated six times. The quantity of dental aerosol particles was
measured during the following procedures.

2.3.1. Caries’ Removal

Caries’ class I treatment by means of (1) the round diamond bur (#014) with a high-
speed handpiece W&H Synea TA-98LC (W&H, Bürmoos, Austria) at working parameters of
200,000 RPM (revolutions per minute) and water cooling of 30 mL/min; (2) the round rose
bur (#014) with a low-speed handpiece W&H Synea TA-98LC (W&H, Bürmoos, Austria) at
working parameters of 15,000 RPM and water cooling of 30 mL/min; (3) the contra-angle
handpiece of Er:YAG laser (AdvErL Evo, Morita, Kyoto, Japan) with laser parameters of
energy 300 mJ, frequency 10 Hz, power 3 W, tip diameter 1 mm, and water/air coolant
10/7; (4) the contra-angle handpiece H14 of Er:YAG laser (LightWalker, Fotona, Ljubljana,
Slovenia) with laser parameters of energy 300 mJ, frequency 20 Hz, power 6 W, MSP mode,
tip diameter 1 mm, and water/air coolant 6/4; and (5) the contra-angle handpiece of Er:YAG
laser (LiteTouch, LightInstruments, Yokneam, Israel) with laser parameters of energy 300 mJ,
frequency 20 Hz, power 6 W, tip diameter 1 mm, and water/air coolant 8 (Figure 3).
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2.3.2. Crown Laser Debonding

The simulation of cutting the crown was performed by applying a diamond round
bur on a high-speed contra-angle to the buccal surface of the tooth (control) for 1 min at
working parameters: of 15,000 RPM and water cooling of 30 mL/min. The tooth crown
was irradiated with tested lasers using a non-contact, continuous mode occlusally, buccally,
lingually, and indirectly interproximally at a distance of 5–10 mm. Following 1 minute
after each removal/debonding procedure, the aerosols’ measurement was started with the
PM200 counter. The parameters used for prosthetic debonding by different lasers were
as follows.

(1) The contra-angle handpiece H14 of Er:YAG laser (LightWalker, Fotona, Slovenia) with
laser parameters of energy 300 mJ, frequency 15 Hz, power 4.5 W, MSP mode, tip
diameter of 1 mm, and water/air coolant 4/4;

(2) The contra-angle handpiece of Er:YAG laser (AdvErL EVO, Morita, Japan) with laser
parameters of energy 350 mJ, frequency 10 Hz, power 3.5 W, tip diameter: of 1 mm,
and water/air coolant 4/4;

(3) The contra-angle handpiece of Er:YAG laser (LiteTouch, LightInstruments, Israel)
with laser parameters of energy 300 mJ, frequency 15 Hz, power 4.5 W, tip diameter
of 1 mm, and water/air coolant 8/8 (Figure 4).
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2.3.3. Orthodontic Brackets’ Debonding

A metal bracket (Victory Series, 3M Unitek, Monrovia, CA, USA) was bonded, accord-
ing to the manufacturer’s recommended protocols, on the second premolar tooth’s labial
surfaces using orthodontic composite adhesive Transbond XT (3M Unitek, Monrovia, CA,
USA). The bracket debonding procedure was done according to the previously published
paper [22]. That procedure was repeated six times and the amount of the aerosol was
measured using the PM200 counter. The lasers’ parameters used for orthodontic brackets’
debonding were as follows.

(1) The contra-angle handpiece H14 of Er:YAG laser (LightWalker, Fotona, Slovenia) with
laser parameters of energy 170 mJ, frequency 20 Hz, power 3.4 W, MSP mode, tip
diameter of 1 mm, and water/air coolant 3/3;

(2) The contra-angle handpiece of Er:YAG laser (AdvErL EVO, Morita, Japan) with laser
parameters of energy 170 mJ, frequency 20 Hz, power 3.4 W, tip diameter of 1 mm,
and water/air coolant 3/3;

(3) The contra-angle handpiece of Er:YAG laser (LiteTouch, LightInstruments, Israel)
with laser parameters of energy 150 mJ, frequency 25 Hz, power 3.75 W, tip diameter
of 1 mm, and water/air coolant 2/2 (Figure 5).
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Figure 5. Orthodontic brackets debonding with Er:YAG lasers: (A,D) LightWalker; (B,E) AdvErL Evo; (C,F) LiteTouch.

2.3.4. Endodontic Treatment

The second premolar tooth’s chamber was opened with a dental round bur on a
high-speed dental handpiece, and the root canal was prepared with ISO 30/06 file. The root
canal irrigation was carried out using endodontic needle EndoEze (Ultradent, South Jordan,
UT, USA) placed to the root canal 1 mm before its working length. The laser irrigation was
done by inserting a laser tip and the endodontic needle in the middle part of the chamber,
according to the photon-initiated photoacoustic streaming protocol. [27] The 2% sodium
subchloride solution was pushed into the root canals by the laser cavitation. The laser
parameters used for endodontic irrigation were as follows.

(1) The contra-angle handpiece H14 of Er:YAG laser (LightWalker, Fotona, Slovenia) with
laser parameters of energy 10 mJ, frequency 15 Hz, power 0.15 W, SSP mode, tip
diameter of 0.6 mm, and water/air coolant 0/0;

(2) The contra-angle handpiece of Er:YAG laser (AdvErL EVO, Morita, Japan) with laser
parameters of energy 30 mJ, frequency 10 Hz, power 0.3 W, tip diameter of 0.6 mm,
and water/air coolant 0/0;

(3) The contra-angle handpiece of Er:YAG laser (LiteTouch, LightInstruments, Israel)
with laser parameters of energy 40 mJ, frequency 10 Hz, power 0.4 W, tip diameter of
0.6 mm, and water/air coolant 0/0 (Figure 6).
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2.4. Spray/Aerosol Evacuators

The following suction systems were used to remove the aerosols produced when apply-
ing different dental procedures: (1) saliva ejector (SE) EM15 (Monoart® Euronda, Vicenza,
Italy) and (2) high-volume evacuator (HVE) EM19 EVO (Monoart® Euronda, Vicenza, Italy).
Evacuators were placed at the level of the tooth around 2 cm from its buccal side.

2.5. The Office Air Standardization

All measurements were made in a closed room (dentist’s office) with an area of 20 m2.
During the research, all doors and windows were closed and the air conditioning was
turned off. Before each test, the number of particles in the room was tested, and the next
measurements were made if particles’ numbers were in the range of 28,000–30,000. The
stable value of particles in the room was maintained with the air purifier system (NV1050,
Novaerus, Dublin, Ireland) with an air exchange of 800 m3 per hour. Control measurements
were taken every 1 min while the purifier was on. After the assumed number of particles
in the room was obtained, the given procedure (measurement) was performed. The control
measurement of particles in the room was made after placing the sensor in the office’s
center. The average time to purify the air to the demanded particle range in the office
(20 m2) was around 5 min.

2.6. Statistical Analysis

The total number of aerosol particles in a range of 0.3–10 um formed during differ-
ent dental procedures by various therapeutic methods was measured in three areas and
compared with the analysis of variance ANOVA (Analysis of Variance) analysis with post
hoc tests (multiple comparisons using the Tukey test). Statistica software (StatSoft, Tulsa,
OK, USA) was used for statistical analysis. Values below p = 0.05 were considered to be
statistically significant.

3. Results
3.1. Erbium Lasers Reduced the Number of Aerosol Particles during Caries’ Treatment

The aerosol levels measured at the manikin’s, assistant’s, and operator’s mouths were
significantly lower for tested laser systems when compared with conventional contra-angle
handpieces during caries ‘removals, p < 0.001. Caries’ removal by using a high- and low-
speed handpiece combined with HVE resulted in significant aerosols’ decrease in contrast
to the SE, p < 0.001 (Table 2). Interestingly, we found a similar particle number for all the
lasers combined with the saliva ejector or high-volume evacuator except the LightTouch
laser. The particle number was significantly higher when the LightTouch laser with HVE
was applied at the operator’s mouth in contrast to the assistant’s and manikin’s mouth
levels, p < 0.05 (Figure 7).
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Table 2. The level of aerosol particles (×103) measured at the manikin’s, operator’s, and assistant’s mouths (Mean (SD))
during tooth/caries’ preparation.

Procedure Tools Exhaustion

Place of Measurement ANOVA
p

Manikin
(A)

Mean (SD)

Operator
(B)

Mean (SD)

Assistant
(C)

Mean (SD)
p Values

Caries

High-speed
handpiece

Saliva ejector 235.2 (18.80) 112.2 (18.6) 101.5 (10.6) A vs. BC p < 0.001

High volume evacuator 64.1 (4.6) 42.3 (4.5) 33.5 (3.1) A vs. BC p < 0.001
B vs. C p < 0.001

Low-speed
handpiece

Saliva ejector 183.0 (8.1) 89.1 (7.6) 44.3 (4.9) A vs. BC p < 0.001
B vs. C p < 0.001

High volume evacuator 55.1 (3.3) 37.1 (4.2) 34.1 (4.5) A vs. BC p < 0.001

Morita laser
Saliva ejector 30.1 (0.7) 30.0 (0.8) 29.6 (0.5) 0.447

High volume evacuator 29.5 (0.6) 29.7 (0.9) 29.2 (0.4) 0.542

Fotona laser
Saliva ejector 29.9 (1.3) 32.5 (3.8) 32.1 (1.5) 0.368

High volume evacuator 29.4 (1.4) 33.8 (2.8) 31.3 (1.5) 0.248

LiteTouch laser
Saliva ejector 29.9 (4.9) 33.0 (2.1) 29.8 (1.7) 0.187

High volume evacuator 30.6 (1.6) 35.0 (2.3) 29.3 (1.3) B vs. AC p < 0.05

– – ANOVA p < 0.001 p < 0.001 p < 0.001 —

3.2. Erbium Lasers Reduces the Number of Aerosol Particles during Ceramic Crown Debonding

The number of aerosols generated during prosthetic ceramic crown debonding was
characterized by its significant reduction using erbium lasers in contrast to conventional
crown removal by the dental turbine, p < 0.001. Comparison of the erbium lasers combined
with SE and HVE showed a significant decrease in aerosols’ generation for the Morita laser
at operator and assistant levels, p < 0.001. However, application of all the lasers with HVE
for crown debonding resulted in insignificant differences in aerosols’ generation at the
manikin’s mouth, p > 0.05 (Table 3).

Table 3. The level of aerosol particles (×103) measured at manikin, operator, and assistant mouths (Mean (SD)) during
ceramic crown debonding.

Exhaustion Place of Measurement

Crown Debonding—Tools ANOVA
p

Morita
Laser (A)

Mean (SD)

Fotona
Laser (B)

Mean (SD)

LiteTouch
Laser (C)

Mean (SD)

High-
Speed

Turbine (D)
p Values

Saliva ejector

Manikin 41.8 (2.7) 43.6 (2.2) 54.3 (4.7) 284.8 (26.5) D vs. ABC p < 0.001
C vs. AB p < 0.001

Operator 33.1 (2.7) 44.1 (2.6) 47.4 (3.9) 154.4 (22.3) D vs. ABC p < 0.001
B, C vs. A p < 0.001

Assistant 30.7 (1.4) 43.2 (2.1) 43.7 (3.1) 112.5 (14.2) D vs. ABC p < 0.001
B, C vs. A p < 0.001

High volume
evacuator

Manikin 40.5 (1.9) 43.2 (0.6) 44.1 (4.0) 67.5 (8.3) D vs. ABC p < 0.001

Operator 30.6 (0.6) 43.9 (1.8) 44.3 (3.1) 58.3 (7.4) D vs. ABC p < 0.001
B, C vs. A p < 0.001

Assistant 29.4 (1.2) 43.6 (2.4) 43.1 (2.9) 47.5 (4.3) D vs. ABC p < 0.001
B, C vs. A p < 0.001
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3.3. Erbium Lasers Generated a Minimal Quantity of Aerosols during Orthodontic Bracket Debonding

The highest particle number, amounting to 31.4 (SD1.5), was found for the LiteTouch
laser. The lowest level of aerosol particles was found for the Morita laser, as compared
with LightWalker and LiteTouch lasers at the operator and assistant levels for both suction
systems, p < 0.001. The results of aerosols at the manikin mouth level were similar, with
no significant differences among lasers, p > 0.05 (Table 3). Comparison of suction tools
efficiency used during the debonding procedure showed a significant decrease in the
aerosol amount for HVE at the manikin and operator levels (LightWalker laser) and the
manikin’s mouth for LightTouch laser, p < 0.05 (Table 4).

Table 4. The level of aerosol particles (×103) measured at manikin, operator, and assistant mouths (Mean (SD)) during
orthodontic bracket debonding. Similar small letters in a column indicate statistical significance between suction tools
assessed at the same measured level (operator, assistant, or manikin).

Exhaustion Place of
Measurement

Debonding Ortho—Tools ANOVA

Morita Laser (A)
Mean (SD)

Fotona Laser (B)
Mean (SD)

LiteTouch Laser (C)
Mean (SD) p Values

Saliva ejector
Manikin 29.5 (3.3) 30.5 (1.6) a 31.4 (1.5) c 0.374

Operator 25.8 (8.5) 30.7 (1.2) b 30.5 (3.0) A vs. BC p < 0.001

Assistant 26.8 (1.0) 29.4 (1.1) 30.6 (1.9) A vs. BC p < 0.001

High volume
evacuator

Manikin 28.4 (3.8) 28.6 (1.3) a 29.6 (2.0) c 0.365

Operator 26.2 (3.2) 29.2 (0.8) b 30.4 (0.5) A vs. BC p < 0.001

Assistant 26.5 (1.3) 29.0 (1.1) 29.6 (1.7) A vs. BC p < 0.001

— — p > 0.05 p < 0.05 p < 0.05 —

3.4. Erbium Lasers-Assisted Endodontic Irrigation Generating Minimal Amount of Aerosols

Evaluation of aerosols during a root canal irrigation with all tested laser systems
showed insignificant differences when compared to the endodontic needle irrigation alone.
Furthermore, we found no differences in aerosol quantity measured at different sites, using
different suction devices during root canal irrigation, p > 0.05 (Table 5).

Table 5. The level of aerosol particles (×103) measured at manikin, operator, and assistant mouths, (Mean (SD)) during
endodontic irrigation.

Exhaustion Place of Measurement

Endo Irrigation—Tools ANOVA
p

Morita
Laser (A)

Mean (SD)

Fotona
Laser (B)

Mean (SD)

LiteTouch
Laser (C)

Mean (SD)

Endodontic
Needle (D)
Mean (SD)

p Values

Saliva ejector
Manikin 30.1 (1.3) 30.3 (1.8) 30.8 (1.6) 31.2 (1.5) p > 0.05

Operator 30.7 (1.8) 32.0 (1.9) 31.7 (2.1) 31.8 (1.6) p > 0.05

Assistant 30.3 (1.5) 30.8 (1.7) 31.3 (1.9) 30.7 (1.6) p > 0.05

High volume
evacuator

Manikin 29.9 (1.4) 30.8 (0.9) 30.9 (1.7) 30.6 (1.1) p > 0.05

Operator 30.7 (2.2) 30.7 (2.4) 31.7 (2.1) 31.7 (2.8) p > 0.05

Assistant 30.1 (1.7) 31.9 (1.4) 30.7 (1.7) 30.9 (1.1) p > 0.05

4. Discussion

Reducing the aerosol quantity while working in the dental practice is essential to
diminish the risk of SARS-CoV-2 virus transmission during the COVID-19 pandemic.
Working with a high-speed dental turbine generates many aerosol particles; therefore, it is
crucial to use the aerosol removal systems simultaneously. Another method for decreasing
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aerosolization during dental treatment is to replace classical dental handpieces with hard-
tissue lasers. The study results showed that caries’ removal with high- and low-speed
handpieces and saliva ejector generated the highest amount of spray particles at each
measured site. The use of high-volume evacuators significantly reduced aerosols during
caries’ treatment in contrast to the salivary ejector. Application of Er:YAG lasers decreased
aerosol generation around two times compared to both conventional handpieces at the
dental manikin’s mouth. All tested lasers generated similar low aerosols during prosthetic
crown and orthodontic brackets’ debonding and root canal irrigation. These findings are
of importance since they point toward the efficiency and safety of using Er:YAG laser in
dental treatment, especially during a pandemic.

The study’s main aim was to test a null hypothesis that there is no difference in aerosol
quantity generated during dental caries’ treatment using conventional rotary instruments
and various erbium lasers. The study rejected the null hypothesis. All the lasers in the
experiment significantly decreased the aerosols produced during caries’ removal. The mean
results of aerosol release for all the lasers were in the range of 29,400 to 35,000 particles; thus,
around 7, 5, 2, and 1.5 times less than high- and low-speed handpieces combined with SE or
HVE, respectively. In the current literature, there is no research evaluating the production
of aerosol during dental procedures using Er:YAG lasers. However, the effect of different
suction systems was clearly described for conventional handpieces [4,12,28]. The study of
Jacks [12] showed that the HVE eliminated approximately 90% of aerosols during ultrasonic
scaling in contrast to conventional SE. Moreover, Rupf et al. [28] recommended HVE to
reduce patients’ and dental staffs’ exposure to fine and ultrafine airborne particles when
using scanning sprays. Furthermore, Naulty et al. [29] and Matys and Grzech-Leśniak [30],
in their studies, recorded aerosol particulate at statistically significantly increased levels
during dental procedures. Our study also found an average 2- to 3-fold reduction in aerosol
quantity when using HVE compared to SE, which confirms the importance of the proper
suction system during tooth preparation (treatment of Black’s class I caries) in order to
increase microbial safety in the dental office.

A dental treatment, particularly while using high-speed handpieces, produces a high
quantity of aerosols and splatters, possibly contaminated with bacteria, viruses, fungi,
and blood [31]. The aerosol generated in the dental office during treatment consists of
particles smaller than 50 µm. Particles below 10 µm pose a particular risk of acquiring
viral infection and transmitting the virus by inhalation among patients and dental office
staff [9,11,32]. The increase of aerosol quantity in the dental office is related to the length of
the treatment procedure and the quality of the suction system. One of the dental procedures
with a greater risk of a high aerosol formation is prosthetic preparation. Ceramic crowns’
debonding procedure can be also accomplished using erbium family lasers [33–35]. In the
present study, we compared the aerosol particle sizes when cutting a ceramic prosthetic
crown with a bur on a dental turbine and crown debonding with the Er:YAG lasers. We
found a significantly lower aerosol quantity generated during crown removal using all
Er:YAG lasers in contrast to the high-speed turbine with both HVE and SE. There are no
other studies in the literature confirming our results for the Er:YAG lasers used in dental
treatment. However, studies by Harrel et al. [6] and Jacks [12] support our results, showing
better efficiency of HVE compared to SE for aerosols’ reduction.

The operation of erbium lasers in tissues is based on the absorption of laser energy by
water, which leads to an increase in the vibration of hydrogen molecules and an increase
in the thermal energy [19,36]. This process causes the water to evaporate and induces
movements within the liquid after the laser tip is placed in it. The cavitation effect caused
by the photoacoustic phenomenon was used to clean the debris in root canals during
endodontic treatment. However, this effect could also potentially create aerosols during
dental treatment. Our study results indicated that the laser action induced in the tooth
chamber filled with sodium hypochlorite administered with a syringe had a negligible
difference in aerosol compared to irrigation with an endodontic needle alone. It should
be emphasized that endodontic treatment performed according to FDI indications (using
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a cofferdam, rinsing the mouth with antiseptic fluids) and when creating access to the
chamber using erbium lasers can be one of the safest procedures in dentistry carried out
during the COVID-19 pandemic [10,37,38].

In the conducted study, we used three lasers with the same electromagnetic wave-
length (2940 nm). The principal operation of these lasers in tissues is based on similar
physical phenomena. However, differences in the methods of supplying cooling fluid to the
tissue may result in different aerosol particle formation during dental treatment. Our study
showed less aerosol increase when the AdvErL EVO (Morita, Kyoto, Japan) laser was used
compared to LightWalker (Fotona, Ljubljana, Slovenia, p > 0.05) and LightTouch (Light
Instruments, Yokneam, Israel p < 0.05) lasers during the crowns’ debonding procedure. The
main difference between the lasers was that the water and air supply of the AdvErL EVO
laser were combined into the tip (not only in the handpiece), where the laser rays were
transmitted and emitted, and also in individual supply lines [25]. In addition, coolant from
the AdvErL Evo laser to the tissue was transported through only one discharge channel,
which created a continuous stream of water. In the other two lasers, the water–air spray was
led through three channels to the tip, which may result in the formation of more aerosols.
However, it should be emphasized also that the maximum power of the Morita laser was
4 W. Thus, in treatments where higher power to decrease operation time is needed (greater
thickness of crowns, removal of bridges), the procedure itself may take longer and, conse-
quently, more aerosols may be formed. The laser light interaction with the target tissue
has some additional benefits in reducing infection risk in dentistry. The main limitation of
using erbium lasers versus conventional rotary instruments in dentistry is their high price.
Moreover, working with these devices also requires gaining experience and knowledge for
safe work in vivo. Additional studies should be conducted to investigate decontamination
efficiency of Er:YAG laser during dental treatment. Furthermore, randomized clinical trials
concerning the effect of lasers on aerosols’ reduction are needed.

5. Conclusions

The use of erbium lasers during dental treatments (cavity preparation, full ceramic
crown debonding, orthodontic brackets’ debonding) significantly reduces the aerosol
amount in the dental office and should be used alternatively to conventional rotatory tools,
especially during the COVID-19 pandemic.
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