Borisenko et al. BMC Evolutionary Biology (2016) 16:123
DOI 10.1186/512862-016-0700-6

Surprisingly rich repertoire of Wnt genes

BMC Evolutionary Biology

@ CrossMark

in the demosponge Halisarca dujardini

llya Borisenko'", Marcin Adamski®*!, Alexander Ereskovsky'” and Maja Adamska®*"

Abstract

Background: Wnt proteins are secreted signalling molecules found in all animal phyla. In bilaterian animals, including
humans, Wnt proteins play key roles in development, maintenance of homeostasis and regeneration. While Wnt gene
repertoires and roles are strongly conserved between cnidarians and bilaterians, Wnt genes from basal metazoans
(sponges, ctenophores, placozoans) are difficult or impossible to assign to the bilaterian + cnidarian orthologous groups.
Moreover, dramatic differences in Wnt numbers among basal metazoan exist, with only three present in the genome of
Amphimedon queenslandica, a demosponge, and 21 in the genome of Sycon ciliatum, a calcisponge. To gain insight into
the ancestral Wnt repertoire and function, we have chosen to investigate Wnt genes in Halisarca dujardini, a
demosponge with relatively well described development and regeneration, and a very distant phylogenetic

relationship to Amphimedon.

Results: Here we describe generation of a eukaryotic contamination-free transcriptome of Halisarca dujardini, and
analysis of Wnt genes repertoire and expression in this species. We have identified ten Wnt genes, with only one
orthologous to Amphimedon Wnt, and six appearing to be a result of a lineage specific expansion. Expression
analysis carried out by in situ hybridization of adults and larvae revealed that two Halisarca Wnts are expressed in
nested domains in the posterior half of the larvae, and six along the adult body axis, with two specific to the
osculum. Strikingly, expression of one of the Wnt genes was elevated in the region undergoing regeneration.

Conclusions: Our results demonstrated that the three Poriferan lineages (Demospongiae, Calcarea and
Homoloscleromorpha) are characterized by highly diverse Wnt gene repertoires which do not display higher
similarity to each other than they do to the non-sponge (i.e. ctenophore, cnidarian and bilaterian) repertoires.
This is in striking contrast to the uniform Wnt repertoires in Cnidarians and Bilaterians, suggesting that the Wnt
family composition became “fixed” only in the last common ancestor of Cnidarians and Bilaterians. In contrast,
expression of Wnt genes in the apical region of sponge adults and the posterior region of sponge larvae
suggests conservation of the Wnt role in axial patterning across the animal kingdom.

Background

Wnt genes encode secreted glycoproteins acting as
signalling molecules to direct cell proliferation, migration,
differentiation and survival during animal development,
maintenance of homeostasis and regeneration [1-6]. While
some Wnt pathway components have been identified out-
side of the animal kingdom, Wnt genes themselves are a
conserved metazoan innovation [7, 8].
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Representatives of the Wnt family have been identified in
all animals studied so far, including so-called “basally
branching” or non-bilaterian clades: cnidarians [9, 10], pla-
cozoans [11], ctenophores [12, 13] and sponges [14—18].
Wnt repertoires are surprisingly conserved between cnidar-
ians and bilaterians, with 12 of 13 bilaterian orthologs
present in the sea anemone, Nematostella vectensis [9]. This
conservation appears to extend to function, as demonstrated
by involvement of Wnts in segregation of germ layers dur-
ing gastrulation, in embryonic and adult axial patterning
and in restoration of lost body parts in both cnidarians and
bilaterians [19—-22]. Conservation of the blastoporal Wnt ex-
pression in cnidarians and chordates is particularly striking
[5]. In cnidarian polyps such as Hydra, this expression
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persists in the oral region located in the apical part of the
adult body [10]. In line with this, over-activation of Wnt sig-
nalling in Hydra results in formation of additional structures
with head identity [23]. In chordates, where the blastopore
gives rise to the anus, Wnt expression and activity confers
posterior identity to developing structures [24, 25]. In line
with this, over-activation of the Wnt signalling in vertebrates
results in loss of anterior structures, while loss of Wnt func-
tion results in posterior truncation [26, 27].

Wnt genes identified in placozoans, ctenophores and
sponges are difficult or impossible to assign to the bila-
terian + cnidarian orthologous groups [12, 16—18]. Yet,
Wnt expression in ctenophores and sponges is consist-
ent with conserved involvement in axial patterning [13,
15, 18]. In particular, Wnt genes have been found to be
expressed in the larval posterior pole of two major
sponge model species: the demosponge Amphimedon
queenslandica [15] and the calcisponge Sycon ciliatum
[18]. In addition, Wnt expression is associated with
osculum (the major exhalant opening of adult sponges,
located at the apical pole) of Sycon ciliatum [18]. Such
expression is consistent with homology of the larval and
adult body axes between sponges and cnidarians, sup-
porting homologous relationship between the cnidarian
mouth and the sponge osculum [18, 28, 29].

While Wnt expression in adult demosponges has
not been reported, pharmacological over-activation of
the Wnt pathway in a freshwater species, Ephydatia
mulleri, resulted in multiplication of the body axis, as
evidenced by formation of multiple oscula [30]. This
outcome is strikingly similar to Wnt over-activation
experiments in cnidarians, resulting in formation of
ectopic head structures [23]. Moreover, experiments
involving transplantation of oscula demonstrated their
organizer properties, in line with organizer properties
of the cnidarian head, and animal blastopores in gen-
eral [10, 31].

Halisarca dujardini (Chondrillida) is a marine
demosponge which is very distantly related to Amphi-
medon queenslandica (Haplosclerida) [32, 33]. Hali-
sarca embryonic development, metamorphosis and
regeneration are well described at morphological level
[34-36], but sequence resources have been lacking.
Here we report generation of a transcriptome dataset
and identification of a surprisingly rich Wnt reper-
toire (ten genes, in contrast to only three present in
the genome of Amphimedon). Two of these genes are
expressed in nested domains in the posterior half of
the larvae, and six along the adult body axis, with
two specific to the osculum. Moreover, Wnt expres-
sion is elevated in the region undergoing regener-
ation, suggesting conservation of the Wnt role in
axial patterning and restoration of lost body parts
across the animal kingdom.
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Methods

Samples

No permits were required to collect sponge specimens
in Norwegian waters. Total RNA and gDNA were iso-
lated from wild-collected adult sponges and several hun-
dred larvae freshly released in laboratory conditions. To
avoid eukaryotic contaminations, the larvae were washed
in sterile-filtered sea water and visually inspected under
dissecting microscope. Nucleic acids were isolated using
Allprep Mini kit (Qiagen) following manufacturer’s in-
structions, and the RNA yield and quality were deter-
mined using the NanoDrop spectrophotometer (Thermo
Scientific) and the Agilent 2100 BioAnalyzer RNA 6000
Nano chip (Agilent Technologies).

Sequencing

Two RNA-Seq libraries were prepared using Illumina
TruSeq RNA Library Prep Kit: one from the wild-
collected adult specimen and another one from eukaryotic
contaminations-free larvae. An additional gDNA library
was prepared from the same larvae using Illumina TruSeq
DNA Library Prep Kit. The libraries were paired-end se-
quenced on Illumina HiSeq 2000 with read length of 100.

Transcriptome assembly

The transcriptome was assembled de-novo from the two
RNA-Seq libraries. The assembly was performed with
Trinity 2.1.1 [37] including reads’ pre-processing with
Trimmomatic [38]. We have modified Trinity’s final step
called Butterfly to use read pairing information: The
fasta sequence files prepared for Butterfly runs were
supplemented to include both ends for all the fragments
(missing-pair reads were added) and option ‘run_as_-
paired’ was added to all Butterfly commands. Assembled
transcriptome was screened to exclude eukaryotic con-
taminations by aligning reads from the clean juvenile
gDNA library. The alignments were done using bowtie
with default parameters. Transcriptome contigs not
aligned to any of the clean read were removed from the
assembly. Assembly was screened for sequencing vectors
using blastn against UniVec database. Transcripts of Wnt
ligands were identified by sequence homology using tblastn
and Wnt proteins from other organisms and are available
in TSA under ids HADA01000001 — HADA01000010.

Phylogenetic analysis

Wnt protein sequences were aligned with Mafft v7.123
using option L-INS-i. Alignment was then manually
trimmed to remove poorly aligned and divergent regions.
Phylogenetic tree was built using Mr Bayes 3.1 [39] which
we modified to incorporate the LG model (as LG was se-
lected as best fit substitution model by ProTest 3)
[40]. Mr Bayes was run with two sets of 4 Markov
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Fig. 1 Bayesian inference gene tree of Wnt ligands. The values at the
tree nodes are posterior probabilities for each split defined over the
range [0, 100]. Black circles denote 100 % support (posterior probability
of 1.00). Species acronyms: Amg, Amphimedon queenslandica, Hdu,
Halisarca dujardini, MI, Mnemiopsis leidlyi, Nv, Nematostella vectensis, Oca,
Oscarella carmela, Olo, Oscarella lobularis, Sci, Sycon ciliatum. Sub-trees
not containing sponge sequences were collapsed; the complete tree is
available as Additional file 2

chains each, till standard deviation of split frequencies
dropped below 0.01.

In situ hybridization
In situ hybridization has been carried as described for
Sycon ciliatum [41], except that proteinase treatment
was 10 min at 37 °C.

Results and discussion

Ten Wnt genes are present in Halisarca dujardini

We have generated transcriptome dataset for Halisarca
dujardini representing genes expressed in adult specimens
and free-swimming larvae (see Methods for details). Using
a variety of sponge, cnidarian and bilaterian sequences we
have BLAST-searched this dataset for Wnt genes and re-
covered ten complete coding protein sequences (Additional
file 1). This stands in contrast with only three Wnt genes
present in another demosponge, Amphimedon queenslan-
dica, and also differs from the number of 21 genes identi-
fied in Sycon ciliatum (Calcarea, Calcaronea) [16, 18]. For
comparison, at least eight Wnt genes are present in Homo-
scleromorph sponges, e.g. Oscarella sp. [18].

We next wanted to know whether the ten newly identi-
fied Halisarca Wnts are orthologous to other sponge (or
other metazoan) Wnt genes. We have thus carried out
Bayesian analysis adding these new sequences to the previ-
ously constructed comprehensive Wnt sequence dataset
[18]. Surprisingly, only one Halisarca sequence appeared to
be in orthologous relationship with previously described
Wnt genes, namely the Amphimedon WntC sequence,
while no AmgqWntA or AmgWntB orthologues could be
identified in Halisarca (Fig. 1 and Additional file 2). We
have named this gene HduWntC, and the remaining nine
sequences HduWntD-Wntl according to the order in
which they were identified. Of these, six clustered together
in our analysis with high support, suggesting they are likely
a result of independent subfamily expansion in the Hali-
sarca lineage (Fig. 1). Another pair of Halisarca Wnts was
associated with Sycon ciliatum WhntS, although with very
weak support, and the last one showed no particular affinity
to any of previously identified Wnt genes (Fig. 1).

Thus, all so-far studied sponges, representing three
Poriferan lineages (Demospongiae, Calcarea and Homo-
loscleromorpha) are characterized by highly diverse Wnt
gene repertoires which do not display higher similarity
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Fig. 2 Expression of Wnt genes in Halisarca dujardini. a schematic representation of the adult body plan of Halisarca, apical and basal regions and the
osculum are labelled; b, ¢, HduWntD and HduWntE transcripts are localized around the osculum; d, HduWntG transcripts are present throughout the
exopinacoderm and particularly in the oscular chimney; e, f, f, HduWntF and HduWntH transcripts are absent from the osculum and the apical region,
but strong along the base; g, HduWntK transcripts are present along the oscular chimney; h and i, HduWntJ transcripts are present in the oocytes;

j, HduWntK transcripts are present in the posterior half of the larva except the polar region; I, HduWntJ transcripts are present in cells distributed along
the larval equator; I and m, HduWntK transcripts are conspicuously present along the wound margin. White arrowheads indicate the osculum; insets in
the upper and lower corners are enlargements of the apical and basal regions, respectively, black arrowheads indicate wound margin; black arrows
indicate oocytes; posterior pole of the larvae is towards the top. Note that the specific staining is dark purple, while the uniform pink coloration of
some samples is background staining. Scale bars: b, d, @ = 5 mm; ¢ - 25 mm; f, f = 2 mm; g, h, [, m = 3 mm; i - 30 um; j, k = 50 um

to each other than they do to the non-sponge (i.e. cteno-  Halisarca Wnts are expressed along the adult and larval
phore, cnidarian and bilaterian) repertoires. This is in  axes and during regeneration

striking contrast to the uniform Wnt repertoires in Cni- In ctenophores, cnidarians and calcareous sponges Wnt
darians and Bilaterians, suggesting that the Wnt family  genes are expressed along the major (oral-aboral or
composition became “fixed” only in the last common an-  apical-basal) body axis in sets of nestled domains, sug-
cestor of Cnidarians and Bilaterians. gesting existence of a “Wnt code” possibly conveying
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positional information [4, 9, 10, 13, 18]. In Oscarella lobu-
laris, a homoscleromorph sponge, two Wnt genes are
expressed in a complementary fashion with domains in
the ostia (multiple openings in the inhalant canals on the
surface of the body) and in exopinacoderm surrounding
the ostia of adult specimens [17]. It is important to note
here that at least six other Wnt genes are present in
Oscarella sp. [18], expression of which has not been re-
ported so far.

We have attempted cloning and expression analysis of
all ten Halisarca Wnts. Of these, six genes were expressed
in the adult specimens in four unique patterns:

WntD (Fig. 2b) and WntE (Fig. 2c) at the tip of the
osculum; WntG (Fig. 2d) throughout the entire exopinaco-
derm, with particularly high concentration of positive cells
in the osculum; WntF (Fig. 2e) and WntH (Fig. 2f, f’) in the
peripheral exopinacoderm and basopinacoderm; and finally
WntK (Fig. 2g, see also Fig. 2l) was prominently expressed
within the oscular chimney, and weakly throughout the
exopinacoderm.

Detection of Want] expression revealed positive large cells
within the mesohyl of some specimens, which were identi-
fied as young oocytes upon sectioning (Fig. 2h, i). While
during our collections we have not found any specimens
with embryos, we have been able to carry out in situ
hybridization on larvae released from adults briefly main-
tained in laboratory conditions. Two Halisarca Wnt genes
revealed robust expression in the larvae: WntK (Fig. 2j)
throughout most of the posterior hemisphere, except of the
polar cells themselves, and WxutJ in a band of equatorial
cells (Fig. 2k).

Thus, the identified Wnt expression domains encom-
pass the entire apical-basal axis of the adult Halisarca
body, with majority of the genes expressed uniquely or
predominantly in the osculum. At the same time, Wnt
expression is associated with the posterior region of the
larvae. These nested patterns, and the prevalence of ap-
ical and posterior expression are consistent with the
postulated conservation of Wnt role in axial patterning
throughout the metazoans.

In addition to the conserved role in axial patterning,
Wnt genes are also known to be involved in wound heal-
ing and regeneration in many animal lineages [3, 6, 10,
19-22]. We have recently described cellular processes
leading to regeneration of the ectosome in H. dujardini
[36], and we wanted to know whether Wnt genes might be
involved in these processes. While majority of the Wnt
genes did not display detectable expression changes in the
regeneration zone, HduWntK expression was prominent in
the exopinacocytes surrounding the wound at 12 h after
wounding (Fig. 21, m). These cells are actively involved in
the regeneration, as they temporarily dedifferentiate, phago-
cyte the debris and contribute to restoration of the ectosome
by migration and re-differentiation [36]. Thus, as in other
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animal lineages, the demosponge Wnt pathway is implicated
in the regeneration processes.

Conclusions

Transcriptome sequencing of Halisarca dujardini allowed
us the first insight into gene repertoire of a demosponge
from a previously unexplored order. We have identified
ten Wnt genes, nine of which are without orthologs in any
previously reported species. While the diversity of Wnt
subfamilies is striking, expression of the identified genes
suggests conservation of roles in axial patterning and re-
generation. We wonder what mechanisms are responsible
— or permissive — for the apparent lack of constraints on
Wnt protein sequences in sponges (as well as ctenophores
and possibly placozoans) as opposed to cnidarians and
bilaterians.

Additional files

Additional file 1: wntalignmentnex.txt: trimmed alignment of Wnt
protein sequences used to generate Bayesian inference trees shown in
Additional file 1 and Fig. 1. Species: Amg, Amphimedon queenslandica,
Ate, Achaearanea (Parasteatoda) tepidariorum, Bf, Branchiostoma floridae,
Cte, Capitella teleta, Hdu, Halisarca dujardini, Hs, Homo sapiens, Lgi, Lottia
gigantea, M1, Mnemiopsis leidyi, Nv, Nematostella vectensis, Oca, Oscarella
carmela, Olo, Oscarella lobularis, Sci, Sycon ciliatum, Sko, Saccoglossus
kowalewski, Spu, Strongylocentrotus purpuratus, Tc, Tribolium castaneum.
(TXT 39 kb)

Additional file 2: wnttreenwk.txt: Newick format Bayesian inference
gene tree of Wnt ligands. Species: Amq, Amphimedon queenslandica, Ate,
Achaearanea (Parasteatoda) tepidariorum, Bf, Branchiostoma floridae, Cte,
Capitella teleta, Hdu, Halisarca dujardini, Hs, Homo sapiens, Lgi, Lottia
gigantea, MI, Mnemiopsis leidyi, Nv, Nematostella vectensis, Oca, Oscarella
carmela, Olo, Oscarella lobularis, Sci, Sycon ciliatum, Sko, Saccoglossus
kowalewski, Spu, Strongylocentrotus purpuratus, Tc, Tribolium castaneum.
(TXT 3 kb)
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