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Introduction

Elementary arithmetic comprises four basic operations, 
namely, addition, subtraction, multiplication, and division. 
These operations make it possible to handle various situa-
tions in daily life in which numbers play a role. In addition, 
arithmetic is also a building block for more complex math-
ematical skills. The domain of numerical cognition has 
intensively studied the predictors of arithmetic and math-
ematical skills. One predictor that has received increased 
attention in the past years is ordinality (for overviews, see 
Lyons et  al., 2016; Sury & Rubinsten, 2012). Ordinality 
refers to the relation between items in a sequence and is 
often measured with an order task where different types of 
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sequences are presented such as ordered sequences as 
1-2-3 and non-ordered sequences as 3-1-2. In the order 
task, participants have to decide if a sequence is presented 
in an order or not. Results from previous studies have indi-
cated that there is a strong relation between performance 
on the order task and arithmetic performance in both chil-
dren (Attout & Majerus, 2017; Lyons & Ansari, 2015; 
Lyons et al., 2014; O’Connor et al., 2018, 2019; Sasanguie 
& Vos, 2018; Sommerauer et al., 2020; Vogel et al., 2015) 
and adults (Goffin & Ansari, 2016; Lyons & Beilock, 
2009; Morsanyi et  al., 2017; Orrantia et  al., 2019; 
Sasanguie et al., 2017; Sella et al., 2020; Vogel et al., 2017, 
2019; Vos et al., 2017). However, the mechanisms under-
lying this relationship remain relatively underspecified. 
Although studies have investigated how different types of 
sequences are processed (Lyons et  al., 2016; Sury & 
Rubinsten, 2012), a systematic and balanced examination 
of the different types of sequences is still lacking (see 
Figure 1 for a more balanced example). More specifically, 
most studies have only included a specific set of sequences 
and there has often been an overrepresentation of a partic-
ular type of sequence. Before we assess the relation 
between ordinality and mathematical skills, we therefore 
first systematically examined the strategies involved when 
participants process ordinality. The aim of the current 
study was to, first, systematically unravel the strategies 
involved when processing different types of sequences in 
the order task and, second, to examine the relation between 
ordinality and mathematical skills.

Previous studies have shed light on the behavioural 
effects that occur when performing the order task and con-
sequently provided interesting insights into the potential 
cognitive strategies that could be applied when processing 
different types of sequences (Franklin et  al., 2009; 
Fulbright et  al., 2003; Kaufmann et  al., 2009; Lyons & 
Beilock, 2009, 2013; Lyons et al., 2014; Morsanyi et al., 
2017; Vos et al., 2017). In general, the sequences presented 
in the order task can vary across four dimensions (Figure 
1), and the strategy that is applied to process a sequence is 
dependent on these dimensions. The first dimension is 
order itself; sequences can be presented in an order (e.g., 
3-4-5) or not (e.g., 3-5-4). This dimension has a strong 
influence on how a sequence is processed. In general, 
ordered sequences are processed faster than non-ordered 
sequences (Lyons & Beilock, 2009; Morsanyi et al., 2017; 
Orrantia et al., 2019; Vogel et al., 2017; Vos et al., 2017). 
However, this finding is strongly dependent on a second 
dimension: distance.

The second dimension is distance: the distance between 
the digits can be small (e.g., 3-4-5) or large (e.g., 1-4-9). A 
frequently observed effect found when processing ordered 
sequences is the reversed distance effect (RDE; Franklin 
et al., 2009; Goffin & Ansari, 2016; Lyons & Ansari, 2015; 
Lyons & Beilock, 2013): faster performance when the dis-
tance between the digits is small (e.g., 3-4-5 or 5-4-3) than 
when the distance between them is large (e.g., 1-4-7 or 
7-4-1). Because the RDE is often observed for ordered 
sequences, it has been frequently considered as the 

Figure 1.  Conditions in the order task and the hypothesised effects for each condition.
RDE: reversed distance effect; DE: distance effect.
Distance1_1 implies that the distance between the first and the second digit was one and the distance between the second and the third digit was one. 
The displayed sequence is an example sequence for that specific condition. The number of trials in each condition is displayed between parentheses.
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hallmark of ordinality (Lyons & Ansari, 2015; Lyons & 
Beilock, 2013). The occurrence of the RDE can be attrib-
uted to different strategies that are used for small and large 
distance sequences (Vos et  al., 2017). Sequences with a 
small distance between the digits (such as 1-2-3 and 3-2-1) 
are highly familiar and consist of digits that are strongly 
associated with each other. Consequently, these sequences 
can be easily retrieved from long-term memory. In con-
trast, sequences with a large distance between the digits 
are not familiar and the digits are less strongly associated 
with each other. For these sequences, decisions are proba-
bly based on magnitude comparison. More specifically, to 
decide whether a non-familiar sequence is presented in the 
correct order or not, the magnitude of the consecutive dig-
its has to be assessed and compared. For instance, deciding 
whether the sequence 1-5-9 is in the correct order could 
involve two separate comparisons of the first pair and the 
last pair of digits (1-5 and 5-9, respectively). Thus, the 
RDE that is typically observed for ordered sequences is the 
result of fast retrieval from long-term memory for small 
distance sequences on one hand and the slower process of 
comparison for large distance sequences on the other.

While a RDE is observed for ordered sequences, a 
standard distance effect (DE) is observed for non-ordered 
sequences (Morsanyi et al., 2017; Vogel et al., 2017; Vos 
et  al., 2017): slower performance when the distance 
between the digits is small than when the distance between 
the digits is large (e.g., 5-4-6 is processed slower than 6-4-
7). The standard DE is considered standard because it has 
been consistently observed in comparison tasks where par-
ticipants indicate the largest of two digits (Moyer & 
Landauer, 1967). The DE for non-ordered sequences 
occurs because both small and large non-ordered sequences 
are unfamiliar and consequently magnitude comparison is 
used for all non-ordered sequences.

Although most studies report a RDE for ordered 
sequences, some studies have found a DE instead (Turconi 
et  al., 2004; Vogel et  al., 2015). However, these studies 
only presented pairs of digits and could have therefore 
prompted comparison rather than order processing. 
Furthermore, while some studies report the RDE across 
several distances between the digits, other studies indi-
cated that its appearance is dependent on the distances that 
are presented. For example, Turconi et al. (2006) presented 
pairs of digits and found a RDE only for distance one com-
pared with other distances, but this was not found when 
comparing larger distances with each other. It could be 
argued that this was also due to the presentation of pairs of 
digits instead of triplets, but Goffin and Ansari (2016) and 
Vogel et  al. (2017) found similar results in studies with 
triplets. Moreover, the way in which the DE is calculated 
varies across studies, which is a result of the distances that 
are presented in the order task. Some studies only included 
two distances and calculated the DE based on these two 
distances (Sasanguie et al., 2017; Sasanguie & Vos, 2018), 

while others have calculated the DE over three distances or 
more (Morsanyi et al., 2017; for example, the difference 
between distances one and two and two and three is calcu-
lated). Furthermore, some studies categorised distances in 
small distance trials in which the distance was one and 
large distance trials in which the distances were two, three, 
or more (Vos et  al., 2017). In this case, distance one is 
overrepresented, and this could lead to a stronger RDE. To 
have a complete understanding of the role that distance 
plays in order processing and to see whether the DE is pre-
sent across all distances, a balanced distribution of dis-
tance across trials is rendered necessary.

Within ordered sequences, two additional dimensions 
can be identified: regularity and direction. Regularity 
refers to the fact that sequences can be regular or irregular: 
in regular trials, the intervals between neighbouring digits 
are equal (e.g., 1-3-5), whereas in irregular trials, the inter-
vals between neighbouring digits are unequal (e.g., 1-3-4). 
Most previous studies using the order task did not take 
regularity into account (Lyons & Ansari, 2015; Lyons & 
Beilock, 2013; Sasanguie et al., 2017; Vogel et al., 2017; 
Vos et al., 2017). Nevertheless, regularity has been shown 
to influence how an ordered sequence is processed. Lyons 
and Beilock (2009) found that participants processed regu-
lar ordered sequences of distance one faster than non-
ordered sequences (e.g., 1-2-3 was processed faster than 
2-1-3). The same was true for regular ordered sequences 
with a larger distance between the digits (e.g., 1-3-5 was 
processed faster than 5-1-3). In contrast, the processing of 
irregular ordered sequences did not differ from non-
ordered sequences (e.g., there was no difference between 
the processing time of 1-2-8 and 1-8-2). This suggests that 
regular trials differ from irregular and non-ordered trials, 
but irregular ordered and non-ordered trials are processed 
similarly.

The fourth and last dimension is direction: sequences 
can be presented in an ascending (e.g., 3-4-5) or descend-
ing (e.g., 5-4-3) order. Studies typically observe a RDE for 
both ascending and descending sequences (Franklin et al., 
2009; Franklin & Jonides, 2008; Vos et al., 2017). However, 
Vos et al. (2017) found that ascending sequences elicited 
faster performance than the descending ones, which could 
be due to stronger associations between the digits in the 
ascending sequences resulting in faster retrieval from 
memory. Furthermore, ascending sequences elicit a 
stronger RDE than the descending ones (Vos et al., 2017). 
An explanation for this could be that for ascending 
sequences, the difference in associations between small 
and large distance sequences is larger compared with 
descending sequences (e.g., there is a larger contrast in 
associative strength between the digits in the sequence 
1-2-3 and 1-5-9 than between the digits in the sequences 
3-2-1 and 9-5-1).

Altogether, the RDEs or DEs which have been observed 
in previous studies reflect different strategies that are used 
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when processing ordinality, namely, retrieval from long-
term memory and magnitude comparison. A possible 
explanation for the robust relation between ordinality and 
arithmetic is that both ordinality and arithmetic require 
retrieval from long-term memory and comparison. 
Retrieval from long-term memory and comparison play an 
important role in arithmetic performance (Campbell & 
Xue, 2001). As mentioned above and as indicated by sev-
eral reviews and experimental studies, associative (or 
retrieval-based) strategies and comparison also play a role 
in ordinality (LeFevre & Bisanz, 1986; Lyons et al., 2016; 
Marshuetz & Smith, 2006; Rubinsten & Sury, 2011; 
Sasanguie et  al., 2017; Sella et  al., 2020; Sommerauer 
et  al., 2020; Sury & Rubinsten, 2012; Vos et  al., 2017). 
These strategies could potentially be driving the relation 
between ordinality and arithmetic performance.

Whereas numerous studies have found that ordinality is 
strongly related to arithmetic, the relation between ordinal-
ity and higher, more complex forms of mathematics such as 
mathematical reasoning has received little attention. While 
arithmetic only requires performing an operation (i.e., addi-
tion, subtraction, multiplication, or division) to calculate a 
numerical answer to a problem, mathematical reasoning 
requires one to think about the representation of a problem 
and to subsequently calculate an answer (Gilmore et  al., 
2018). Given the significant role that ordinality is assumed 
to play in arithmetic performance, it is an important step for 
both theory and practice to examine whether it is also 
related to mathematical reasoning. Recently, Morsanyi 
et al. (2018) observed that in adults, ordinality was related 
not only to arithmetic but also to mathematical reasoning 
which was assessed using a cognitive reflection task (meas-
uring the ability to inhibit incorrect responses and instead 
rely on effortful processing) and a probabilistic reasoning 
scale (measuring the ability to reason statistically and make 
decisions about uncertain outcomes). In contrast, Orrantia 
et al. (2019) did not observe a relation between ordinality 
and a general mathematics achievement test where adults 
had to perform mental operations with numbers and quan-
titative concepts as fractions, percentages, and the base-10 
system. In summary, research on the relation between ordi-
nality and more complex mathematics measures is scarce, 
and findings have been inconclusive. Further research is 
needed to examine this relationship.

In the current study, we addressed several gaps in the 
literature about ordinality. While most previous studies 
have included the dimensions order and distance, only a 
few studies have included the dimensions direction (Vos 
et al., 2017) and regularity (Lyons & Beilock, 2009) in their 
assessment of ordinality. To the best of our knowledge, no 
study has included the dimensions order, distance,  
direction, and regularity concurrently in one experiment. 
Moreover, in most past studies, there was no balanced dis-
tribution of the different dimensions across the trials to sys-
tematically examine the mechanisms involved in ordinality. 

The current study aimed to further specify the mechanisms 
involved in ordinality and its relation to mathematics 
achievement by taking into account concurrently all four 
dimensions of ordinality and by assuring a balanced distri-
bution of these dimensions. The first aim of the current 
study was to unravel the strategies involved when process-
ing different types of sequences by systematically examin-
ing the behavioural effects observed for the different 
dimensions of the order task. Therefore, we administered 
an order task for which we balanced trials on the basis of 
order, distance, regularity, and direction (see Figure 1), and 
we examined systematically how each dimension is pro-
cessed. In the presented order task, participants had to 
decide whether a sequence of three digits is presented in 
order or not. Half of the trials were ordered, the other half 
of the trials were non-ordered. Within the ordered trials, 
half of the trials were regular and half of the trials were 
irregular. Within the regular and irregular trials, half of the 
trials were ascending and half of the trials were descending. 
Each of the categories contained three distances, namely, 
small, medium, and large distances. The regular sequences 
included distances of one (small), two (medium), and three 
(large). For irregular sequences, the distance between 
neighbouring digits was one and two (small), one and three 
(medium), and two and three (large). For the non-ordered 
sequences, the following distances were presented: one and 
two (small), one and three (medium), and two and three 
(large). For half of the trials, the distance between the first 
and the second digit was larger than the distance between 
the second and the third digit; for the other half of the trials, 
it was the reverse. The second aim of the study was to 
investigate the well-established relation between ordinality 
and arithmetic and in addition also examine the relation 
between ordinality and more complex forms of mathemat-
ics, specifically mathematical reasoning.

Experiment 1

The first experiment was pre-registered on AsPredicted. 
The pre-registered protocol is available at https://aspre-
dicted.org/c675z.pdf. Participants performed an order 
task, an arithmetic test, and a mathematical reasoning test. 
To make sure the relation between the tasks was not the 
result of processing speed or fluid intelligence, we con-
trolled for these two factors.

The sequences presented in the order task were manipu-
lated across multiple dimensions. In this way, we aimed to 
gain more insight into the strategies involved in the process-
ing of different types of sequences. Both order (e.g., order 
and non-order) and distance (e.g., small, medium, and large 
distances) were manipulated. Also, within the ordered 
sequences, there was a manipulation of direction (i.e., 
ascending and descending) and regularity (i.e., regular and 
irregular). We hypothesised that a comparison strategy can 
be applied to all types of sequences but can be bypassed by 

https://aspredicted.org/c675z.pdf
https://aspredicted.org/c675z.pdf
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fact retrieval when there are strong associations between the 
items in a sequence (e.g., 3-4-5). Figure 1 illustrates the 
behavioural effects that were hypothesised for each condi-
tion based on this hypothesis. In regular sequences with a 
small distance between the digits, digits are highly associ-
ated with each other and can be easily retrieved from long-
term memory, while for regular sequences with a large 
distance, probably comparison is used. Therefore, we pre-
dicted a RDE for regular sequences. On the contrary, in 
irregular and non-ordered sequences, digits in both the small 
and large distance sequences are not strongly associated and 
will probably be processed by multiple digit comparison. 
Hence, we predicted a DE for these sequences.

With regard to the relation between ordinality and 
mathematics performance, we hypothesised that ordinality 
would explain variance in arithmetic above and beyond 
processing speed and fluid intelligence because both ordi-
nality and arithmetic require comparison and fact retrieval. 
However, because mathematical reasoning involves 
mostly abstract reasoning, we expected that ordinality 
would not predict mathematical reasoning above process-
ing speed and fluid intelligence.

Method

Participants.  As our pre-registration indicates, we recruited 
and tested 60 participants at Loughborough University 
(Mage = 23.07 years, SDage = 6.74; 28 men, 32 women). Of 
these participants, 65% had a British citizenship (of which 
3.33% had a dual citizenship), the rest had a citizenship 
from another country. All participants spoke English. As 
pre-registered, we excluded participants pairwise from the 
analysis for a task when their standardised z-score was 
greater than 2.58 on a task. This resulted in the removal of 
the scores of five participants on one of the experimental 
tasks (we excluded three participants for the order task, 
one participant for the mathematical reasoning test, and 
two participants for the processing speed task). Subse-
quently, the repeated-measures analysis of variance 
(ANOVA) for the performance on the order task included 
57 participants. The hierarchical regression analysis with 
arithmetic performance as dependent variable included 55 
participants, and the hierarchical regression analysis with 
mathematical reasoning included 54 participants.

Procedure.  The study was approved by the Ethics Commit-
tee of Loughborough University. Before the start of the 
experiment, participants received information about the 
general nature of the procedure and subsequently signed 
an informed consent. The administration of the experimen-
tal tasks took place in the following order: Tempo Test 
Arithmetic, processing speed task, Wechsler Individual 
Achievement Test–II (WIAT-II) mathematical reasoning 
test, order task, and a short form of Raven’s Advanced Pro-
gressive Matrices (Raven’s APM).

Participants performed the Tempo Test Arithmetic and 
the short form of Raven’s APM by paper and pencil. For 
the WIAT-II mathematical reasoning test, the experimenter 
scored oral responses of the participants. The order task 
and processing speed task were presented in E-Prime 
Professional software, Version 3.0 (Psychological Software 
Tools, Pittsburgh, PA, USA), on a 15-inch colour screen 
laptop with a QWERTY keyboard.

Tasks
Order task.  In the order task, every trial started with a 

fixation cross of 600 ms. Subsequently, a triplet of single 
digits (range: 1–9) appeared on the screen for 1,000 ms 
after which a blank screen appeared. During the stimulus 
presentation or during the blank screen, participants had to 
indicate whether the sequence was presented in order by 
pressing “q” if the sequence was ordered (either ascend-
ing or descending) and by pressing “p” if the sequence 
was non-ordered. After a response was given, an intertrial 
interval of 1,500 ms followed.

The task consisted of 288 trials. The number of trials in 
each condition is displayed in Figure 1. Both accuracies and 
median reaction times for correct responses on this task 
were used as an index of the performance on the order task.

Standardised arithmetic test.  Arithmetic performance 
was measured by an adapted version of the Tempo Test 
Arithmetic (De Vos, 1992; Guillaume et  al., 2016). The 
Tempo Test Arithmetic is a time-limited test, which con-
sists of five subtests: addition, subtraction, multiplication, 
division, and mixed operations. Every subtest consists of 
50 items presented in increasing difficulty. Participants 
had 1 minute to solve as many problems as possible of 
each subtest. For each correct item, one point was credited. 
The raw score of the number of correct responses was used 
as an index of arithmetic performance.

Mathematical reasoning test.  Mathematical reasoning 
was measured with the mathematical reasoning subtest 
of the Wechsler Individual Achievement Test (WIAT; 
Wechsler, 2005). This test presents a series of problems 
with both verbal and visual prompts requiring counting, 
identifying geometric shapes and patterns, interpreting 
graphs, and solving multiple step word problems. The test 
presents questions with regard to time, money, measure-
ment, statistics, and probability. The numbers used in the 
text could be either whole numbers, fractions, or decimals. 
The raw score of the number of correct responses was used 
as an index of mathematical reasoning.

Processing speed task.  Participants performed a process-
ing speed task to control for general processing speed (see 
Reigosa-Crespo et  al., 2011, for a similar task). Partici-
pants had to press the space bar as soon as a black square 
appeared on the screen. After the response, the square  
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disappeared, followed by an inter-stimulus presentation 
time varying between 500 and 1,500 ms. The task started 
with the presentation of four practice trials followed by 
20 test trials. The median RT on this task was taken into 
account as an index of processing speed.

Raven’s APM (short form).  A short form of Raven’s APM 
(Arthur & Day, 1994) was administered to measure general 
fluid intelligence. The task administration started with two 
practice items from Raven’s Standard Progressive Matrices 
(SPM; Raven, 1938). The test items were 12 items from 
Raven’s APM. The raw score of the number of correct 
responses was used as an index of fluid intelligence.

Results

The following main analyses were pre-registered. First, to 
examine the behavioural effects (i.e., DEs and RDEs) of the 
different sequences in the order task, we conducted repeated-
measures ANOVAs. Second, we analysed whether ordinal-
ity predicted arithmetic performance and mathematical 
reasoning. Median reaction times were analysed because 
they are less sensitive to a skewed distribution (Whelan, 
2008). In addition to the main analyses, we also pre-regis-
tered several sub-analyses. To examine which dimensions in 
the order task uniquely predicted the median RT on the task, 
we conducted a by-item linear regression with the dimen-
sions of the trials in the order task as predictors and the 
median reaction time for correct responses as dependent 
variable (see Supplementary Material A). Secondly, we pre-
registered that the main focus of our analyses was on the 
median reaction times, but we also conducted the analyses 
for accuracy scores (see Supplementary Material B).

Pre-registered analyses
The effects of order, distance, regularity, and direction.  

Tables 1 and 2 present median reaction times for correct 
responses in each condition and the mean accuracies for 
each condition. First, we analysed the median RT for cor-
rect responses in both ordered and non-ordered trials. 
Second, because ordered trials can also be distinguished 
regarding regularity and direction, we analysed the median 

RT for correct responses of the ordered trials separately. 
Table 3 displays for which sequences RDEs and DEs were 
found.

To examine the influence of order and distance on the 
median reaction times for correct responses, we conducted a 2 
(order: order, non-order)1 × 3 (distance: small, medium, large) 
repeated-measures ANOVA. In the case of violation of the 
assumption of sphericity, degrees of freedom were corrected 
using Greenhouse–Geisser estimates. Results showed a sig-
nificant effect of order, F(1, 56) = 28.84, p < .001, ηp

2  = .34. 
Ordered sequences (1,073 ms) were processed faster than non-
ordered sequences (1,179 ms). In addition, a significant effect 
of distance was observed, F(1.42, 79.75) = 13.50, p < .001, 
ηp
2  = .19. Sequences with a small distance (1,164 ms) were 

processed slower than sequences with a medium distance 
(1,125 ms), and sequences with a medium distance were pro-
cessed slower than sequences with a large distance (1,089 ms). 
Finally, no interaction between order and distance was found, 
F(2, 112) = 2.52, p = .085, ηp

2  = .04.
For the ordered sequences, we investigated the influ-

ence of direction, regularity, and distance on the median 
RT for correct responses, by a 2 (direction: ascending, 
descending) × 2 (regularity: regular, irregular) × 3 (dis-
tance: small, medium, large) repeated-measures ANOVA. 
There was a main effect of distance, F(2, 106) = 14.20, 
p < .001, ηp

2  = .21. Sequences with a small distance 
(1,130 ms) were processed slower than sequences with a 
medium distance (1,093 ms), and sequences with a medium 
distance were processed slower than sequences with a 
large distance (1,044 ms). A main effect of regularity was 
found, F(1, 53) = 26.92, p < .001, ηp

2  = .34. Regular trials 
(1,045 ms) were processed faster than irregular trials 
(1,133 ms). However, there was no main effect of direc-
tion, F(1, 53) = 0.56, p = .457, ηp

2  = .01. The interaction 
between direction and regularity was significant, F(1, 
53) = 35.71, p < .001, ηp

2  = .40. For ascending sequences, 
there was a significant difference between regular 

Table 1.  Mean accuracies (proportion), median reaction 
times (RTs in milliseconds), and the corresponding standard 
deviations per condition for ordered and non-ordered 
sequences of the order task.

Accuracy RT

Order small .86 (.14) 1,094 (370)
Order medium .88 (.12) 1,085 (380)
Order large .90 (.13) 1,040 (356)
Non-order small .90 (.09) 1,234 (421)
Non-order medium .93 (.07) 1,165 (396)
Non-order large .95 (.07) 1,137 (390)

Table 2.  Mean accuracies (proportion), median reaction times  
(RTs in milliseconds), and the corresponding standard deviations 
per condition for ordered sequences of the order task.

Accuracy RT

Ascending regular small .93 (.10) 1,050 (590)
Ascending regular medium .94 (.07) 1,002 (357)
Ascending regular large .95 (.07) 958 (302)
Ascending irregular small .87 (.22) 1,182 (479)
Ascending irregular medium .85 (.22) 1,176 (492)
Ascending irregular large .89 (.17) 1,112 (443)
Descending regular small .87 (.17) 1,137 (406)
Descending regular medium .88 (.16) 1,093 (371)
Descending regular large .87 (.17) 1,030 (413)
Descending irregular small .79 (.24) 1,150 (397)
Descending irregular medium .85 (.21) 1,099 (429)
Descending irregular large .87 (.21) 1,078 (339)
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(1,003 ms) and irregular sequences (1,157 ms), F(1, 
54) = 44.58, p < .001, ηp

2  = .45. For descending sequences, 
there was no difference between regular (1,087 ms) and 
irregular sequences (1,109 ms), F(1, 53) = 1.73, p = .195, 
ηp
2  = .03. For regular sequences, ascending sequences 

were processed faster (1,003 ms) than descending 
sequences (1,087 ms), F(1, 56) = 12.55, p = .001, ηp

2  = .19. 
For irregular sequences, there was no difference between 
ascending sequences (1,157 ms) and descending sequences 
(1,109 ms), F(1, 53) = 3.36, p = .073, ηp

2  = .06. Finally, no 
interaction effects were observed with distance.

Relation between ordinality and arithmetic performance.  
Table 4 displays the zero-order correlations between the 
experimental tasks and shows a relation between ordinality 
median RT for correct responses and arithmetic. To examine 
whether the median reaction time on the order task explained 
unique variance in arithmetic performance, a hierarchical 
regression analysis was conducted with arithmetic as the 
dependent variable (Table 5). We included processing speed 
and fluid intelligence in the first step followed by a second 
step including the median RT on the order task. Collinearity 
between the tasks imposed no problem, because all variance 
inflation factors (VIFs) were ⩽1.01 and therefore within an 
acceptable range (Field, 2009). Processing speed and fluid 
intelligence explained about 7% of the variance in arithme-
tic performance which was not significant. The median RT 
on the order task explained about 29% additional variance 
and contributed significantly to arithmetic performance.

Exploratory analysis
Relation between ordinality and mathematical reasoning.  

As shown in Table 4, there was no relation between the 
median RT for correct responses on the order task and math-
ematical reasoning. Although there was no relation between 
the median RT for correct responses on the order task and 
mathematical reasoning, the accuracy on the order task was 
related to mathematical reasoning. In addition, there was 
a correlation between fluid intelligence and mathematical 
reasoning. As an exploratory analysis, we conducted a hier-
archical regression analysis with mathematical reasoning as 
the dependent variable (Table 6). We included fluid intel-
ligence and processing speed in the first step of the analysis 
followed by a second step including the accuracy on the order 
task (in contrast to our pre-registration where only reaction 
time was pre-registered as dependent variable). All VIFs 
were within an acceptable range and ⩽1.25 (Field, 2009). 
Fluid intelligence significantly explained about 23% of the 
variance in mathematical reasoning. Including the accuracy 
on the order task as an additional predictor explained about 
1% additional variance, which was not significant.

Discussion

In the first experiment, we found a relation between ordi-
nality and individual differences in arithmetic performance 
which is in line with previous findings (Goffin & Ansari, 
2016; Lyons & Beilock, 2009, 2013; Lyons et al., 2014; 
Morsanyi et al., 2017; Sasanguie et al., 2017; Vogel et al., 
2017; Vos et  al., 2017). In addition, a relation between 
mathematical reasoning and ordinality was observed, but 
this relation was completely explained away by fluid intel-
ligence. The strong relation between ordinality and arith-
metic performance might be a result of similar strategies, 
which are applied when processing ordinality and when 
performing arithmetic. Depending on the sequence that is 
presented, participants use different strategies such as 
retrieval and comparison to decide whether the sequence is 
ordered or not. Similarly, different arithmetic operations 
require different strategies (e.g., fact retrieval or proce-
dural strategies). Furthermore, the strong relation between 
ordinality and arithmetic can possibly be attributed to the 

Table 3.  Occurrence of RDEs and DEs for the different type of sequences.

Order Non-order

  Regular Irregular

  Ascending Descending Ascending Descending

Hypothesised effect RDE RDE DE DE DE
RDE − − − − −
DE * − * − *

RDE: reversed distance effect; DE: distance effect.
The table indicates whether an effect was absent or present for each separate condition. A dash (–) indicates that the effect was absent. An asterisk 
(*) indicates that the effect was present.

Table 4.  Bivariate correlations between the experimental 
tasks.

1 2 3 4 5

1 Ordinality Accuracy  
2 Ordinality RT −.07  
3 Arithmetic .17 −.58**  
4 Mathematical reasoning .32* −.20 .24  
5 Fluid intelligence .46** −.17 .10  .46**  
6 Processing speed −.01 −.12 .24 −.15 −.12

*p < .05, **p < .01.
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ability of flexibly choosing and using different strategies 
when processing order and when performing arithmetic.

By examining the behavioural effects in the order task, 
we could infer which strategies participants were relying on 
while processing different types of sequences. In line with 
our hypothesis, there was a DE for non-ordered sequences, 
a finding that has been observed in several previous studies 
(Lyons & Ansari, 2015; Vos et al., 2017). Furthermore, as 
hypothesised and in line with previous findings (Lyons & 
Beilock, 2009), a DE for ordered irregular sequences was 
found. This DE observed for both irregular ordered and non-
ordered sequences suggests that these sequences are pro-
cessed similarly and that participants rely on comparison 
strategies probably because the associations between the 
digits in these sequences are weak. Surprisingly, though, 
there was also a DE for ordered regular sequences. This 
finding is in contrast with previous studies that found a RDE 
for ordered regular sequences (Goffin & Ansari, 2016; 
Lyons & Ansari, 2015; Lyons & Beilock, 2013; Morsanyi 
et al., 2017; Sasanguie et al., 2017; Vos et al., 2017). The 
typically observed RDE indicated that participants retrieved 
ordered regular small distance sequences from memory but 
used more time-consuming strategies as digit comparison 
for ordered regular large distance sequences. In contrast, the 
DE observed in the current experiment suggests that partici-
pants relied on comparison strategies for both ordered regu-
lar small and large distance sequences.

A reason for the different results in the current study 
compared with previous studies could be that in the current 
study, there were less trials that elicited retrieval strategies 
due to several manipulations. First, while many previous 
studies have only included ordered trials that were regular 
(Lyons & Ansari, 2015; Lyons & Beilock, 2013; Sasanguie 

et al., 2017; Vogel et al., 2017; Vos et al., 2017), we also 
took into account irregular trials that trigger comparison 
strategies for both small and large distance sequences 
resulting in a DE. Second, trials with distance one (i.e., 
trials that trigger a retrieval strategy) were less frequent 
compared with previous studies (e.g., Vos et al., 2017, only 
contrasted distance one with distances two, three, and 
four). Third, trials with the strongest associations (e.g., 
1-2-3 and 2-3-4) were not presented to make sure that the 
overall distance was balanced for the regular, irregular, 
and non-ordered conditions. In sum, while in other studies 
participants might have anticipated a retrieval strategy, a 
reduction of trials that elicit retrieval strategies might have 
resulted in a more frequent use of comparison strategies in 
our study. Consequently, comparison may have even been 
applied to those trials that could be solved by retrieval and 
this resulted in a DE. Thus, the trial list composition list 
might affect the presence or absence of the RDE.

In the second experiment, we further tested whether the 
increased exposure to trials requiring comparison strate-
gies and decreased exposure to trials requiring retrieval 
strategies may explain the absence of a RDE in the first 
experiment. In addition, we again examined the relation 
between ordinality and arithmetic, and we investigated 
whether performance on specific sequences correlated 
more strongly with certain arithmetic operations.

Experiment 2

The second experiment was also pre-registered on 
AsPredicted. The pre-registered protocol is available at 
https://aspredicted.org/ed4br.pdf. Participants performed 
two digit order tasks that differed with respect to the 

Table 5.  Hierarchical regression with arithmetic as dependent variable.

Step Independent variables Standardised β t p R2 ΔR2

1 Processing speed .24 1.80 .078 .07 .07
Fluid intelligence .13 0.93 .357

2 Processing speed .17 1.47 .149 .36** .29**
Fluid intelligence .02 0.21 .832
Ordinality RT −.56 −.4.85 <.001

**p < .01.

Table 6.  Hierarchical regression with mathematical reasoning as dependent variable.

Step Independent variables Standardised β t p R2 ΔR2

1 Processing speed −.08 −0.62 .535 .23** .23**
Fluid intelligence .47 3.83 <.001

2 Processing speed −.08 −0.66 .512 .24** .01
Fluid intelligence .42 2.96 .005
Ordinality Accuracy .10 0.69 .491

**p < .01.

https://aspredicted.org/ed4br.pdf
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presented sequences. In the first digit order task, regular 
ordered sequences and non-ordered sequences were 
included. We will refer to this task as the common order 
task, because order tasks with regular and non-ordered 
sequences (but not irregular sequences) are most com-
monly used in the literature (Lyons & Ansari, 2015; Lyons 
& Beilock, 2013; Sasanguie et al., 2017; Vogel et al., 2017; 
Vos et al., 2017). For this task, half of the ordered trials in 
the trial list were expected to trigger retrieval from long-
term memory and half of the ordered trials in the trial list 
were expected to trigger comparison strategies. Because 
retrieval and comparison strategies are triggered to the 
same extent in the ordered trials, we expected that partici-
pants would use both retrieval and comparison strategies 
when performing the common order task. Figure 2 illus-
trates the behavioural effects that were hypothesised for 
each condition. In this task, we predicted a RDE for 
ordered sequences but a DE for non-ordered sequences. In 
the second order task (balanced order task), regular, irreg-
ular, and non-ordered sequences were included. This task 
is similar to the task that was presented in Experiment 1 
and resembles the tasks in some previous studies (Lyons & 
Beilock, 2009; Orrantia et al., 2019). We will refer to this 
order task as the balanced order task because regular and 
irregular trials were represented equally among the ordered 
trials. For this task, one fourth of the ordered trials in the 
trial list were expected to trigger retrieval strategies, while 
the rest of the ordered trials in the trial list was expected to 
trigger comparison strategies. Here, we expected that the 

majority of the ordered trials would trigger comparison 
strategies and that participants would consequently start to 
apply comparison to all the sequences. Hence, we expected 
DEs for all the sequences (see Figure 3). Finally, we fur-
ther investigated the relation between ordinality and arith-
metic performance by examining the relation between 
specific sequences in the two order tasks and certain arith-
metic operations (i.e., arithmetic operations requiring 
retrieval such as single digit addition and multiplication 
and arithmetic operations requiring procedural strategies 
such as multiple digit subtraction).

Method

Participants.  As pre-registered, 60 Dutch-speaking partici-
pants from the University of Leuven took part in the current 
study for course requirements (Mage = 19.05 years, 
SD = 3.50; 37 women). As pre-registered, we excluded par-
ticipants pairwise from the analysis for a task when their 
standardised z-score was greater than 2.58 on a task. This 
resulted in removing the scores of 14 participants on one of 
the experimental tasks (we excluded two participants for 
the common order task, three participants for the balanced 
order task, two participants for the Tempo Test Arithmetic, 
three participants for the single digit addition task, three 
participants for the multiple digit subtraction task, five par-
ticipants for the single digit multiplication task, and three 
participants for the processing speed task). Subsequently, 
the analysis for the performance on the common order task 

Figure 2.  Conditions in the common order task and the hypothesised effects for each condition.
RDE: reversed distance effect; DE: distance effect.
The displayed sequence is an example sequence for that specific condition. The number of trials in each condition is displayed between parentheses.
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included 58 participants. The analysis for the performance 
on the balanced order task included 57 participants. The 
analysis on both order tasks included 56 participants. The 
analyses on all the tasks included 45 participants.

Procedure.  The study was approved by the Ethics Commit-
tee of the University of Leuven. At the start of the experi-
ment, participants received information about the 
procedure of the experiment after which they signed an 
informed consent. For half of the participants, the experi-
mental tasks were presented in the following order: Tempo 
Test Arithmetic, common order task, single digit addition, 
multiple digit subtraction, single digit multiplication, bal-
anced order task, and processing speed task. The other half 
of the participants performed the experimental tasks in the 
same order, except that the two order tasks were presented 
in reversed order (i.e., the balanced order task was admin-
istered before the common order task). The Tempo Test 
Arithmetic was administered by paper and pencil. The 
other tasks were presented in E-Prime Professional soft-
ware, Version 3.0 (Psychological Software Tools), on a 
15-inch colour screen laptop with an AZERTY keyboard.

Tasks
Order tasks.  In the order tasks, the presentation time of 

the fixation cross, presented triplet of single digits, blank 
screen, and intertrial interval was similar as in Experiment 1 
. The tasks differed with regard to the trial list composition 
as is displayed in Figures 2 and 3. The common order task 
consisted of 112 trials. The balanced order task consisted 
of 224 trials. Both accuracies and median reaction times 
for correct responses on these tasks were used as an index 
of the performance on the order tasks.

Standardised arithmetic test.  Similar as in Experiment 1, 
an adapted version of the Tempo Test Arithmetic (De Vos, 
1992) was used to assess arithmetic performance (Guil-
laume et  al., 2016). However, this time, in line with the 
arithmetic verification tasks, only the addition, subtrac-
tion, and multiplication problems were assessed.

Arithmetic verification tasks.  In the arithmetic verifica-
tion tasks, participants had to verify a series of horizontally 
presented arithmetic calculations. In the verification tasks, 
each trial started with a fixation cross of 600 ms after which 
an arithmetic problem with an outcome was presented on 
the screen. After the participants responded, there was an 
intertrial interval of 1,500 ms. Participants were instructed 
to press “a” when the arithmetic problem was presented 
with a correct answer and to press “p” when the arithmetic 
problem was presented with an incorrect answer. Arithme-
tic verification tasks with the following types of calcula-
tions were presented: single digit addition, multiple digit 
subtraction, and single digit multiplication. Median RTs for 
correct responses were used as an index of the arithmetic 
verification tasks.
Single digit addition: In the verification task with single 
digit addition, 48 trials2 were administered. Twelve unique 
items were presented; these were items with operands 
from 1 to 4 when ties are excluded (see Barrouillet & 
Thevenot, 2013). These trials were presented two times 
with the correct answer, resulting in 24 trials where the 
presented addition was correct. Furthermore, the trials 
were presented two times with an incorrect answer: one 
time with the correct answer minus 1 and one time with the 
correct answer plus 1. This resulted in 24 trials where the 
presented addition was incorrect.

Figure 3.  Conditions in the balanced order task and the hypothesised effects for each condition.
DE: distance effect.
The displayed sequence is an example sequence for that specific condition. The number of trials in each condition is displayed between parentheses.
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Multiple digit subtraction: In the verification task with 
multiple digit subtraction, 48 trials were administered. 
Twelve unique items were presented. Half of these items 
required carrying, half of the items did not. The unique tri-
als were presented two times with the correct answer, 
which resulted in 24 trials where the presented subtraction 
was correct. In addition, the unique trials were presented 
two times with an incorrect answer resulting in 24 trials 
where the presented subtraction was incorrect.
Single digit multiplication: In the verification task with sin-
gle digit multiplication, 48 trials were administered. Twelve 
unique items were presented, that is, items with operands 
from 1 to 4 when ties are excluded. These unique trials were 
presented two times with the correct answer, resulting in 24 
trials where the presented multiplication was correct. In 
addition, the unique trials were presented two times with an 
incorrect table-related answer, resulting in 24 trials where 
the presented multiplication was incorrect.

Processing speed task.  Participants performed a process-
ing speed task to control for general processing speed. In 
contrast to Experiment 1 where participants merely had 
to respond to a visual stimulus, this processing speed task 
required participants to actively process whether three 
presented digits were odd or even. In this task, each trial 
started with a fixation cross of 600 ms after which three 
single digits (range: 1–9) were presented on the screen 
for 1,000 ms. Consequently, a blank screen appeared. The 
task started with the presentation of four practice trials fol-
lowed by 24 test trials. For half of the trials, all the digits in 
the sequence were odd, and for the other half of the trials, 
all the digits presented in the sequence were even. Partici-

pants were instructed to press “a” when the three presented 
digits were odd and to press “p” when the digits were even. 
Participants could respond during stimulus presentation or 
during the blank screen. After the participants responded, 
there was an intertrial interval of 1,500 ms. The median RT 
for correct responses on this task was taken into account as 
an index of processing speed.

Results

The following main analyses were pre-registered. First, 
we analysed the behavioural effects (i.e., DEs and RDEs) 
of the different sequences in the common order task and 
the balanced order task with repeated-measures ANOVAs. 
Second, we computed partial correlations between the 
different sequences of each order task and, respectively, 
the Tempo Test Arithmetic, single digit addition, single 
digit multiplication, and multiple digit subtraction when 
controlling for processing speed, and we compared these 
correlations with Hotelling–Williams tests. Besides these 
pre-registered main analyses, the sub-analyses for accu-
racies were preregistered and these analyses are reported 
in the Supplementary Material (see Supplementary 
Material C). Additionally, the Supplementary Material 
contains an elaborate description of the repeated-meas-
ures ANOVA including presentation order (see 
Supplementary Material D).

Pre-registered analyses
Common order task.  Tables 7 and 8 present median 

reaction times for correct responses and the mean accura-
cies for each condition of the common order task. Table 
9 displays for which sequences RDEs and DEs were 
found. The influence of order and distance on the median 
RT for correct responses was examined by conducting a 
2 (order: order, non-order) × 2 (distance: small, large) 
repeated-measures ANOVA. Results indicated a main 
effect of order, F(1, 57) = 19.51, p < .001, ηp

2  = .26, and 
distance, F(1, 57) = 11.35, p = .001, ηp

2  = .17. Ordered 

Table 7.  Mean accuracies (proportion), median reaction 
times (RTs in milliseconds), and the corresponding standard 
deviations per condition for ordered sequences and non-
ordered sequences of the common order task.

Accuracy RT

Order small .93 (.05) 1,057 (332)
Order large .92 (.07) 1,052 (335)
Non-order small .92 (.06) 1,212 (406)
Non-order large .95 (.07) 1,104 (394)

Table 8.  Mean accuracies (proportion), median reaction times 
(RTs in milliseconds), and the corresponding standard deviations 
per condition for ordered sequences of the common order task.

Accuracy RT

Ascending small .96 (.06) 996 (321)
Ascending large .96 (.06) 1,023 (344)
Descending small .91 (.08) 1,124 (376)
Descending large .89 (.11) 1,115 (355)

Table 9.  Occurrence of RDEs and DEs for the different types 
of sequences of the common order task.

Order Non-order

Regular

Ascending Descending

Hypothesised effect RDE RDE DE
RDE − − −
DE − − *

RDE: reversed distance effect; DE: distance effect.
The table indicates whether an effect was absent or present for each 
separate condition A dash (–) indicates that the effect was absent. An 
asterisk (*) indicates that the effect was present.
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sequences (1,055 ms) were processed faster compared 
with non-ordered sequences (1,158 ms), and small distance 
sequences (1,135 ms) were processed slower than large 
distance sequences (1078ms). Furthermore, an interaction 
between order and distance was found, F(1, 57) = 13.65, 
p < .001, ηp

2  = .19. While no DE was found for ordered 
sequences, t(57) = 0.22, p = .826, a standard DE was found 
for non-ordered sequences, t(57) = 4.69, p < .001.

For the ordered trials, we examined the influence of 
direction and distance on the median RT for correct 
responses by a 2 (direction: ascending, descending) × 2 
(distance: small, large) repeated-measures ANOVA. An 
effect of direction was observed, F(1, 57) = 52.53, p < .001, 
ηp
2  = .48. Ascending sequences (1,010 ms) were processed 

faster than descending sequences (1,120 ms). However, 
results indicated no effect of distance, F(1, 57) = 0.17, 
p = .680, ηp

2  = .003, and no interaction between direction 
and distance, F(1, 57) = 1.34, p = .251, ηp

2  = .02.

Balanced order task.  Tables 10 and 11 present median 
reaction times for correct responses and the mean accura-
cies for each condition of the balanced order task. Table 
12 displays for which sequences RDEs and DEs were 
found. The influence of order and distance on the median 
RT for correct responses was investigated by conduct-
ing a 2 (order: order, non-order) × 2 (distance: small, 
large) repeated-measures ANOVA. No main effects were 
present for order, F(1, 56) = 1.83, p = .181, ηp

2  = .03, and 
distance, F(1, 56) = 0.24, p = .626, ηp

2  = .004. Similarly, no 
interaction between order and distance was observed, F(1, 
56) = 0.80, p = .375, ηp

2  = .01.

For the ordered trials, we examined the influence of 
direction, regularity, and distance on the median RT for 
correct responses by a 2 (direction: ascending, descend-
ing) × 2 (regularity: regular, irregular) × 2 (distance: 
small, large) repeated-measures ANOVA. Effects were 
observed for both direction, F(1, 55) = 4.36, p = .041, 
ηp
2  = .07, and regularity, F(1, 55) = 8.50, p = .005, ηp

2  = .13. 
Ascending sequences (1,238 ms) were processed faster 
than descending sequences (1,277 ms), and regular 
sequences (1,240 ms) were processed faster than irregular 
sequences (1,276 ms). However, there was no effect of dis-
tance, F(1, 55) = 0.39, p = .533, ηp

2  = .01. Furthermore, no 
interaction effects were found.

Relation between ordinality and arithmetic calculations.  
Table 13 displays the partial correlations between the 
median reaction times for correct responses on the 
sequences presented in the order tasks, Tempo Test Arith-
metic, single digit addition, multiple digit subtraction, and 
single digit multiplication after controlling for processing 
speed. Consequently, we conducted Hotelling–Williams 
tests to examine (a) whether the correlations differed sig-
nificantly across the arithmetic operations (see Table 14) 
and (b) whether the correlations between the sequences 
and the arithmetic operations differed between the two 
tasks (see Table 15). In total, 36 Hotelling–Williams tests 
were performed. To correct for the problem of multiple 
comparisons, we tested each hypothesis at a significance 
level of .001 (α = .05/36 = .001). Results indicated no sig-
nificant difference between the correlations.

Exploratory analyses
Modulation of task.  To test whether the observed effects 

were modulated by the presented task, we conducted 
repeated-measures ANOVA with order and distance as 
within-subject variables and task as between-subject 
variable. Results showed significant effects for order, 
F(1, 111) = 19.25, p < .001, ηp

2  = .15. Ordered sequences 
(1,156 ms) were processed faster than non-ordered 
sequences (1,219 ms). Furthermore, a main effect of dis-
tance was found, F(1, 11) = 7.74, p = .006, ηp

2  = .06. Small 
distance sequences (1,204 ms) were processed slower than 
large distance sequences (1,172 ms). There was a significant 
interaction between order and distance, F(1, 113) = 10.51, 
p = .002, ηp

2  = .09. A significant effect of task was found, 
F(1, 113) = 6.64, p = .011, ηp

2  = .06, showing faster perfor-
mance on the trials of the common order task (1,106 ms) 
compared with trials on the balanced order task (1,269 ms). 
Furthermore, interaction effects were found between order 
and task, F(1, 111) = 8.12, p = .005, ηp

2  = .07, and between 
distance and task, F(1, 111) = 4.44, p = .037, ηp

2  = .04. 
Together, these results show that the observed effects were 
modulated by the trial list composition of the tasks.

Modulation of presentation order.  In the pre-registered 
analyses presented above, we did not take into account pres-
entation order of the tasks. However, presentation order was 

Table 10.  Mean accuracies (proportion), median reaction 
times (RTs in milliseconds), and the corresponding standard 
deviations per condition for ordered sequences and non-
ordered sequences of the balanced order task.

Accuracy RT

Order small .78 (.14) 1,256 (323)
Order large .81 (.13) 1,261 (375)
Non-order small .80 (.13) 1,290 (335)
Non-order large .82 (.12) 1,270 (346)

Table 11.  Mean accuracies (proportion), median RT (RTs in 
milliseconds), and the corresponding standard deviations per 
condition for ordered sequences of the balanced order task.

Accuracy RT

Ascending regular small .82 (.15) 1,219 (314)
Ascending regular large .83 (.12) 1,214 (369)
Ascending irregular small .78 (.20) 1,249 (317)
Ascending irregular large .81 (.19) 1,272 (382)
Descending regular small .78 (.15) 1,292 (382)
Descending regular large .82 (.14) 1,234 (321)
Descending irregular small .74 (.23) 1,296 (337)
Descending irregular large .79 (.18) 1,286 (329)
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part of our design and might have an important influence on 
how the different sequences are processed. Therefore, we 
conducted exploratory repeated-measures ANOVAs with 
presentation order as between-subject variable. Surpris-
ingly, we found that presentation order played a role.

For the balanced order task, an effect of presentation 
order was observed, F(1, 55) = 7.03, p = .010, ηp

2  = .11, 
showing that the group that started with the common order 
task (1,157 ms) performed significantly faster on the 

balanced order task compared with the group that started 
with the balanced order task (1,378 ms).

For the common order task, no main effect of presentation 
order was observed, F(1, 56) = 3.43, p = .069, ηp

2  = .06. 
However, the repeated-measures ANOVA on all the trials of 
the common order task showed a significant interaction 
between distance and presentation order, F(1, 56) = 6.59, 
p = .013, ηp

2  = .11. Participants starting with the common 
order responded faster to large distance trials (1,185 ms) 

Table 12.  Occurrence of RDEs and DEs for the different type of sequences of the balanced order task.

Order Non-order

Regular Irregular

Ascending Descending Ascending Descending

Hypothesised effect DE DE DE DE DE
RDE − − − − −
DE − − − − −

RDE: reversed distance effect; DE: distance effect.
The table indicates whether an effect was absent or present for each separate condition A dash (–) indicates that the effect was absent.

Table 13.  Partial correlations between the Tempo Test Arithmetic, the median reaction times on the conditions of the common 
and balanced order task, and the median reaction times on the arithmetic verification tasks after controlling for processing speed.

1 2 3 4 5 6 7 8 9 10 11

1 Tempo Test Arithmetic  
2 Addition −.37*  
3 Subtraction −.61** .65**  
4 Multiplication −.48** .60** .62**  
5 Common order task—Order small .05 .33* .22 .22  
6 Common order task—Order large .13 .21 .10 .10 .92**  
7 Common order task—Non-order small .05 .36* .18 .13 .87** .83**  
8 Common order task—Non-order large .11 .22 .11 .02 .80** .82** .90**  
9 Balanced order task—Order small −.25 .53** .53** .53** .53** .45** .44** .32*  
10 Balanced order task—Order large −.17 .44** .40** .40** .47** .51** .44** .30 .79**  
11 Balanced order task—Non-order small −.27 .61** .54** .49** .58** .49** .57** .42** .89** .79**  
12 Balanced order task—Non-order large −.26 .60** .50** .44** .54** .48** .52** .36* .91** .85** .95**

*p < .05, **p < .01.

Table 14.  Hotelling–Williams tests for the difference in correlations between the median reaction times on the conditions of each 
order task and the arithmetic operations after controlling for processing speed.

Task Sequence Addition vs. 
subtraction

Addition vs. 
multiplication

Subtraction vs. 
multiplication

t p t p t p

Common 
order task

Order small 0.87 .390 0.81 .422 0 1.00
Order large 0.84 .406 0.79 .437 0 1.00
Non-order small 1.44 .157 1.73 .092 0.36 .718
Non-order large 0.84 .405 1.45 .156 0.65 .520

Balanced 
order task

Order small 0 1.00 0 1.00 0 1.00
Order large 0.34 .739 0.32 .754 0 1.00
Non-order small 0.67 .505 1.07 .293 0.43 .667
Non-order large 0.94 .353 1.39 .171 0.50 .618
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compared with small distance trials (1,198 ms), but this dif-
ference was not significant, F(1, 27) = 0.26, p = .614, ηp

2  = .01. 
Participants starting with the balanced order task responded 
significantly faster to large distance trials (978 ms) compared 
with small distance trials (1,074 ms), F(1, 29) = 30.32, 
p < .001, ηp

2  = .51.
A repeated-measures ANOVA on the ordered trials in the 

common order task also revealed a significant interaction 
between distance and presentation order, F(1, 56) = 6.28, 
p = .015, ηp

2  = .10. Participants starting with the common 
order task responded faster to small distance trials (1,100 ms) 
compared with large distance trials (1,161 ms) although this 
difference was not significant, F(27) = 4.16, p = .051, ηp

2  = .13. 
The participants starting with the balanced order task 
responded faster to large distance trials (983 ms) compared 
with small distance trials (1,023 ms), but this difference was 
also not significant, F(29) = 2.17, p = .151, ηp

2  = .07. In sum, 
these results show that presentation order modulated the gen-
eral RT on the balanced order task and the observed effects in 
the common order task.

Discussion

In the second experiment, we examined whether the absence 
of the RDE in the first experiment was due to the composi-
tion of the trial list. Therefore, participants performed two 
order tasks that differed in trial list composition. In both 
tasks, no RDEs were observed. In addition, results demon-
strated that the observed effects were modulated by the trial 
list composition of the tasks. Furthermore, presentation 
order modulated the general reaction time for the balanced 
order task and the DEs for the common order task, that is, 
the task containing a large proportion of regularly ordered 
trials. These findings suggest that while the RDE has been 
considered as a robust effect in the order task (Lyons & 
Ansari, 2015; Lyons & Beilock, 2013), its appearance is 
actually highly dependent on the trial list composition and 
presentation order of tasks.

In contrast to the results observed in Experiment 1, no 
RDEs or DEs were observed for the balanced order task in 
Experiment 2. This difference could again be explained by 
the composition of the trial list. In Experiment 1, some of the 
ordered regular sequences with a medium and large distance 
(e.g., 2-4-6, 4-6-8, and 3-6-9, which resemble the multiplica-
tion table) might have been more familiar and could be more 

easily retrieved from memory than ordered regular sequences 
with a small distance (e.g., 3-4-5, 4-5-6, and 5-6-7). In 
Experiment 2, a larger variation of trials was presented. 
Among this larger variation of trials, there was probably an 
equal amount of familiar trials (that can be retrieved from 
long-term memory) for small and large distance sequences 
resulting in no difference in processing time.

In Experiment 2, we also further examined how differ-
ent sequences were related to single digit addition and 
multiplication (i.e., arithmetic operations requiring 
retrieval) and multiple digit subtraction (i.e., an arithmetic 
operation requiring procedural strategies). Results showed 
that there were no significant differences regarding the 
associations of the sequences with the different arithmetic 
operations. There were also no differences between the 
order tasks regarding the size of the correlations between 
the sequences and arithmetic. While a specific category of 
sequences is probably primarily processed by a specific 
strategy, it might be the case that some sequences in a cat-
egory are processed by an alternative strategy. For exam-
ple, most ordered large distance sequences might be 
processed by comparison strategies (e.g., 1-3-5), but for 
some sequences also a retrieval strategy might be used 
(e.g., 2-4-6 because this sequence resembles the multipli-
cation table of two). As a result, the correlations between 
the sequences and the arithmetic operations do not signifi-
cantly differ across different arithmetic operations and do 
not differ between the two tasks. To gain more insight in 
the relation between specific sequences and certain arith-
metic operations, future research could include conditions 
with merely sequences that elicit a specific strategy such 
as retrieval or comparison.

To sum up, performance on specific sequences in spe-
cific tasks did not correlate more strongly with certain 
arithmetic operations. Furthermore, the results indicate 
that the occurrence of the DEs is modulated by the trial list 
composition and the presentation order of the tasks. These 
results show that both the trial list composition and the 
presentation order of the tasks have a crucial influence on 
the strategies that are used when performing an order task.

General discussion

Recently, there has been an increasing interest in the rela-
tion between ordinality and arithmetic performance, but 

Table 15.  Hotelling–Williams tests for the difference between the order tasks regarding the correlations between the sequences 
and arithmetic operations after controlling for processing speed.

Addition Subtraction Multiplication

  t p t p t p

Order small −1.51 .139 −2.35 .024 −2.35 .024
Order large −1.61 .116 −2.08 .044 −2.08 .044
Non-order small −2.10 .041 −2.92 .006 −2.83 .007
Non-order large −2.57 .014 −2.47 .018 −2.60 .013
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the mechanisms underlying this relation remain relatively 
underspecified. The objective of the present study was to 
uncover these mechanisms by addressing two aims. First, 
we aimed to systematically unravel the strategies involved 
when processing different types of sequences in the order 
task. Therefore, we took all the possible dimensions of the 
sequences into account in the first experiment and exam-
ined the influence of the trial list composition in the sec-
ond experiment. Second, we aimed to further examine how 
ordinality is related to arithmetic performance and mathe-
matical reasoning.

In two experiments, we showed that observed behav-
ioural effects in the order task are highly dependent on the 
trial list composition. In contrast to our hypothesis and 
previous observations, standard DEs were found for both 
ordered and non-ordered sequences in the first experiment, 
suggesting that participants did not use retrieval strategies. 
In the second experiment, we directly investigated whether 
the different compositions of the trial list in the first exper-
iment—compared with previous studies—could explain 
why we did not replicate the finding of a RDE for ordered 
regular sequences. Two order tasks with a different com-
position of trials were presented, and the results showed 
that in both tasks no RDE was found. In both experiments, 
trials with the strongest associations (e.g., 1-2-3) were not 
present. Probably, the absence of these trials resulted in a 
weak reliance on retrieval strategies, and therefore no 
RDE was observed. Furthermore, results demonstrated 
that the observed effects were modulated by the trial list 
composition of the tasks. In addition, presentation order 
modulated the DEs for the task containing a large propor-
tion of regularly ordered trials.

We believe that this is the first study that shows that the 
occurrence of the RDE is dependent on the trial list com-
position and presentation order of tasks. Two experiments 
demonstrated that the RDE does not occur when few 
retrieval trials are presented. Moreover, results revealed 
that the presentation order of the tasks plays a role for tasks 
containing numerous trials that elicit retrieval strategies. 
An implication of our findings is that researchers should 
be cautious when using the RDE as a predictor of arithme-
tic performance. This study demonstrates that the RDE is 
not as robust as previously thought and its presence is 
highly dependent on the trial list composition and the con-
text in which the task is presented.

The finding that the cognitive strategy applied on a 
given trial can be influenced by the trial list composition in 
a given task is not new and has been reported earlier in 
several research domains of cognitive psychology, such as 
in the domains of problem solving (Luchins, 1942) and 
inhibition (Allport et al., 1994) and also in the domain of 
numerical cognition (Lemaire & Reder, 1999; Macizo & 
Herrera, 2011). For instance, Macizo and Herrera (2011) 
showed that an increased exposure to trials with a unit-
decade incompatibility effect (i.e., an effect that occurs 
when the decade comparison leads to a different decision 

than the unit comparison) facilitated strategies that led to a 
correct response for these types of trials. From these find-
ings, it was concluded that the processing of digits is mod-
ulated by cognitive control: participants adapt their 
strategies to the task demands. Similarly, Lemaire and 
Reder (1999) found that the trial list composition affected 
the parity effect in arithmetic verification tasks (i.e., better 
performance for false problems when there is a mismatch 
in the odd/even status of the presented answer and the cor-
rect answer). Results showed larger parity effects when 
there was a large proportion of false problems violating 
parity. Moreover, previous studies have not only shown 
that participants adapt their strategies to the task demands, 
but it has even been found that when a strategy is applied 
to a certain trial, it is more likely to be used on the next 
trial. For example, in a study by Lemaire and Lecacheur 
(2010), participants had to solve two digit addition prob-
lems. After being instructed which strategy to use for the 
first problem, they observed that participants showed a 
tendency to repeat the same strategy on consecutive trials. 
In the current study, we observed a similar influence of the 
trial list composition and presentation order.

A limitation of the current study is that we can only 
indirectly derive the strategies that are used from the 
behavioural effects. As a consequence, we can only derive 
the main strategy that is used for a specific category of 
sequences indirectly. To draw a more complete picture on 
the cognitive strategies that participants use when process-
ing ordinality, future research would benefit from methods 
that would assess the applied strategies more directly. One 
possibility is to ask participants to perform the order task 
out loud. Furthermore, strategy reports could be used to 
gain more insight in the strategies that participants use.

Similar to previous studies, results in the current study 
also showed that ordinality was strongly related to arithme-
tic performance. Furthermore, the current study showed 
that there was a relation between ordinality and more 
advanced mathematical reasoning. However, this relation 
disappeared when fluid intelligence (measured with 
Raven’s APM test) was taken into account (Arthur & Day, 
1994; Raven, 1938). The Raven is known to measure 
abstract reasoning skills and visuospatial reasoning (Raven, 
1938; Waschl, 2017). Our observation that the relation 
between ordinality and mathematical reasoning was com-
pletely explained by fluid intelligence suggests that math-
ematical reasoning relies on higher order abstract reasoning 
skills. So far, findings about the relation between ordinality 
and more complex mathematics have been inconclusive. 
Morsanyi et al. (2018) concluded that ordinality uniquely 
predicts mathematical reasoning. An explanation for the 
inconsistency between the current study and the study of 
Morsanyi et al. (2018) is that different tasks were used to 
measure mathematical reasoning. Morsanyi et  al. (2018) 
used the cognitive reflection task and probabilistic reason-
ing scale. The cognitive reflection task is known to measure 
inhibition and the probabilistic reasoning scale is known to 
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measure statistical reasoning. It might be that specific 
aspects of mathematical reasoning such as inhibition and 
statistical reasoning are more uniquely related to ordinality 
compared with a more general mathematical reasoning 
measure that we included in our study and which covers a 
large range of mathematical reasoning problems. To pin-
point the relation between ordinality and mathematical rea-
soning, further research is necessary.

To conclude, the current study confirmed that ordinality 
is reliably related to arithmetic performance while the rela-
tionship between ordinality and mathematical reasoning 
appears to be completely explained by fluid intelligence. 
Ordinality is strongly related to arithmetic performance 
because it necessitates a constellation of different strategies 
that are themselves also important for arithmetic perfor-
mance and they can be flexibly adapted to the given task 
demands.
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Notes

1.	 For ordered small, medium, and large distance trials, all 
small, medium, and large distance ordered sequences were 
taken into account.

2.	 A mistake was made in the pre-registration. The amount of 
trials that were pre-registered for the arithmetic verification 
tasks (i.e., 52 trials) deviate from the amount of trials that 
were administered (i.e., 48 trials).
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