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Abstract

Regulator of G protein signaling 14 (RGS14) is a multifunctional scaffolding protein that inte-

grates G protein and H-Ras/MAPkinase signaling pathways to regulate synaptic plasticity

important for hippocampal learning and memory. However, to date, little is known about the

subcellular distribution and roles of endogenous RGS14 in a neuronal cell line. Most of what

is known about RGS14 cellular behavior is based on studies of tagged, recombinant RGS14

ectopically overexpressed in unnatural host cells. Here, we report for the first time a compre-

hensive assessment of the subcellular distribution and dynamic localization of endogenous

RGS14 in rat B35 neuroblastoma cells. Using confocal imaging and 3D-structured illumina-

tion microscopy, we find that endogenous RGS14 localizes to subcellular compartments not

previously recognized in studies of recombinant RGS14. RGS14 localization was observed

most notably at juxtanuclear membranes encircling the nucleus, at nuclear pore complexes

(NPC) on both sides of the nuclear envelope and within intranuclear membrane channels,

and within both chromatin-poor and chromatin-rich regions of the nucleus in a cell cycle-

dependent manner. In addition, a subset of nuclear RGS14 localized adjacent to active RNA

polymerase II. Endogenous RGS14 was absent from the plasma membrane in resting cells;

however, the protein could be trafficked to the plasma membrane from juxtanuclear mem-

branes in endosomes derived from ER/Golgi, following constitutive activation of endoge-

nous RGS14 G protein binding partners using AlF4�. Finally, our findings show that

endogenous RGS14 behaves as a cytoplasmic-nuclear shuttling protein confirming what

has been shown previously for recombinant RGS14. Taken together, the findings highlight

possible cellular roles for RGS14 not previously recognized that are distinct from the regula-

tion of conventional GPCR-G protein signaling, in particular undefined roles for RGS14 in

the nucleus.
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Introduction

Heterotrimeric G proteins couple to cell surface receptors to transduce signals by hormones and

neurotransmitter across the plasma membrane and into the interior of cells to mediate all

aspects of cell and organ physiology [1,2]. The family of RGS proteins bind directly to G proteins

and their receptors to serve as GTPase activating proteins (GAPs) and negatively regulate G pro-

tein signaling events [3]. Whereas most RGS proteins are relatively simple proteins that act as

dedicated GAPs activated Gα subunits, others are more complex with various domains for bind-

ing partners that mediate unconventional G protein signaling events. One such RGS protein is

RGS14, a multifunctional scaffolding protein that interacts with specific G protein alpha sub-

units (Gαi/o) and activated H-Ras to integrate G protein and MAP kinase signaling pathways

[4–9]. Our previous work has shown that RGS14 is highly enriched within pyramidal neurons

of the hippocampus where it serves as an important natural suppressor of long-term potentia-

tion (LTP) and hippocampal-dependent learning and memory (10). Due to the key role that

RGS14 serves in regulating synaptic plasticity, we felt it to be critically important that we deter-

mine where endogenous RGS14 operates within a neuronal cell line for a better understanding

of its cellular roles and functions and the possible mechanism(s) by which it limits LTP.

To date, most of what is known and assumed regarding the cellular functions of RGS14 is

based on the behavior and subcellular localization of tagged (e.g. GFP or FLAG) and overex-

pressed recombinant RGS14 introduced into unnatural host cells (e.g. HEK or HeLa cells). By

contrast, almost nothing is known about the subcellular distribution of endogenous RGS14 in

neuronal cells. Efforts to study this have been hampered by the restriction of RGS14 protein

expression to CA2 hippocampal neurons of adult mice [10,11]. Neuron cultures from adult

mice are not possible; therefore, prior study of RGS14 behavior in cells has been limited to that

of ectopically expressed recombinant RGS14 in unnatural host cells [7,8,12–14]. In those stud-

ies, recombinant epitope-tagged RGS14 localizes predominantly within the cytosol, and can be

recruited to the plasma membrane by co-expression with its Gαi/o binding partners or trapped

in the nucleus following pharmacological blockade of nuclear export. Whether this protein

behavior accurately reflects the subcellular distribution and behavior of endogenous RGS14 in

a neuronal cell line is unknown. Since mislocalization of exogenously expressed proteins can

give a false impression of the endogenous protein’s distribution and in vivo functionalities, the

goal of this study was to investigate the subcellular localization of endogenous RGS14 in its

native cellular environment.

We previously reported that rat B35 neuroblastoma cells naturally express endogenous

RGS14 by immunoblot analysis [15]. In this study, we took advantage of B35 cells to examine

and determine the subcellular distribution and dynamic localization of endogenous RGS14 in

a neuronal cell line. We find that the endogenous RGS14 protein exhibits a different pattern of

subcellular localization and distribution than has been reported for recombinant protein, sug-

gesting novel roles for RGS14 not previously considered. Our findings suggest that endoge-

nous RGS14 may not serve canonical GPCR-G protein signaling roles at the plasma

membrane like other RGS proteins but, rather, it may serve distinct non-canonical roles within

the nucleus, possibly regulating gene expression.

Materials and methods

Plasmids and antibodies

The FLAG-RGS14 and eGFP-RGS14 cDNA used in this study were generated as described

previously [13] using rat RGS14 cDNA (Genbank accession number U92279) [6]. For a com-

prehensive list of antibodies and antibody concentrations used, see Table 1.
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Cell culture and transfections

Rat neuroblastoma (B35), Human cervical carcinoma (HeLa), African Green Monkey kidney

(Cos7), human glioblastoma (SF295), and human embryonic kidney (HEK293) cells were all

maintained in 1X Dulbecco’s modified eagle medium (DMEM) with phenol red indicator

(Mediatech) supplemented with 10% fetal bovine serum (FBS) (Atlanta Biologicals, 5% after

transfection), 100 U/mL penicillin (Mediatech), and 100 mg/mL streptomycin (Mediatech) in

a humidified environment at 37˚C with 5% CO2. For immunofluorescence experiments, cells

were seeded onto poly-D-lysine-coated glass coverslips. All transient transfections were per-

formed using polyethyleneimine (PEI; Polysciences, Inc.) as previously described [16].

Leptomycin B treatment

Leptomycin B (LMB; Santa Cruz), a CRM1-dependent nuclear export inhibitor [17], was

diluted in 70% ethanol. Treatment of B35 cells with LMB was as previously described (Shu

et al., 2007). Where indicated, LMB (or ethanol control) was added to the culture medium at a

final concentration of 20 nM and cells were incubated at 37˚C for the indicated amounts of

time up to 3 hours, followed by fixation and subsequent immunofluorescence staining.

Cell cycle synchronization

To induce G1 cell cycle arrest, B35 cells were plated onto coverslips in complete DMEM media

containing 10% FBS, 100 U/mL penicillin, and 100 mg/mL streptomycin. After 24 hours, com-

plete media was replaced with serum-free media (DMEM without FBS) for 24 hours. To syn-

chronize cells in S or G2, a double thymidine block and release method was used [18].

Thymidine (Sigma) was added to cells at a final concentration of 2 mM for 19 hours to arrest

Table 1. List of antibodies used in this study.

Primary antibody Host Provider Application

RGS14 pAb rabbit Proteintech ICC (1:450); IB (1:500)

FLAG rabbit Sigma ICC (1:1000)

Lamin A/C mouse Cell Signaling ICC (1:3000); IB (1:3000)

OPA1 mouse Biosciences BD IB (1:1000)

GAPDH mouse Santa Cruz IB (1:5000)

414 mAb (NPC) mouse A kind gift from Dr. Maureen Powers, Emory University ICC (1:8000)

KDEL receptor (KDELR) § mouse Stressgen ICC (1:1000)

RNA polymerase II Ser2P (H5) mouse A kind gift from Dr. William G. Kelly, Emory University ICC (1:1000)

HSP60 mouse Enzo Life Sciences ICC (1:5000)

GM130 § mouse BD Transduction ICC (1:1000)

α-tubulin § mouse Sigma ICC (1:2000)

γ-tubulin § mouse Sigma ICC (1:2000)

Mannose 6 phosphate receptor: CI/300 § mouse Gift to the Kahn lab from Annette Hille-Rehfeld ICC (1:1000)

Secondary antibody Host Provider Application

Anti-mouse Alexa 488 goat Molecular Probes ICC (1:1000)

Anti-rabbit Alexa 594 goat Molecular Probes ICC (1:1000)

Anti-rabbit HRP-conjugated IgG goat BioRad IB (1:25,000)

Anti-mouse HRP-conjugated IgG goat Rockland Immunochemicals IB (5000)

ICC: Immunocytochemistry; IB: Immunoblotting
§ Antibodies generously provided by Dr. Richard Kahn’s lab, Emory University

https://doi.org/10.1371/journal.pone.0184497.t001
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cells at G1/S. Cells were washed in 1X PBS and incubated in fresh media for 8 hours followed

by a second treatment with 2 mM of thymidine for an additional 15 hours. At the final release,

cells were washed in 1X PBS and incubated in fresh media. B35 cells were then fixed at various

time points following thymidine release and processed for immunocytochemistry. Cell cycle

stages were confirmed by immunostaining for gamma-tubulin to assess centrosome duplica-

tion and positioning.

Subcellular fractionation

B35 cells were lysed and fractioned to isolate intact nuclei and cytosol in a protocol modified

from [19]. B35 cells were washed and collected in ice cold 1X PBS by centrifuging at 1000 g at

4˚C for 5 min. Cells were then resuspended in 10 volumes of Nonidet-P40 lysis buffer (10 mM

HEPES, pH 7.5; 10 mM KCl; 0.1 mM EDTA; 1 mM dithiothreitol (DTT); 0.5% Nonidet-40;

protease inhibitor cocktail (Roche)) and allowed to swell in ice for 12 min with intermittent

mixing. Samples were then vortexed at max speed for 10–12 sec to disrupt cell membranes,

and 10% of the volume was removed for later assessing whole cell lysates by immunoblotting.

After centrifugation at 1,200 g for 8 min, the supernatant was collected as cytoplasmic extract

and supplemented with 240 mM NaCl. The remaining pellet was washed twice in lysis buffer

then re-suspended in nuclear extraction buffer (20 mM HEPES, pH 7.5; 400 mM NaCl; 1 mM

EDTA; 1 mM DTT; protease inhibitor cocktail), allowed to swell on ice for 30 min, and centri-

fuged at 12,000 g for 15 min. Resulting supernatant was used as the nuclear extract. 5% of each

sample was removed to use for the input prior to immunoprecipitation.

Immunoprecipitation

Cytoplasmic and nuclear extracts were used to immunoprecipitate RGS14 using standard pro-

tocols. Briefly, extracts were incubated with a 1:100 dilution of RGS14 polyclonal antibody

(Proteintech) overnight at 4˚C. Beads only control samples were also incubated overnight at

4˚C without the addition of antibody. 50 μl of protein A-Sepharose beads were washed and

blocked in 3% BSA for 1 hour at 4˚C, and incubated with samples for an additional 1.5 hours

at 4˚C. Beads were then washed 4 times with 0.1% Tween-20 in 1X PBS, re-suspended in 2X

Laemmli sample buffer, and heated at 95˚C for 5 min.

Immunoblotting

Mouse brain lysates were kindly provided by Paul Evans (Hepler lab, Emory University) and

prepared as in (11). Immunoblotting experiments were carried out as descried in (11) with a

few modifications. Briefly, B35 cells were lysed on ice in buffer containing 50 mM Tris-HCl,

pH 8.0, 150 mM NaCl, 1 mM EGTA, 1 mM EDTA,2 mM dithiothreitol, 10 mM MgCl2, prote-

ase inhibitor cocktail (Roche), and 1% TritonX-100. Cell lyastes were incubated on a rotator

for 1 hour at 4˚C, and then cleared by centrifugation at 100,000 × g for 30 min at 4˚C. Lysates

were mixed with Laemmli sample buffer and boiled for 5 min at 95˚C. Samples from the cell

lysates and mouse brain homogenates were loaded onto 11% acrylamide gels, resolved by

SDS-PAGE, transferred to nitrocellulose membranes. After blocking nitrocellulose mem-

branes for 1 hour at room temperature in blocking buffer containing 5% nonfat milk (w/v),

0.1% Tween-20, and 0.02% sodium azide, diluted in 20 mM Tris buffered saline, pH 7.6, mem-

branes were incubated with primary antibodies diluted in the same buffer overnight at 4˚C or

for 2 hours at room temperature. Membranes were then washed in Tris buffered saline con-

taining 0.1% Tween-20 (TBST) and incubated with either an anti-mouse (1:5000) or anti-rab-

bit (1:25,000) HRP-conjugated secondary antibody diluted in TBST for 1hour at room

temperature. Protein bands were detected by enhanced chemiluminescence.
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Immunofluorescence

In this study, we extensively compared native RGS14 staining following various fixation and

permeabilization methods. To visualize native RGS14, unless otherwise stated, B35 cells seeded

onto PDL-coated coverslips were fixed in 3.7% paraformaldehyde (PFA) in PHEM buffer (60

mM PIPES, 25 mM HEPES, 10 mM EGTA, 2 mM MgCl2, pH 6.9. Tris-Glycine; 200 mM, Tris,

0.75% glycine, pH 7.4) for 10 minutes at room temperature (RT), followed by permeabilization

with 100% ice-cold methanol for 5 min at -20˚C. Coverslips were then rinsed three times in

PBS-Tween (0.05% Tween in 1X PBS), blocked in PBS containing 8% BSA for 1 hour at room

temperature, and incubated with primary antibody in PBS containing 4% BSA (antibody

buffer) overnight at 4˚C. Coverslips were then washed for 5 min in PBS-Tween three times,

incubated with Alexa 594 goat anti-rabbit and/or Alexa 488 goat anti-mouse secondary anti-

body (1:1000; Molecular Probes) in antibody buffer for 1–1.5 hours at room temperature,

washed for 5 min in PBS-Tween two times, counter-stained with Hoechst 33342 to visualize

DNA, washed again in PBS-Tween, and mounted onto slides with ProLong Diamond Antifade

mounting media (Invitrogen). All cells transfected with FLAG-RGS14 and B35 cells co-stained

with Rhodamine Phalloidin (F-actin) or anti-HSP60 (mitochondria) were fixed as above and

permeabilized with 0.1% Triton-X in PBS for 10 min at RT. Though native RGS14 distribution

looked similar with all fixation/permeabilization methods, with the exception of saponin per-

meabilization, which does not permeabilize the nuclear membrane, we found that PFA/PHEM

fixation and methanol permeabilization resulted in optimal staining.

Antibody pre-adsorption

In experiments testing antibody specificity, diluted anti-RGS14 polyclonal antibody was incu-

bated with 5X (μg/mL) excess of purified rat RGS14 [14] on a rotator overnight at 4˚C prior to

immunoblot or immunofluorescence. Immunoblots probed with antibody alone and with

antibody pre-absorbed with purified protein were processed in parallel.

Confocal microscopy

Confocal imaging was performed using a 60X oil immersion objective on Olympus FV1000.

Fluorescence channels were scanned sequentially and averaged to avoid bleed through. For

immunofluorescence pre-adsorption experiments comparing staining with RGS14 polyclonal

antibody, pre-adsorbed antibody, and secondary only, all images were acquired and processed

using identical confocal settings (exposure time, gain, intensity). Images were processed and

intensity graphs were generated using ImageJ software (http://rsb.info.nih.gov/ij/).

3D-structured illumination microscopy (SIM)

Super-Resolution 3D-SIM images were acquired with a DeltaVision OMX Blaze system (GE

Healthcare) equipped with a 60X/1.42 NA oil immersion objective, 405, 488, 568, and 642 nm

diode lasers, and sCMOS cameras. Hoechst, Alexa 488, and Alexa 594 staining were excited

with 405, 488, and 568 nm diode lasers, respectively. To limit spectral cross-talk, SIM data

were acquired in alternating excitation mode. Image stacks were acquired with a z-distance of

0.125 μm and computationally reconstructed to generate super-resolution optical serial sec-

tions. Color alignment and SI reconstruction were performed with Softwork software package

version 6.5.2 (GE Healthcare). Subsequent image processing was performed using ImageJ

software.
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Activation of B35 cell endogenous G protein with AlF4�

For aluminum tetrafluoride (AlF4�)- induced G protein activation, B35 cells were incubated

with Tyrode’s solution (140 mM NaCl, 5 mM KCl, 1 mM Mg Cl2, 1 mM CaCl2, 0.37 mM

NaH2PO4, 24 mM NaHCO3, 10 mM HEPES, and 0.1% glucose, pH 7.4) supplemented with or

without (control) 10 mM NaF, 9 mM MgCl2, and 30 μM AlCl3 for indicated times at 37˚C.

Analysis of RGS14 translocation in B35 cells

Translocation of endogenous RGS14 in response to AlF4�-induced G protein activation was

assessed by immunofluorescence and confocal microscopy. After staining B35 cells treated

with AlF4�for 10 min (n = 35) or left untreated (control; n = 35) with anti-RGS14 polyclonal

antibody to detect endogenous RGS14, the fluorescence intensity around the RGS14- enriched

juxtanuclear membrane was compared to the fluorescence intensity of RGS14 within the cyto-

plasm using ImageJ software. Hoechst DNA stain, visualized under the DAPI channel on the

confocal microscope, was used to locate the nucleus, and the area around the nuclear mem-

brane was traced with the freehand tracing tool in ImageJ. Translocation was considered a sig-

nificant difference in relative fluorescence staining around the nuclear membrane between

untreated (control) and AlF4�- treated cells. Relative nuclear membrane fluorescence was deter-

mined by dividing the mean fluorescence intensity (total fluorescence/area) around the juxta-

nuclear membrane by the mean fluorescence intensity in a comparable sized area within the

cytosol. All non-dividing cells from randomly selected fields pooled from three independent

experiments were included in the analysis. Statistical analysis was carried out using GraphPad

Prism software. Comparisons between control and AlF4�-treated B35 cells (n = 35 cells per

group) were performed using a two-tailed unpaired t-test with P< 0.05 considered statistically

significant. Data are reported as mean +/- s.d.

Results

Endogenous RGS14 is expressed in B35 neuroblastoma cells

We previously reported that rat B35 neuroblastoma cells naturally express RGS14 protein at

detectable levels [15]. We used these cells to determine the subcellular localization and cellular

distribution of endogenous RGS14. RGS14 encodes a predicted 61 kDa protein in mouse and

rat. Using a novel and previously uncharacterized polyclonal anti-RGS14 antibody (Protein-

tech), we observed that the antibody recognizes RGS14 in both mouse brain and rat B35 cells,

consistent with our previous observations [11,15]. The RGS14 antibody detected a single band

at approximately 60 kD in wild type mouse brain lysates and B35 cell lysate, but not in lysates

from RGS14 knockout (KO) mouse brain (Fig 1A)) and showed a similar staining pattern in

wild type mouse brain sections as the validated monoclonal antibody (10,20), indicating that

the antibody specifically recognizes endogenous RGS14. To further validate the antibody spec-

ificity, we found that pre-adsorption of the antibody with purified recombinant rat RGS14

completely blocked staining of the 60 kDa band (Fig 1B). We next determined if the antibody

recognized RGS14 in fixed B35 cells detected by immunocytochemistry (Fig 1C). The antibody

recognized diffuse cellular staining that is not due to secondary antibody, and is completely

blocked by preadsorption of the antibody with purified rat RGS14 protein. We further found

that the RGS14 antibody recognizes overexpressed GFP-RGS14 in transiently transfected B35

cells, as antibody staining completely colocalized with intrinsic GFP fluorescence (S1 Fig).

Taken together, these findings demonstrate that the polyclonal RGS14 antibody specifically

recognizes endogenous RGS14 expressed in rat B35 neuroblastoma cells and validate its use in

both western blot and immunofluorescence experiments.
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Endogenous RGS14 localizes to various subcellular compartments in

B35 cells

We next compared the subcellular distribution of endogenous RGS14 in B35 cells with that of

recombinant FLAG-tagged RGS14 (FLAG-RGS14) in various non-host cells (Fig 2A). In line

with findings from our previous studies [4,5,14,20], ectopically expressed FLAG- RGS14

detected by immunofluorescence and confocal microscopy was found to localize predomi-

nantly in the cytosol when over-expressed in various cell lines, including B35 cells (Fig 2A).

To further clarify the subcellular localization of endogenous RGS14 in B35 cells, we first

compared several cell fixation protocols for immunofluorescence to determine optical fixation

and permeabilization conditions. While the subcellular distribution of endogenous RGS14

appeared similar with most fixation and permeabilization protocols tested (S2 Fig), we

Fig 1. RGS14 polyclonal antibody specifically recognizes endogenous RGS14 in mouse brain and

B35 neuroblastoma cells. (A) The presence of endogenous RGS14 in brain from wild type (WT) and RGS14

knockout (KO) mice, and B35 rat neuroblastoma cells was analyzed by SDS-PAGE and immunoblotting with

an RGS14 polyclonal antibody. (B) Equivalent amounts of B35 cell lysate were resolved by SDS–PAGE and

transferred to nitrocellulose membranes. Membranes were probed with an RGS14 antibody or RGS14

antibody pre-adsorbed with five-fold excess (ng protein) purified full-length rat RGS14. (C) Confocal images of

B35 cells immunostained with an RGS14 antibody, RGS14 antibody pre-adsorbed with five-fold excess

purified full-length RGS14, or no primary antibody (secondary only) followed by Alexa 594 secondary antibody

(red). Nuclei were counterstained with Hoechst (blue). Scale bar, 10 μm. All images were acquired and

processed using identical settings. Cells shown are representative of approximately 600 cells observed from

40 fields of view across three independent experiments.

https://doi.org/10.1371/journal.pone.0184497.g001
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Fig 2. Endogenous RGS14 is enriched at juxtanuclear membranes and shuttles between the cytoplasm and

nucleus in B35 cells. (A) FLAG-RGS14 predominantly localizes to the cytoplasm under basal conditions when expressed

in various cell lines. HeLa, HEK293, Cos7, SF295, and B35 cells were transfected with 250–500 ng of FLAG-RGS14

cDNA, immunostained with a FLAG antibody and visualized by confocal microscopy. Scale bar, 10 μm. (B) Optical mid-

section (XY) and orthogonal views (XZ, YZ) of representative confocal z stacks of B35 cells expressing exogenous

FLAG-RGS14 immunostained with a FLAG antibody (left) or endogenous RGS14 immunostained with an RGS14

polyclonal antibody (RGS14 pAb, right). DNA was visualized with Hoechst counterstain (blue). While exogenously

expressed FLAG-RGS14 localizes to the cytoplasm, endogenous RGS14 appears to localize to various subcellular

compartments, including cytoplasmic puncta, nuclear periphery, nuclear matrix, and nuclear foci. (C) Optical mid-section
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observed optimal detection of endogenous RGS14 when B35 cells were fixed with 3.7% para-

formaldehyde in PHEM (cytoskeletal stabilizing buffer) at room temperature and permeabili-

zation with ice cold methanol at -20˚C (see Materials and methods section). Under these

conditions, immunolabeled endogenous RGS14 in B35 cells localized within cytoplasmic

puncta, in unidentified nuclear bodies, and at the nuclear periphery (Fig 2B), a staining pattern

that differed from the diffuse cytoplasmic localization of ectopically expressed recombinant

FLAG-RGS14 (Fig 2A). Notably, the robust RGS14 signal around the nuclear periphery was

diminished in most cells permeabilized with saponin (S2 Fig), which does not permeabilize the

nuclear membrane [21], suggesting that a subpopulation of endogenous RGS14 resides on the

nuclear side of the nuclear envelope. Using 3D-structured illumination microscopy (3D-SIM)

[22] to examine the localization of endogenous RGS14 at the super-resolution level, we found

RGS14 staining appeared in a discontinuous punctate pattern along the nuclear periphery and

also in discrete foci within the nucleus (Fig 2C). To further confirm the nuclear localization of

RGS14, we attempted to immunoprecipitate endogenous RGS14 from cytoplasmic and

nuclear B35 cell fractions (Fig 2D). Immunodetection of the cytosolic marker GAPDH, mito-

chondria marker OPA1, and nuclear membrane marker Lamin A/C confirmed the purity of

the cytoplasmic and nuclear inputs. Immunoprecipitation of RGS14 from these cell fractions

confirmed the presence of endogenous RGS14 in both B35 cell cytoplasmic and nuclear frac-

tions (Fig 2D). Using this approach, we determined that endogenous RGS14 localizes to both

the cytoplasm and, to a lesser extent, the nucleus under basal conditions in B35 cells.

We next examined whether endogenous RGS14 is a cytoplasmic-nuclear shuttling protein.

We and others previously reported that RGS14 contains both a nuclear localization sequence

(NLS) and a nuclear export sequence (NES), and that recombinant RGS14 accumulates in the

nucleus following treatment of cells with Crm1-dependent nuclear export inhibitor, leptomy-

cin B (LMB) [12,13]. In agreement with these previous reports of recombinant RGS14 behav-

ior in HeLa cells, we found that GFP-RGS14 exhibits a predominantly cytoplasmic localization

in B35 cells under basal conditions, but accumulates in the nucleus following treatment of cells

with LMB (Fig 2E, S3 Fig). We next sought to determine whether endogenous RGS14 also

shuttles between the cytoplasm and nucleus in a Crm1-dependent manner. After treatment

with LMB (final concentration, 20 ng/mL for 3 h), we observed a significant increase in the

localization of endogenous RGS14 to the nuclear matrix and a concomitant decrease in locali-

zation around the nuclear periphery (Fig 2F), suggesting that endogenous RGS14 is continu-

ously shuttling between the nucleus and cytoplasm, which may explain its prominent

localization at the nuclear periphery.

(XY) and orthogonal views (XZ, YZ) of a z-stack acquired using 3D-Structured Illumination Microscopy (3D-SIM) of a B35

cell immunostained with RGS14 pAb. Image shows a heat map of pixel intensity (‘Fire’ LUT, ImageJ). (D) Cellular

fractionation of B35 cells into cytoplasmic and nuclear fractions. To assess fractionation purity (Left), whole cell lysate

(WCL) and equal volumes of cytoplasmic (Cyt) and nuclear (Nuc) fractions were probed with antibodies against Lamin A/C

(nuclear membrane), GAPDH (soluble cytosol), and OPA1 (mitochondria). Immunoprecipitation of endogenous RGS14

from both cytoplasmic and nuclear fractions (Right) confirms native RGS14 localizes to both the cytoplasm and nucleus.

Cytoplasmic and nuclear fractions were prepared using equivalent volumes of buffer and used for immunoprecipitation (IP)

of RGS14. Input represents 10% of IP sample volume. Both exogenous GFP-RGS14 (E) and endogenous RGS14 (F)

accumulate in the nucleus in the presence of the inhibitor of CRM1-dependent nuclear export, leptomycin B (LMB).

Untransfected B35 cells or cells transfected with GFP-RGS14 were incubated with 20 nM of LMB or ethanol control for 3

hours. (E) Representative maximum intensity projections of confocal z-stacks of B35 cells expressing GFP-RGS14

incubated with ethanol control (-LMB) or 20 nM of LMB (+LMB) for 3 hours. (F) Representative confocal image (optical mid

section) of an untransfected B35 cells immunostained with RGS14 pAb (red) and anti-Lamin A/C (green) to outline the

nuclear membrane, and counterstained with Hoechst (blue) to visualize the nucleus.. Cells shown are representative of

approximately 600 cells observed from 40 fields of view across 3 independent experiments.

https://doi.org/10.1371/journal.pone.0184497.g002
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Endogenous RGS14 localizes as diffuse puncta in the cytoplasm and is

highly enriched in the juxtanuclear membranes adjacent to

endoplamsmic reticulum

To gain further insight into the cytosolic distribution of endogenous RGS14 outside of the

nucleus, we co-stained B35 cells with antibodies against RGS14 and various endogenous organ-

elle markers (Fig 3). Different fixation and permeabilization conditions were also evaluated for

co-staining experiments because protein components of membranous organelles and cytoskele-

tal structures are preserved to varying extents by different immunofluorescence protocols [23].

Colocalization of RGS14 with organelle markers was evaluated visually by merging the red and

green fluorescence channels (Fig 3). Using confocal microscopy, we found that endogenous

RGS14 puncta are dispersed throughout the cytoplasm and along mictrotubules (Fig 3H). We

did not find significant overlap between RGS14 puncta and organelle markers for filamentous

actin (phallodin) (Fig 3A), centrosomes (γ-tubulin) (Fig 3B), the endoplasmic reticulum (KDEL

receptor) (Fig 3C), lysosomes (Mann-6) (Fig 3E), or Golgi apparatus (GM130) (Fig 3G). We

did, however, find partial colocalization between endogenous RGS14 and mitochondrial

marker HSP60 (Fig 3D) and early endosome marker EEA1 (Fig 3F). In addition, within the

cytoplasm, RGS14 puncta localized to a perinuclear region proximal to the centrosome that was

maintained during various stages of the cell cycle (S4 Fig). Though not overlapping with the ER

marker (Fig 3C), RGS14 staining was enriched in the juxtanuclear region in close proximity to

the ER, along the nuclear periphery. In summary, endogenous RGS14 is localized within the

cytoplasm as diffuse puncta that may include discrete endosomes adjacent to cytoskeletal fila-

ments, and is notably concentrated at the juxtanuclear membrane adjacent to the ER.

Endogenous RGS14 localizes to both the cytoplasmic and nuclear side

of the nuclear envelope

Due to the prominent localization and enrichment of endogenous RGS14 around the nuclear

periphery and within the nucleus, we turned our focus to understanding in greater detail the

localization of endogenous RGS14 within these subcellular regions. B35 cells were co-stained

with antibodies against RGS14 and markers for the nuclear membrane (Lamin A/C), nuclear

pore complex (monoclonal antibody 414, which labels FG-repeat containing nuclear pore

complex proteins), and endoplasmic reticulum (KDELR) (Fig 4). Using confocal microscopy

and 3D-SIM, fluorescence intensity analysis of lines drawn along the nuclear border revealed

predominantly alternating patterns of RGS14 and nuclear pore complex (NPC) peak fluores-

cence signal, with some instances of apparent colocalization that could represent shuttling of

endogenous RGS14 between the cytoplasm and nucleus through nuclear pores (Fig 4A and

4E). In addition, co-labeling B35 cells with an antibody against a marker for the nuclear mem-

brane (Lamin A/C), showed RGS14 signal on both the cytoplasmic and nuclear side of the

nuclear envelope (Fig 4B and 4D). Using 3D-SIM (Fig 4D–4F), we also observed some

instances of colocalization between intranuclear Lamin A/C puncta and RGS14 (Fig 4D).

RGS14 staining around the nuclear periphery consistently resided between the Hoechst-

labeled DNA and ER with both confocal microscopy and 3D-SIM (Fig 4C and 4F).

Endogenous RGS14 localizes to various subnuclear compartments

associated with DNA-poor intranuclear channels and DNA-rich

chromocenters

Serial sectioning with 3D-SIM of B35 cell nuclei further showed that clusters of RGS14 puncta

formed tubule-like structures adjacent to NPCs in intranuclear bodies that were apparent
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Fig 3. Endogenous RGS14 is enriched as puncta at various cytosolic compartments of B35 cells. B35

cells were fixed and co-stained with RGS14 polyclonal antibody (red) and one of several organelle markers

(green): (A) Rhodamine phalloidin, F-actin; (B) γ-tubulin, centrosomes; (C) endoplasmic reticulum, KDELR;

(D) HSP60, mitochondria; (E) lysosomes; (F) Mann-6; EEA1, early endosomes; (G) GM130, Golgi apparatus;

(H) α-tubulin, microtubules. Nuclei were counterstained with Hoechst (blue). For B35 cells co-stained with
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when viewed in different optical planes (Fig 5A–5D). NPCs have previously been reported to

reside in intranuclear channels in DNA-poor regions of the nucleus; NPC populated intranuc-

lear channels also contain nuclear membrane proteins and are contiguous with the cytoplasm

[24]. Though the precise function of NPC-rich intranuclear channels is ambiguous, evidence

exists to support a role for these channels in facilitating nuclear import and export functions

by reducing the distance between the cytoplasm and specific subnuclear compartment located

deep within the nucleoplasm [25].

We further examined RGS14 clustering within the nucleus (Fig 6). 3D-SIM images of B35

cell nuclei stained for endogenous RGS14 and counterstained with Hoechst to visualize DNA

revealed that RGS14 was enriched in both DNA-poor intranuclear channels that appeared to

transect the nucleus and regions of densely Hoechst-stained chromatin (Fig 6A). In addition

to their localization in DNA-poor intracnuclear channels, NPC proteins and lamins have also

been reported to directly interact with condensed, transcriptionally inactive chromatin both at

the nuclear periphery and deep within the nucleoplasm [26–29]. In this regard, we also found

discrete RGS14 foci at the periphery of chromatin-rich (perichromatin) regions and along

nuclear invaginations within the nucleus of some cells (Fig 6B).

Since the perichromatin RGS14 puncta localization pattern was consistent with the previ-

ously described localization of RNA polymerase II [30], we co-stained B35 cells with antibodies

against RGS14 and an antibody that recognizes the active, elongating form of RNA polymerase

II at the 3’ terminus (Ser2P-RNA Pol II) [30–33]. 3D-SIM images in different optical planes

revealed a partial overlap and close proximity between perichromatin RGS14 puncta and

Ser2P-RNA Pol II (Fig 6C–6E), suggesting that a subpopulation of RGS14 within the nucleus

may be involved in transcriptional regulation.

The cellular distribution of endogenous RGS14 is cell cycle-dependent in

B35 cells

Within a given population of B35 cells that were asynchronous in their stage of the cell cycle,

we observed some variation in the distribution of RGS14 within the nucleus, suggesting that

the localization of endogenous RGS14 in B35 cells may change as cells progress through the

cell cycle. To examine this in more detail, we determined endogenous RGS14 subnuclear dis-

tribution within the nucleus at different cell cycle stages (Fig 7). To do so, we used different

protocols to synchronize B35 cells in different cell cycle phases including serum starvation to

synchronize cells in G0/G1 and a double thymidine block and release protocol to synchronize

cells at S, early G2, and G2/M (late G2) stages of the cell cycle as described in Materials and
methods. Synchronization and cell cycle stage were confirmed by staining B35 cells with an

antibody against γ-tubulin to assess centrosome duplication and positioning. At all stages of

the cell cycle, RGS14 foci within the nucleus that were not localized to intranuclear channels

were restricted to the periphery of or within regions of Hoechst-stained DNA, and were absent

in adjacent DNA-poor interchromatin compartments (IC), which are thought to serve as a

preferential compartment for RNA processing and transport [34] (Fig 7). In B35 cell nuclei

synchronized at G1, endogenous RGS14 staining was punctate along perichromatin regions

rhodamine phalloidin to label F-actin (A) and antibody against mitochondrial marker HSP60 (D), cells were

fixed with 4% paraformaldehyde in 1X PBS and permeabilized in 0.1% Triton-X. B35 cells co-stained with all

other organelles were fixed with 4% PFA in PHEM cytoskeleton stabilizing buffer and permeabilized with

methanol. Insets represent magnified boxed regions (2x magnification), and are enlarged to the right of the

merged image (detail). Scale bar, 10 μm. White arrowheads point to regions of endogenous RGS14

colocalization with mitochondrial marker HSP60 (D) and early endosome marker EEA1 (F). Cells shown are

representative of approximately 600 cells observed from 40 fields of view across 3 independent experiments.

https://doi.org/10.1371/journal.pone.0184497.g003
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Fig 4. RGS14 localizes to both the cytoplasmic and nuclear sides of the nuclear envelope in B35 cells.

B35 cells were immunostained for endogenous RGS14 (red) and nuclear pore complex proteins (NPC),

nuclear membrane (Lamin A/C), or endoplasmic reticulum (KDELR) shown in green. Cells were

counterstained with Hoechst to show DNA (blue). Optical mid sections were obtained by confocal microscopy

(A-C; scale bar, 10 μm) or 3D-SIM (D-F; scale bar, 2 μm). (A-C) Insets in confocal images represent

magnified boxed regions (2x magnification). (D-F) Boxed regions in 3D-SIM images are shown to the right at a

2X magnification. Graphs show fluorescence intensity (arbitrary units; a.u.) for each channel across the dotted

white lines in the direction of the arrow in the merged images. RGS14 and nuclear pore complex proteins

mainly localize in alternating puncta along the nuclear periphery (A, E). RGS14 localizes to both the

cytoplasmic (gray asterisk) and nuclear (black asterisk) sides of the nuclear membrane (B, D), and between

the endoplasmic reticulum and nucleus (C, F). Dotted gray line in graph 2 in B traces peak Lamin A/C

fluorescence intensity to highlight that peak RGS14 fluorescence resides on the nuclear side of the nuclear

membrane. Arrow heads indicate regions of apparent colocalization between RGS14 and the nuclear pore

complex by confocal microscopy (A) or nuclear membrane by 3D-SIM (D). Cells shown are representative of

approximately 600 cells observed from 40 fields of view across 3 independent experiments for confocal

images and 50–75 cells for 3D-SIM images. Note that the same set of coverslips used to obtain confocal

images were also used to obtain 3D-SIM images.

https://doi.org/10.1371/journal.pone.0184497.g004
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Fig 5. Endogenous RGS14 localizes to intranuclear channels enriched with nuclear pore complexes (NPC). Z-

projection (A) and optical mid section (B) obtained with 3D-SIM of a B35 cell nucleus immunostained for endogenous

RGS14 (red) and nuclear pore complex proteins (NPC; green). (C, D) Orthogonal views marked by the dotted white lines in

B (XY-projection). White arrowheads in A and B point to the location of a DNA-poor intranuclear channel enriched with

RGS14 and nuclear pore complex proteins (enlarged to the right or bottom of C and D, respectively). Note that RGS14 and

nuclear pore complex proteins are localized to the same transnuclear channel, but do not co-localize. Cells shown are

representative of approximately 75 cells observed across 3 independent experiments.

https://doi.org/10.1371/journal.pone.0184497.g005
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Fig 6. Endogenous RGS14 localizes to chromatin-rich compartments in close proximity with RNA polymerase II

in the nucleus of B35 cells. Representative 3D-SIM images of the different types of RGS14 distributions observed in B35

cell nuclei. (A, B) B35 cell nuclei counterstained with Hoechst (white/gray) and immunostained with an anti-RGS14

polyclonal antibody (red). (A) Higher magnification images of boxed regions in the XY-projection (top left) are shown to the

right. Bottom row shows orthogonal views marked by the dotted white lines in the XY-projection in the indicated planes (1,

XZ; 2, YZ). Yellow arrowheads point to an area of enriched RGS14 staining located within a region of high intensity

Hoechst-stained chromatin (chromocenter). Cyan arrows indicate enriched RGS14 staining within a DNA-poor

intranuclear channel/tubule. Scale bar, 2 μm. (B) Optical mid section (XY-projection) of a B35 cell nucleus with RGS14

puncta enriched at the periphery of a DNA-rich chromocenter at a nuclear invagination. Higher magnification image of
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between DNA-rich and DNA-poor subcompartments and was absent in highly compact chro-

matin areas typically associated with transcriptionally silenced genes [35] (Fig 7A). In S and

early G2 phases, discrete RGS14 foci localized to perichromatin regions as in G1; unlike in G1,

however, RGS14 staining was enriched within heterochromatin-containing areas at the

nuclear periphery and nucleoplasm during S and early G2 phases (Fig 7B and 7C). At late G2,

clusters of RGS14 foci were predominantly found within the most compact, densely stained

chromatin domains (Fig 7D).

Our previous studies and those of others have reported that recombinant RGS14 can local-

ize to centrosomes along with its binding partner Gαi [12,13]. We examined if this was the

case for endogenous RGS14 in B35 cells (S4 Fig). Though our initial investigations revealed no

significant co-localization between RGS14 and centrosome marker γ-tubulin in asynchronous

B35 cells (Fig 3B), cell cycle synchronization experiments revealed that RGS14 localizes to

regions near, but not directly associated with, centrosomes throughout the cell cycle (S4 Fig).

Notably, the endogenous RGS14 signal in the vicinity of the centrosome is coincident with

previously reported staining patterns of exogenous RGS14 when co-transfected with inactive

Gαi1 [12,13] and may reflect an association of RGS14 with the microtubule organizing com-

plex within the pericentriolar material.

AlF4�-induced activation of endogenous G proteins alters the subcellular

localization of endogenous RGS14 in B35 cells

The GPR motif on RGS14, which specifically binds to inactive Gαi1-GDP and Gαi3-GDP

[13,36,37], is thought to be a key regulator of RGS14 cellular distribution in non-host cells

(Shu et al., 2007). Our previous work showed that the RGS domain, which acts as a GAP for

Gαi/o proteins [6–8], can also direct the cellular distribution of recombinant RGS14 in HeLa

cells (Brown et al., 2015). Constitutive activation of ectopically expressed recombinant Gαi/o

with aluminum tetrafluoride (AlF4�), which activates G proteins by mimicking the transition

state of GTP hydrolysis [38,39], is sufficient to recruit FLAG-RGS14 to the plasma membrane

in HeLa cells [14]. Whether activation of endogenous G proteins affects the subcellular locali-

zation of endogenous RGS14 in its natural cellular environment, however, is unknown. There-

fore, we examined whether activation of endogenous Gαi/o in B35 cells could recruit

endogenous RGS14 to the plasma membrane in a similar manner. We treated B35 cells with

AlF4�for various times, fixed and then processed them for immunofluorescence using the

RGS14 polyclonal antibody (Fig 8). In untreated (control) cells, immunofluorescence and con-

focal imaging showed a relative enrichment of RGS14 around the nuclear membrane, as

before. We observed that stimulation of cells with AlF4�lead to an increase in vesicle-like, punc-

tate staining within the cytoplasm after 5 minutes and a notable decrease in nuclear mem-

brane-to- cytoplasm fluorescence intensity by 10 minutes (Fig 8A). Quantifying this

redistribution of RGS14 by examining a large number of cells, we observed a significant and

very apparent redistribution of RGS14 from the nuclear periphery to the cytoplasm after 10

boxed region is shown to the right. Scale bar, 2 μm. (C) Optical mid section of a B35 cell nucleus counterstained with

Hoechst (gray) and immunostained with an anti-RGS14 polyclonal antibody (red) and mAb H5 (green), which recognizes

the 30 end of active RNA Polymerase II (Ser2P RNA Pol II). Higher magnification image of boxed region is shown to the

right. A subpopulation of RGS14 nuclear puncta colocalize with active RNA Polymerase II (Ser2P RNA Pol II) foci (white

arrowheads). Scale bar, 2 μm. Orthogonal views YZ (D) and XZ (E) show RGS14 immunostaining wrapping around Ser2P

RNA Pol II foci and spanning across a DNA-poor interchromatin compartment to connect two DNA-rich chromocenters.

Scale bar, 1 μm. Graphs show fluorescence intensity (arbitrary units; a.u.) for each channel across the dotted white lines in

the direction of the arrow in D and E. Cells shown are representative of approximately 75 cells observed across 3

independent experiments.

https://doi.org/10.1371/journal.pone.0184497.g006
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Fig 7. The distribution of endogenous RGS14 in the nucleus is cell cycle-dependent. (A-D) Representative 3D-SIM

images of B35 cell nuclei synchronized at different stages of the cell cycle. Cells were synchronized at G1/S using a double

thymidine block, fixed at different time points following release (as described in Material and Methods), and immunostained

for endogenous RGS14 (magenta) and centrosome marker γ-tubulin (green), to confirm cell cycle stag, and

counterstained with Hoechst (gray). Scale bar, 2 μm. In some cases, centrosomes did not lie in the same XY-plane as

optimal mid sections through the nuclei and are thus shown in boxes to the left of each corresponding nucleus. Boxed

regions are magnified and shown in numbered panels to the right. Representative images in G1, showing RGS14 puncta in

the nucleus clustered along the periphery of regions of high intensity Hoechst-stained chromatin (chromocenter; A1) and

are largely absent in dark DNA-poor interchromatin compartments (A2). In S and early G2, RGS14 puncta mainly localize
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min with AlF4�(Fig 8B). These data indicate that constitutive G protein activation by AlF4�

causes a redistribution of endogenous RGS14 from basal state cellular membranes around the

nuclear membrane to vesicular structures within the cytoplasm and an accumulation of

RGS14 puncta in a small juxtanuclear region. Co-staining cells with antibodies against RGS14

and specific markers for Trans-Golgi network (TGN38 protein) and cis-Golgi (GM130 pro-

tein), we found that the accumulation of RGS14 puncta at juxtanuclear regions following treat-

ment with AlF4�were adjacent to these markers of the Golgi apparatus (Fig 8C). Notably, a

subset of B35 cells showed a considerable increase in RGS14 localization at the plasma mem-

brane after stimulation with AlF4�for 15 minutes (Fig 8D), whereas other cells continued to

show an accumulation of RGS14 in vesicle-like structures within the cytoplasm, suggesting

that AlF4�- induced translocation of RGS14 is a dynamic process and RGS14 localization at the

plasma membrane may be transient.

Discussion

Understanding the spatiotemporal dynamics of proteins within host cells can provide vital

insight into their native cellular functions. All previous information about the subcellular

localization of RGS14 relied largely on exogenous expression of tagged recombinant protein in

non-host cells. The mislocalization of exogenously expressed proteins is common and can give

a false impression of the endogenous protein’s distribution and in vivo functionalities [40,41].

Thus, the goal of these studies was to define, for the first time, a detailed assessment of the sub-

cellular distribution and dynamic localization of endogenous RGS14 in a neuronal cell line

and to compare and contrast the cellular behavior of endogenous versus recombinant RGS14.

RGS14 is highly restricted in its protein distribution pattern, with protein expression limited

to brain and certain lymphocytes [6]. Within rodent brain, RGS14 is expressed almost exclu-

sively in adult CA2 hippocampal neurons [10,11] which, unfortunately, cannot be isolated for

study. Therefore, to define endogenous RGS14 subcellular distribution, we utilized the only

neuronal cell line reported to express endogenous RGS14, rat B35 neuroblastoma cells [6]. We

found significant differences in the expression patterns and behavior of endogenous RGS14 in

B35 cells compared with tagged recombinant RGS14 in B35 cells and other cell lines, in which

RGS14 is not endogenously expressed. Whereas recombinant RGS14 is diffusely localized to

the cytosol of various host cells, endogenous RGS14 exists as dispersed puncta within the cyto-

plasm, and is enriched along the nuclear periphery and localized on both sides of the nuclear

envelope. Within the nucleus, RGS14 is observed within intranuclear channels adjacent to the

nuclear pore complex, and is found as discrete puncta within both chromatin-rich and chro-

matin-depleted regions of the nucleus.

RGS14 in the cytoplasm

We observe that endogenous RGS14 localizes in punctate structures along microtubules within

the cytoplasm and partially colocalizes with mitochondria and early endosome markers. In

CA2 hippocampal neurons, endogenous RGS14 is observed within pyramidal neurons at den-

drites, spines, soma and axons [10], and we speculate that RGS14 is trafficked as a complex

within DNA-rich chromocenters (B1, C1) and along peripheral heterochromatin (C2, yellow arrow), and remain absent in

DNA-poor interchromatin compartments (B2, C2). Representative images showing the disappearance of RGS14 puncta

within medium-intensity chromatin territories (D1) during late G2/M as cells condense their nuclear genome while

progressing into mitosis; instead, RGS14 puncta are concentrated within the two most highly compact chromocenters (D2,

cyan arrows). Cells shown for each stage are representative of approximately 50–75 cells observed across 3 independent

experiments.

https://doi.org/10.1371/journal.pone.0184497.g007
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Fig 8. Activation of endogenous G proteins with AlF4�induces translocation of endogenous RGS14 from

juxtanuclear membranes to cytosolic puncta and the plasma membrane. Confocal microscopy analysis (A, C, D) and

quantification (B) of endogenous RGS14 translocation from the nuclear membrane after activation of endogenous G

proteins with AlF4�. A significant decrease in endogenous RGS14 localization around the nuclear membrane of B35 cells

was observed 10 min after global G protein activation with AlF4�. (A) Confocal images of B35 cells incubated with or without

(control) AlF4�for indicated times and stained with an anti-RGS14 polyclonal antibody. Boxed regions are enlarged in the

insets. (B) Representative confocal image of an untreated (control) B35 cell stained with the RGS14 polyclonal antibody

(red) and counterstained with Hoechst DNA dye (blue) (left column). Right column shows the same cell with lines drawn

around the nuclear membrane (white) and cytosol (gray) as described in Materials and Methods. Total fluorescence

intensity was measured within the ring around the periphery of the nucleus (bounded by the white lines) and a comparable

sized area within the cytosol (bounded by the gray lines) using ImageJ software. Scatterplot shows the ratio of nuclear

membrane-to-cytosol localization of endogenous RGS14 in B35 cells following treatment with and without 10 min of AlF4�

-induced G protein activation. Nuclear membrane-to-cytosol localization of RGS14 was determined by dividing the average

fluorescence intensity (total fluorescence/area) around the nuclear membrane (Nuc Mem) by the average fluorescence

intensity of a comparable area in the cytosol (Cyt) as described in Materials and Methods. Each point on the scatter plot

represents the Nuc Mem/Cyt fluorescence intensity for a single cell immunostained with an RGS14 antibody and

counterstained with Hoechst DNA dye to locate nuclei (n = 35 cells for each experimental condition, 3 independent

experiments). Horizontal line shows mean Nuc Mem/Cyt intensity ratio. ****P<0.0001 (Student t-test). (C) Localization of

endogenous RGS14 increased within clusters around the trans-Golgi network (anti-TGN38) and Golgi (anti- GM130) after

G protein activation with AlF4�for 10 min, and (D) and at the plasma membrane in some cells after 15 min. Graphs (D) show

fluorescence intensity (arbitrary units; a.u.) of RGS14 along the white lines in the above images. Scale bar, 10 μm in all

cases.

https://doi.org/10.1371/journal.pone.0184497.g008
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with it Gα partner attached to endosomes along microtubules and actin fibers. Consistent with

this idea, RGS14 has previously been reported to bind microtubules and influence tubulin

polymerization in vitro [42]. Thus, RGS14 may be involved in trafficking of endosomes along

microtubules and/or actin filaments, or could be participating in G protein signaling from

endosomes [43]. Germane to this idea, RGS14 contains a GPR motif and other GPR motif-

containing proteins also have been reported to traffic to Golgi and endosomes [44], suggesting

a role for the GPR-Gαi complex in regulating membrane trafficking events.

Though the colocalization of a subset of RGS14 puncta with mitochondria marker HSP60

was initially surprising as RGS14 does not contain a mitochondria localization signal, two

studies have shown that endogenous Gαi1 localizes on the surface of mitochondria in

HEK293T and HeLa cells [45,46]. The role of Gαi1 in relation to mitochondria is currently

unknown, however, it is possible that the subpopulation of RGS14 puncta along mitochondria

is interacting with Gαi1 to regulate some unknown mitochondrial function. In support of this,

other G protein subunits have been reported to regulate mitochondria motility, morphology,

and fusion [46,47]. In addition, possible interactions between Gαi1 and RGS14 in relation to

microtubule and mitochondria dynamics may not be entirely separate. Though speculative,

reported roles for RGS14 and Gαi1 in regulating tubulin polymerization [42,48] suggest that,

in B35 cells, RGS14 could interact with Gαi to modulate tubulin-dependent mitochondria traf-

ficking, anchorage, and/or fusion/fission initiation [49,50].

RGS14 at the centrosome

Previous reports have shown that recombinant RGS14 can localize to centrosomes [12,13],

along with its Gα binding partner Gαi1[51]. Our studies here indicate that a subpopulation of

endogenous RGS14 is found surrounding centrosomes, though its role there is unclear. Based

on these findings and previous findings showing recombinant RGS14 at centrosomes in other

cell lines, we speculate that endogenous RGS14 in B35 cells may be operating within the peri-

centriolar matrix as part of the microtubule organizing center. Of note, other GRP motif-con-

taining proteins have been shown to play a key role regulating microtubule pulling forces

during asymmetric cell division [44]. Given that RGS14 is not expressed until postnatal day 7

in mice (Evans et al., 2014), it is unlikely that RGS14 plays a role centrosome-dependent neu-

ron depolarization, migration, or axon formation, which occur between embryonic days 11

and 18 in the developing mouse brain [52]. Though it is commonly thought that the centro-

some essentially becomes inactive as neurons mature, the possibility exists that the centrosome

may be re-activated to generate microtubules in mature neurons in response to particular sti-

muli or challenges [53]. Alternatively, RGS14 pericentrosomal localization may be restricted to

diving cells, however, many “key” cell cycle regulators and centrosomal proteins in undifferen-

tiated cells have been shown to serve various important functions in adult neurons, including

synaptic plasticity [54].

RGS14 at the nuclear periphery

Surprisingly, our data indicate that endogenous RGS14 is highly enriched at membranes adja-

cent to and surrounding the nuclear envelope in host B35 cells. Since the outer nuclear mem-

brane is contiguous with the ER, we speculate that RGS14 in this region may represent a newly

synthesized pool of RGS14 on the outer ER membrane adjacent to the nuclear envelope that is

positioned for trafficking to various subcellular compartments, including the endomembrane

system, pericentriolar space, and nuclear periphery from which it can rapidly be shuttled into

the nucleus. Positioned at the outer nuclear membrane, RGS14 could be involved in modulat-

ing nuclear positioning and cell polarity or could be dynamically transported through nuclear
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pores into the nuclear matrix, where it serves a currently unknown function. Regarding

RGS14 trafficking to the nucleus, we observed endogenous RGS14 within NPC-rich intranuc-

lear channels and invaginations. Though the precise function of NPC-rich intranuclear chan-

nels is uncertain, these are regarded as a highly specialized membrane subdomain of the ER

[26] with evidence to support a role for these channels in facilitating nuclear import and export

by reducing the distance between the cytoplasm and specific subnuclear compartments located

deep within the nucleoplasm [25]. Similar to intranuclear channels, nuclear invaginations are

typically populated with NPCs and are thought to play a role in improving macromolecular

transportation between the cytoplasm and regions deep within the nuclear interior [25,55].

The localization of endogenous RGS14 to these specialized domains of the nuclear envelope

suggests an as yet undefined role for RGS14 in nuclear transport.

RGS14 in the nucleus

Early reports describing the subcellular localization of RGS14 in HeLa cells found that, under

basal conditions, GFP- tagged RGS14 is predominantly localized to the cytoplasm and, in

some cells, observed as perinuclear dot structures [12,13]. In addition, these early investiga-

tions found that GFP-RGS14 accumulated in the nucleus after application of the nuclear

export inhibitor leptomycin B and localized to subnuclear compartments following mild heat

shock-induced cellular stress [12,13]. These findings suggest that exogenously expressed

recombinant RGS14 is a nucleocytoplasmic protein that rapidly shuttles into and out of the

nucleus to serve diverse cellular roles, though its specific nuclear functions are still unclear. We

observe that endogenous RGS14 behaves similarly, with a subset of the total cellular protein

found within the nucleus in resting cells, and a majority of total cellular RGS14 accumulates in

the nucleus when nuclear export is blocked with LMB treatment. These results confirm that

endogenous RGS14 is in fact a cytoplasmic-nuclear shuttling protein. The observed nuclear

localization of endogenous RGS14 in B35 cells is unsurprising given that RGS14 contains at

least three putative nuclear localization signals (NLS) and a nuclear export signal (NES).

Though native RGS14 in CA2 neurons from fixed hippocampal slices has not been reported in

the nucleus [10], nuclear localization of RGS14 in neurons could depend on specific signals,

including synaptic stimulation or neuronal stress. One intriguing possibility is that, in CA2

neurons, excitatory synaptic stimulation triggers RGS14 to be transported by microtubule-

motors from the synapse to the nucleus. In the nucleus, RGS14 may directly or indirectly serve

as a transcriptional regulator, thereby, influencing long-lasting changes in gene expression and

subsequent synapse formation.

To date, signaling roles for RGS14 within the nucleus are unknown, but of great interest.

Within the nucleus, we observed instances of colocalization between RGS14 with intranuclear

lamin A/C puncta, and RGS14 elsewhere within the nucleus in both chromatin-rich and chro-

matin-poor regions. Intranuclear lamin foci have been reported to reside within DNA-rich

regions of the nucleus and possibly to be involved in transcriptional regulation and/or RNA

splicing [26,56,57]; however, the precise function of these foci is still unclear [26]. Of note,

other RGS proteins have also been reported to translocate from the cytosol to the nucleus,

including RGS10 [58,59], RGS12 [60,61], RGS7 [62,63], RGS6 [64], and RGS9-2 [63], though

specific signaling roles for RGS proteins within the nucleus remain entirely unexplored. Nev-

ertheless, the colocalization between endogenous RGS14 and intranuclear lamin-containing

puncta in B35 cells raises the possibility that RGS14 may play a role in the regulation of gene

expression [24], possibly through non-canonical G-protein signaling mechanisms.

A previous study has shown that overexpression of recombinant RGS14 in heterologous

cell line can alter gene transcription, providing evidence for a possible role of RGS14 in the
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direct or indirect regulation of gene transcription [12]. Consistent with this idea, we observed

RGS14 puncta in chromatic-rich regions of the nucleus with non-condensed DNA. RNA poly-

merase II has been reported to be enriched within these nuclear regions [30], and we observed

RGS14 in close proximity with some overlap with the active elongating form (phosphorylated

at Ser 2) of RNA polymerase II [30–33]. These findings suggest for the first time that a subpop-

ulation of RGS14 within the nucleus may have a direct role in transcriptional regulation. Dur-

ing the G2 phase of the cell cycle, clusters of RGS14 foci were observed within the most

compact, densely stained chromatin domains. Recruitment of genes to these compact chromo-

centers is known to lead to their silencing, whereas loose chromatin in the perichromatin

regions that expand into the interchromatin compartment (IC) contain genes that are tran-

scriptionally active [35]. Though the precise function of endogenous RGS14 within these vari-

ous subnuclear compartments is currently unknown, these findings provide further evidence

that RGS14 may play a role in transcriptional regulation and/or gene silencing.

Translocation following G protein activation

Previous studies defining the behavior of recombinant tagged (GFP or FLAG) RGS14 in non-

host cells show that tagged RGS14 localizes to the cytosol, but that it also can be recruited to

the plasma membrane by co-expressed G protein binding partners, either activated Gαi/o-

AlF4�or inactive Gαi1-GDP [13,14]. Quite unexpectedly, we observed no endogenous RGS14

at the plasma membrane in resting B35 cells. However, endogenous RGS14 can be stimulated

by AlF4�(presumably bound to constitutively active Gαi/o on ER and Golgi membranes) to

traffic from juxtanuclear membranes to the cytosol as puncta (endosomes) that can be traf-

ficked to the plasma membrane. These data suggest that global G protein activation with AlF4�

stimulates the trafficking of endogenous RGS14 from the nuclear periphery to cytosolic endo-

somes, likely derived from the cytoplasmic face of the ER and Golgi, some of which are traf-

ficked to the plasma membrane. We speculate that endogenous RGS14 is translated in the

cytosol and then finds a newly acylated Gα binding partner tethered to the outer leaflet of ER/

Golgi membranes. Consistent with this idea, the RGS14 binding partner Gαi3 is known to be

present and enriched on the cytoplasmic face of both Golgi membranes and endosomes where

is thought to play a role in regulating anterograde protein trafficking to the plasma membrane

[44,65].

In summary, we report here for the first time a detailed assessment of the subcellular distri-

bution and dynamic localization of endogenous RGS14 in B35 neuroblastoma cells. The key

findings show that endogenous RGS14 localizes to subcellular compartments not previously

recognized in studies of recombinant RGS14 in unnatural host cells. The two most surprising

observations were that RGS14 is not enriched at the plasma membrane, and that it is found

within chromatin-rich regions of the nucleus in close proximity with active RNA Pol-II. These

findings challenge models that RGS14 acts exclusively as a regulator of conventional GPCR-G

protein signaling events at the plasma membrane. While this remains possible, as a minor pool

of RGS14 is trafficked to the plasma membrane following AlF4�activation of RGS14 G protein

binding partners, the majority of RGS14 is not at the plasma membrane and remains in close

proximity to the nucleus and within the nucleus for unknown functions unrelated to conven-

tional GPCR signaling. That RGS14 was observed adjacent to active RNA Pol-II strongly sug-

gests a possible novel role in the regulation of gene expression, perhaps as an enhancer or

repressor, or possibly a role in regulating mRNA splicing. Also unexpected was the observation

that RGS14 is most highly enriched at juxtanuclear membranes and can move from this com-

partment either to endosomes and the plasma membrane, or to the nucleus. How RGS14 is

synthesized, how it is targeted to these membranes, and trafficked throughout the cell all
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remain topics for future study. These findings highlight novel cellular roles for RGS14 distinct

from the regulation of conventional GPCR-G protein signaling, in particular undefined roles

for RGS14 in the nucleus, a topic for ongoing and future studies.

Supporting information

S1 Fig. RGS14 polyclonal antibody recognizes GFP-RGS14 transfected into B35 cells. Con-

focal image of a B35 cell expressing GFP-RGS14 immunostained with RGS14 polyclonal anti-

body followed by Alexa 594 secondary antibody (red). The merged image shows complete

colocalization of the RGS14 antibody signal and intrinsic GFP fluorescence (green). Scale bar,

10 μm.

(TIF)

S2 Fig. Comparative effects of standard fixation and permeabilization protocols on the

localization of endogenous RGS14. Confocal images of B35 cells processed for immunocyto-

chemistry using various standard fixation and permeabilization protocols and immunostained

with RGS14 polyclonal antibody. (A) Confocal images of B35 cells fixed by dehydration with

organic solvents, methanol or acetone (5 min, −20˚C). (B) Images of B35 cells fixed by cross-

linking with 4% paraformaldehyde (PFA) in either 1X PBS or cytoskeleton stabilizing PHEM

buffer and permeabilized with 0.1% Triton-X (10 min), 0.02% saponin (continuously), or

methanol (5 min, −20˚C). Scale bar, 10 μm. Note the distribution of RGS14 around the nuclear

periphery in all protocols except with saponin permeabilization, which does not permeabilized

the nuclear envelope. Cells shown are representative of approximately 600 cells observed from

40 fields of view across three independent experiments.

(TIF)

S3 Fig. Translocation and accumulation of GFP-RGS14 in the nucleus of B35 cells upon

treatment with leptomycin B. B35 cells were transfected with 500 ng GFP-RGS14 as

described in Materials and methods. Twenty-four hours post-transfection, B35 cells transiently

expressing GFP-RGS14 were imaged at 37˚C, 5% CO2 with the DeltaVision OMX Blaze system

under the wide-field setting. Prior to imaging, transfection media was replaced with Tyrode’s

solution (140 mM NaCl, 5 mM KCl, 1 mM MgCl2, 1 mM CaCl2, 0.37 mM NaH2PO4, 24 mM

NaHCO3, 10 mM HEPES, and 0.1% glucose, pH 7.4). Cells were imaged for 1 min before the

addition of leptomycin B (LMB) at a final concentration of 20 nM. Z-stacks were acquired

every 10 min for a total of 90 min using a 488 nm laser. Scale bar, 10 μm. Montage is represen-

tative of 3 independent experiments.

(TIF)

S4 Fig. Effect of cell cycle phase on the localization of RGS14 near the centrosome or

Golgi. Confocal images of B35 cells synchronized at G1 phase of the cell cycle (A), or G2/M

phase (B), co-stained with RGS14 polyclonal antibody (red) and centrosome marker, γ-tubu-

lin, or Golgi marker, GM130 (green). Scale bar, 10 μm. White arrowheads point to the pericen-

triolar position of RGS14 puncta proximal to the centrosome during G1 and G2/M and ‘Golgi

ribbon’ during G1. Cells shown are representative of approximately 300–360 cells observed

from 40 fields of view across 3 independent experiments.

(TIF)
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50. Liu X, Weaver D, Shirihai O, Hajnóczky G (2009) Mitochondrial “kiss-and-run”: interplay between mito-

chondrial motility and fusion-fission dynamics. EMBO J 28: 3074–3089. https://doi.org/10.1038/emboj.

2009.255 PMID: 19745815

51. Cho H, Kehrl JH (2007) Localization of Gi alpha proteins in the centrosomes and at the midbody: impli-

cation for their role in cell division. J Cell Biol 178: 245–255. https://doi.org/10.1083/jcb.200604114

PMID: 17635935

52. Lewis TL, Courchet J, Polleux F (2013) Cell biology in neuroscience: Cellular and molecular mecha-

nisms underlying axon formation, growth, and branching. J Cell Biol 202: 837–848. https://doi.org/10.

1083/jcb.201305098 PMID: 24043699

53. Baas PW, Falnikar A (2012) Re-evaluation of the Neuronal Centrosome as a Generator of Microtubules

for Axons and Dendrites. In: Schatten H, editor. The Centrosome. Totowa, NJ: Humana Press. pp.

309–326. https://doi.org/10.1007/978-1-62703-035-9_18

54. Frank CL, Tsai L-H (2009) Alternative functions of core cell cycle regulators in neuronal migration, neu-

ronal maturation, and synaptic plasticity. Neuron 62: 312–326. https://doi.org/10.1016/j.neuron.2009.

03.029 PMID: 19447088

55. Popken J, Graf A, Krebs S, Blum H, Schmid VJ, et al. (2015) Remodeling of the Nuclear Envelope and

Lamina during Bovine Preimplantation Development and Its Functional Implications. PLoS ONE 10:

e0124619. https://doi.org/10.1371/journal.pone.0124619 PMID: 25932910

Endogenous RGS14 localizes to juxtanuclear membranes and chromatin-rich regions of the nucleus

PLOS ONE | https://doi.org/10.1371/journal.pone.0184497 September 21, 2017 26 / 27

https://doi.org/10.1002/9780470015902.a0005768.pub2
https://doi.org/10.1038/35066075
http://www.ncbi.nlm.nih.gov/pubmed/11283701
https://doi.org/10.1074/jbc.M407409200
http://www.ncbi.nlm.nih.gov/pubmed/15337739
https://doi.org/10.1074/jbc.M103208200
http://www.ncbi.nlm.nih.gov/pubmed/11387333
https://doi.org/10.1074/jbc.271.44.27209
https://doi.org/10.1074/jbc.271.44.27209
http://www.ncbi.nlm.nih.gov/pubmed/8910288
http://www.ncbi.nlm.nih.gov/pubmed/9434906
https://doi.org/10.1038/nmeth.2377
http://www.ncbi.nlm.nih.gov/pubmed/23435261
https://doi.org/10.1128/JB.01640-12
https://doi.org/10.1128/JB.01640-12
http://www.ncbi.nlm.nih.gov/pubmed/22961859
https://doi.org/10.4161/cc.4.7.1787
http://www.ncbi.nlm.nih.gov/pubmed/15917656
https://doi.org/10.1074/jbc.R114.617951
https://doi.org/10.1074/jbc.R114.617951
http://www.ncbi.nlm.nih.gov/pubmed/25605726
https://doi.org/10.1016/j.cellsig.2011.08.014
http://www.ncbi.nlm.nih.gov/pubmed/21907280
https://doi.org/10.1016/j.febslet.2007.11.044
http://www.ncbi.nlm.nih.gov/pubmed/18037379
https://doi.org/10.1038/ncomms1099
http://www.ncbi.nlm.nih.gov/pubmed/20981029
https://doi.org/10.1096/fj.07-104224
https://doi.org/10.1096/fj.07-104224
http://www.ncbi.nlm.nih.gov/pubmed/18367648
http://www.ncbi.nlm.nih.gov/pubmed/10224115
https://doi.org/10.1002/cm.20351
http://www.ncbi.nlm.nih.gov/pubmed/19373772
https://doi.org/10.1038/emboj.2009.255
https://doi.org/10.1038/emboj.2009.255
http://www.ncbi.nlm.nih.gov/pubmed/19745815
https://doi.org/10.1083/jcb.200604114
http://www.ncbi.nlm.nih.gov/pubmed/17635935
https://doi.org/10.1083/jcb.201305098
https://doi.org/10.1083/jcb.201305098
http://www.ncbi.nlm.nih.gov/pubmed/24043699
https://doi.org/10.1007/978-1-62703-035-9_18
https://doi.org/10.1016/j.neuron.2009.03.029
https://doi.org/10.1016/j.neuron.2009.03.029
http://www.ncbi.nlm.nih.gov/pubmed/19447088
https://doi.org/10.1371/journal.pone.0124619
http://www.ncbi.nlm.nih.gov/pubmed/25932910
https://doi.org/10.1371/journal.pone.0184497


56. Muralikrishna B, Dhawan J, Rangaraj N, Parnaik VK (2001) Distinct changes in intranuclear lamin A/C

organization during myoblast differentiation. J Cell Sci 114: 4001–4011. PMID: 11739632

57. Jagatheesan G, Thanumalayan S, Muralikrishna B, Rangaraj N, Karande AA, et al. (1999) Colocaliza-

tion of intranuclear lamin foci with RNA splicing factors. J Cell Sci 112 (Pt 24): 4651–4661.

58. Lee J-K, Tansey MG (2015) Physiology of RGS10 in neurons and immune cells. Prog Mol Biol Transl

Sci 133: 153–167. https://doi.org/10.1016/bs.pmbts.2015.01.005 PMID: 26123306

59. Burgon PG, Lee WL, Nixon AB, Peralta EG, Casey PJ (2001) Phosphorylation and nuclear transloca-

tion of a regulator of G protein signaling (RGS10). J Biol Chem 276: 32828–32834. https://doi.org/10.

1074/jbc.M100960200 PMID: 11443111

60. Chatterjee TK, Fisher RA (2002) RGS12TS-S localizes at nuclear matrix-associated subnuclear struc-

tures and represses transcription: structural requirements for subnuclear targeting and transcriptional

repression. Mol Cell Biol 22: 4334–4345. https://doi.org/10.1128/MCB.22.12.4334-4345.2002 PMID:

12024043

61. Chatterjee TK, Fisher RA (2000) Novel alternative splicing and nuclear localization of human RGS12

gene products. J Biol Chem 275: 29660–29671. https://doi.org/10.1074/jbc.M000330200 PMID:

10869340

62. Rose JJ, Taylor JB, Shi J, Cockett MI, Jones PG, et al. (2000) RGS7 is palmitoylated and exists as bio-

chemically distinct forms. J Neurochem 75: 2103–2112. https://doi.org/10.1046/j.1471-4159.2000.

0752103.x PMID: 11032900

63. Witherow DS, Wang Q, Levay K, Cabrera JL, Chen J, et al. (2000) Complexes of the G protein subunit

gbeta 5 with the regulators of G protein signaling RGS7 and RGS9. Characterization in native tissues

and in transfected cells. J Biol Chem 275: 24872–24880. https://doi.org/10.1074/jbc.M001535200

PMID: 10840031

64. Chatterjee TK, Fisher RA (2003) Mild heat and proteotoxic stress promote unique subcellular trafficking

and nucleolar accumulation of RGS6 and other RGS proteins. Role of the RGS domain in stress-

induced trafficking of RGS proteins. J Biol Chem 278: 30272–30282. https://doi.org/10.1074/jbc.

M212688200 PMID: 12761220

65. Zhang P, Kofron CM, Mende U (2015) Heterotrimeric G protein-mediated signaling and its non-canoni-

cal regulation in the heart. Life Sci 129: 35–41. https://doi.org/10.1016/j.lfs.2015.02.029 PMID:

25818188

Endogenous RGS14 localizes to juxtanuclear membranes and chromatin-rich regions of the nucleus

PLOS ONE | https://doi.org/10.1371/journal.pone.0184497 September 21, 2017 27 / 27

http://www.ncbi.nlm.nih.gov/pubmed/11739632
https://doi.org/10.1016/bs.pmbts.2015.01.005
http://www.ncbi.nlm.nih.gov/pubmed/26123306
https://doi.org/10.1074/jbc.M100960200
https://doi.org/10.1074/jbc.M100960200
http://www.ncbi.nlm.nih.gov/pubmed/11443111
https://doi.org/10.1128/MCB.22.12.4334-4345.2002
http://www.ncbi.nlm.nih.gov/pubmed/12024043
https://doi.org/10.1074/jbc.M000330200
http://www.ncbi.nlm.nih.gov/pubmed/10869340
https://doi.org/10.1046/j.1471-4159.2000.0752103.x
https://doi.org/10.1046/j.1471-4159.2000.0752103.x
http://www.ncbi.nlm.nih.gov/pubmed/11032900
https://doi.org/10.1074/jbc.M001535200
http://www.ncbi.nlm.nih.gov/pubmed/10840031
https://doi.org/10.1074/jbc.M212688200
https://doi.org/10.1074/jbc.M212688200
http://www.ncbi.nlm.nih.gov/pubmed/12761220
https://doi.org/10.1016/j.lfs.2015.02.029
http://www.ncbi.nlm.nih.gov/pubmed/25818188
https://doi.org/10.1371/journal.pone.0184497

