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Abstract: Current methods for evaluating fatigue separately assess intramuscular changes in individ-
ual muscles from corresponding alterations in movement output. The purpose of this study is to
investigate if a system-based monitoring paradigm, which quantifies how the dynamic relationship
between the activity from multiple muscles and force changes over time, produces a viable metric for
assessing fatigue. Improvements made to the paradigm to facilitate online fatigue assessment are
also discussed. Eight participants performed a static elbow extension task until exhaustion, while
surface electromyography (sEMG) and force data were recorded. A dynamic time-series model
mapped instantaneous features extracted from sEMG signals of multiple synergistic muscles to
extension force. A metric, called the Freshness Similarity Index (FSI), was calculated using statistical
analysis of modeling errors to reveal time-dependent changes in the dynamic model indicative of
performance degradation. The FSI revealed strong, significant within-individual associations with
two well-accepted measures of fatigue, maximum voluntary contraction (MVC) force (rrm = −0.86)
and ratings of perceived exertion (RPE) (rrm = 0.87), substantiating the viability of a system-based
monitoring paradigm for assessing fatigue. These findings provide the first direct and quantitative
link between a system-based performance degradation metric and traditional measures of fatigue.

Keywords: human fatigue monitoring; neuromuscular fatigue; surface electromyography time-
frequency signal analysis; time-series modeling; autoregressive moving average model with exoge-
nous inputs; isometric contraction; elbow extension

1. Introduction
1.1. Background

Fatigue, commonly defined as “any exercise-induced reduction in the ability of a
muscle to generate force or power” [1], is a complex accumulation of psychological and
physiological processes that impair muscle function and diminish the capacity of the central
nervous system to activate muscles [1–3]. Neuromuscular fatigue presents a major obstacle
for achieving desired performance in a variety of circumstances. For healthy individuals
in physically demanding professions (e.g., astronauts, soldiers, athletes, etc.), prolonged
periods of training and operations are known to adversely affect task efficiency [4], move-
ment accuracy [5], and performance [4], while also increasing susceptibility to overuse
injuries [4]. For patients with neurological or cerebrovascular diseases, such as stroke, mul-
tiple sclerosis, and Parkinson’s disease, fatigue is also a typical and potentially debilitating
symptom [6,7]. Thus, assessing fatigue has important implications for preventing neuro-
muscular injury [8], optimizing training loads [9], and guiding effective, individualized
treatment strategies for rehabilitation [7].

In a clinical setting, standard methods for assessing fatigue rely upon self-reported
questionnaires or rating scales [1,10] that capture how an individual experiences fatigue.
Mental fatigue can be experienced as an increase in the perceived effort to complete a
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task [11] or a reduction in motivation and concentration [1]. Ratings of perceived exertion
(RPE) [12–14] are used to study mental fatigue in healthy and affected populations. A
higher perception of effort is known to limit exercise tolerance [13] and adversely affect
physical performance during endurance tasks [11,14]. Although subjective rating scales
contain valuable information, they are indirect measures of fatigue that provide qualitative
information with low-resolution [10]. Moreover, self-perceived fatigue is not always
accompanied by a loss of force-producing capacity [6,11,14] or changes in physiological
variables [13,14], especially during endurance tasks.

A decline in maximum voluntary contraction (MVC) force has become a “gold stan-
dard” [15] indicator for confirming the occurrence of fatigue in the physiological sci-
ences [1,14,15] because it can directly quantify a loss in force-generating capacity. Despite
their value as objective assessment tools, MVC force measures are often taken immediately
before and after a bout of exercise and only capture the overall mechanical manifestation
of fatigue. Consequently, they lack valuable insight regarding the progression of fatigue
during the task itself, including the underlying physiological processes that contribute to
the degraded performance of the neuromuscular system. Neuromuscular fatigue can be
identified by measuring the evoked force from twitch responses after electrically stimulat-
ing muscles during maximal or submaximal voluntary contractions [16]. However, this
technique is also applied before and after a fatiguing exercise.

Surface electromyography (sEMG) has been widely used to address this issue by
enabling the continuous measurement of muscle activity during exercise. Since fatigue
begins to accumulate at the start of a muscle contraction and continuously progresses
throughout the exercise [17], changes in the sEMG signal can reveal indications of localized
muscle fatigue long before a decline in force or power output occurs [1,2,18]. For instance,
during sustained contractions at submaximal force levels, a progressive increase in sEMG
amplitude and compression of the sEMG signal spectrum can be detected [2,17,18]. Fourier-
based spectral features extracted from the sEMG signal, such as the mean or median
frequency, are the most widely used indices of localized muscle fatigue and have been
employed in numerous applications [2,18,19].

Extensive work has been devoted to developing more advanced spectral estimation and
signal processing techniques that can accommodate the non-stationary behavior in sEMG
signals [20,21]. The majority of these efforts, which are thoroughly discussed elsewhere [21–24],
were devoted to developing fatigue assessment metrics that reflect the localized manifes-
tations of fatigue within a muscle. Thus, these metrics are often univariate, monitored
independently for each muscle, and analyzed separately from associated changes in joint
movement. Less attention has been paid to developing multivariate metrics that utilize
more information from the sEMG signal, aggregate activity from all contributing muscles,
and establish a relationship with kinematic or kinetic movement variables. Such metrics
would be beneficial for assessing how the neuromuscular system fatigues as a whole
during exercise.

1.2. Related Literature

Model-based methods that relate sEMG parameters to movement variables have shown
success in producing a single, unified metric for monitoring fatigue, overcoming some of the
aforementioned issues. Previous studies have applied linear regressions [23], artificial neural
networks [23,25,26], linear projection methods [27], and correlations [28] to map net changes
in sEMG parameters to overall reductions in power [23] or force [28]. Although promising,
these approaches do not continuously monitor changes in the dynamic relationship between
sEMG and movement output over time—a relationship that is significantly altered in the
presence of fatigue [29]. They also require (i) a priori assumptions about the linearity of
fatigue progression [23,25,26], (ii) extensive data sets containing the entire time-course of
fatigue to train models [23,25–28], and (iii) reference contractions to probe for fatigue-induced
changes in parameters at the beginning and end of an endurance task [28].
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Recent studies have approached human performance monitoring using a system-
based monitoring paradigm, which is relatively well-known in the machine monitoring
community [30]. The system-based approach monitors how the performance of the human
neuromusculoskeletal (NMS) degrades during prolonged exercise by continuously tracking
changes in the dynamic relationship between sEMG and movement output over time.
Musselman et al. were the first to pursue this direction [31]. The dynamic relationship was
described using vectorial autoregressive models with exogenous inputs (vARX), which took
instantaneous intensity and frequency features from upper-arm sEMG signals as inputs and
related them to joint angular velocities as model outputs. The methodology was tested on
data from participants performing a repetitive sawing movement until voluntary exhaustion.
Xie and Djurdjanovic [32], Madden et al. [33], and Yang et al. [34] modified this work by
instead using autoregressive moving average models with exogenous inputs (ARMAX) with
second-order muscle dynamics to describe the NMS system during both constant force and
repetitive movement tasks. Two additional sEMG features, namely instantaneous variance
and entropy, were incorporated as model inputs with either force [32,33], joint velocity [32],
or limb displacement [33] serving as outputs, depending on the task.

The models in all four studies [31–34] were trained with data from the initial portion of
the task before fatigue onset to capture the system dynamics during a normal, unfatigued
state. Progressive changes in system behavior were evaluated by tracking the divergence of
model prediction error distributions between the unfatigued state and subsequent periods
of time. Statistically significant trends in a divergence measure, referred to as either the
freshness similarity index (FSI) [32,33], fatigue index [34], or global freshness index [31],
provided evidence that performance degradation occurred during the exercises.

The system-based monitoring paradigm overcomes the limitations imposed by alter-
native, model-based approaches to monitoring fatigue [23,25,26,28]. However, the previous
system-based monitoring efforts [31–34] have not established a formal association between
performance degradation and fatigue. Although the studies verified their findings using
trends in sEMG features to reveal indications of localized muscle fatigue in individual
muscles, the indices in [31–34] are constructed as global measures of how the performance
of the entire NMS system changes over time. Thus, to claim that a system-based monitoring
approach is a viable method for monitoring fatigue, further research is needed to formally
associate the performance degradation index with well-established fatigue measures that
quantify a global reduction in force-producing capacity [1,15] and heightened perception
of exertion [12], rather than changes intramuscular mechanisms. Furthermore, modifica-
tions can be made to the system-based paradigm used in these previous works [31–34]
to produce sEMG features that are more representative of neural activation signals to the
NMS system, provide a complete representation of the NMS system by incorporating all
contributing muscles, and facilitate online performance assessment.

To this end, the primary aim of this work is to firmly establish the viability of the
system-based monitoring paradigm for assessing fatigue by relating the performance degra-
dation index to well-accepted measures of fatigue that capture changes in force-generating
capacity (MVC force) and self-perceived fatigue (RPE). We present a methodology, modified
from previous works, to generate a sensitive and concise index of performance degradation
(FSI) occurring across multiple muscles and sensor sources during a submaximal static
exercise. We then substantiate its viability for assessing fatigue by evaluating within-
individual associations between the FSI and measures of MVC force and RPE. We discuss
the improvements made to the paradigm to facilitate its use as an online assessment tool
and more accurately represent changes occurring in the NMS. The results of this work
have promising implications for informing new methods of monitoring fatigue. Tracking
fatigue-related changes in performance may lead to more personalized training regimens
and therapeutic modalities for rehabilitation. Interventions involving robotic exoskeletons
present an especially promising application of the system-based monitoring paradigm be-
cause these devices possess high-resolution sensors that can collect physiological, dynamic,
and kinematic measures in real-time.
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2. Materials and Methods
2.1. Participants

Eight healthy, right-handed men (26.6 ± 6.1 years, 76.2 ± 12.4 kg, 178.9 ± 6.6 cm)
with no known neurological disorders were recruited from the university population
to participate in the study. All participants were fully informed of any risks associated
with the experiments before giving their informed written consent to participate in the
investigation. The study was conducted in accordance with the Declaration of Helsinki [35],
and the experimental procedure was approved by the Internal Review Board organized
by the Office of Research Support at The University of Texas at Austin under the protocol
number 2013-05-0126.

2.2. Experimental Setup

Participants were seated in a high-back chair with a five-point harness that restrained
their waist and shoulders (Figure 1). A single-degree-of-freedom exoskeleton testbed was
grounded to the base of the chair and used for testing. The device consists of an upper arm
linkage, capstan drive elbow joint, and lower arm linkage with a wrist cuff. The chair and
link lengths were adjusted to accommodate each participant. The participants’ upper arm
was positioned at 90◦ of flexion and 45◦ of horizontal abduction, and their elbow placed in
90◦ of flexion. The medial epicondyle of the participants’ humerus was aligned with the
exoskeleton elbow joint axis, and the forearm was placed in a neutral position. The wrist
cuff was positioned below the participants’ ulnar styloid process and securely attached
their forearm to the exoskeleton. The lower arm linkage of the exoskeleton was grounded
to the chair using a mechanical structure to prevent the elbow joint from rotating during
the isometric contractions described in Section 2.3. As a result, the robot actuator remained
unpowered during experimentation. A multi-axis force/torque sensor mounted to a linear
sliding joint was housed between the wrist cuff and exoskeleton linkage and used to
measure the participants’ elbow extension force. The linear slider allowed passive travel
in the direction parallel to the ulna bone to minimize off-axis forces due to robot-human
misalignment [36].

Figure 1. Experimental setup. (Left) Exoskeleton testbed. (Right) sEMG sensor placement: (1) long,
(2) lateral, and (3) medial heads of the triceps brachii, and (4) anconeus muscles.

2.3. Experimental Protocol

Experiments were carried out in the ReNeu Robotics Laboratory at the University of
Texas at Austin. All participants performed the same experiment on two days separated
by 72 h of rest [37,38] in a temperature-controlled room set to 70◦. Both sessions were
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performed at the same time of day and followed the same general protocol, which consisted
of three elbow extension tasks: (1) baseline maximum voluntary contractions (MVCs) (2) a
constant-force endurance task sustained at 30% MVC until exhaustion, and (3) a follow-up
MVC. Only results from the first session are reported in this paper. Participants were
instructed to refrain from consuming caffeine on the day of testing [39] and exercising 24 h
before the experiment.

Before testing, the participants performed isometric elbow extension, elbow flexion,
shoulder flexion, shoulder abduction, and shoulder extension contractions for which they
were asked to maximally and submaximally exert force. During testing, participants were
provided with real-time visual feedback of their elbow extension force, in the form of a
gauge display, on a computer monitor placed at eye-level. For the MVCs, participants were
instructed to gradually increase extension force output from zero to maximum over a 3 s
period and maintain their maximal force for an additional 2–3 s. The participants were
given strong verbal encouragement to provide maximal effort during each contraction.
At baseline, a minimum of three MVCs separated by one minute of rest were performed.
If peak forces from two of the three MVCs were not within 5%, additional trials were
performed until this criterion was met. The trial consisting of the highest value was
retained and considered the MVC force. Participants then rested for at least eight minutes
to minimize residual fatigue from the MVC tasks.

Before the endurance task, each participant was familiarized with their MVC levels by
performing brief elbow extension contractions at various force levels (i.e., 30% and 60%
MVC). For the endurance task, participants performed a sustained, isometric contraction
at 30% MVC until their force fell below 10–15% of the target value [39,40]. In related
works examining fatigue, the MVC thresholds of the isometric contractions vary between
25–35% [28,39–41]. The contraction level for evaluation was set to 30% MVC for this study,
as it is the average between these ranges. The target force (30% MVC) and the participant’s
actual extension force were displayed on the computer monitor. Participants matched and
tracked the target line for as long as possible and were verbally encouraged to maintain a
steady force output. Every 30 s, participants reported a rating of perceived exertion (RPE)
using the Borg CR-10 scale [12]. These ratings ranged from 0 (“no exertion at all”) to 10
(“maximal exertion”). Immediately after termination of the endurance task, participants
reported a final RPE and performed a follow-up MVC to determine the amount of fatigue
induced.

2.4. Data Acquisition

A Delsys Trigno Wireless EMG system (Delsys Inc., Boston, MA, USA) was used to
collect sEMG activity from the triceps brachii (long, lateral, and medial heads), anconeus,
biceps brachii, brachioradialis, and deltoid (anterior, middle, and posterior) muscles. The
scope of this paper requires analysis of only the muscles that extend the elbow, that is,
the triceps brachii and anconeus (Figure 1). Participants’ body hair was shaved, and
skin lightly abraded with a pumice stone then cleansed with isopropyl alcohol to ensure
good skin-to-electrode contact before sEMG sensor placement. Electrodes were positioned
over each muscle according to European recommendations for Surface Electromyography
for Non-Invasive Assessment of Muscles (SENIAM) [42]. Elbow extension forces were
measured with a multi-axis force/torque sensor (ATI, Nano25). An xPC Target (Mathworks,
MATLAB module) running Simulink Real-Time and hosting NI data acquisition (NI DAQ)
boards (National Instruments, Inc., Austin, TX, USA) synchronously recorded all data at
1 kHz.
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2.5. Data Processing

Raw sEMG signals were bandpass filtered from 10 to 400 Hz [43,44] using a 4th order
Butterworth filter (zero-lag, non-causal) [45], then demeaned [46] to remove the DC offset.
Data from the force/torque sensor was low-pass filtered using a 4th order Butterworth
filter (zero-lag, non-causal) with a 6 Hz cutoff frequency. The processed sEMG and force
measures are used in Sections 2.6.1 and 2.6.2.

2.6. System-Based Monitoring
2.6.1. sEMG Feature Extraction

The first step in the system-based monitoring workflow (Figure 2) involves extracting
features from the filtered sEMG signals [47] that capture how the signal energy changes in
both the time and frequency domains. Cohen’s class of time-frequency distributions (TFD)
was used to obtain a two-dimensional probability density function, C(t, ω), describing the
joint distribution of energy of the sEMG signal, s(t), over time, t, and frequency, ω, where

C(t, ω) =
1

4π2 ·
+∞∫∫∫
−∞

s∗(u− 1
2

τ)s(u +
1
2

τ)φ(θ, τ)e−j(θ(t−u)+τω)dτdudθ, (1)

with s∗(t) signifying the complex conjugate of s(t) and φ(θ, τ) denoting the so-called TFD
kernel. The binomial kernel, a signal independent member of the reduced interference
distribution family of kernels, was used for this analysis due to its desirable mathematical
properties [31].

Figure 2. System-based monitoring workflow. Features are extracted from the surface electromyography (sEMG) signals
of each muscle. The sEMG features and elbow extension force are then normalized and used as the inputs (ui(t)) and
output (y(t)) to a dynamic time-series model. Training data from the start of the endurance task (t0) is used to identify the
polynomial coefficients (A(q), Bi(q), C(q)) of the “Fresh Model” and calculate a reference distribution (P) of one-step ahead
prediction errors. The remaining endurance task data (t1,...,end) is incrementally introduced to the tuned “Fresh Model” for
which updated prediction error distributions (QT) are calculated at each time step, T. The overlap between P and QT is
evaluated to obtain a time-series of freshness similarity index (FSI) values that quantify performance degradation.
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Calculation of the zero- and first-order moments (i.e., < f 0|t > and < f 1|t >) of
C(t, ω) provide the instantaneous energy and instantaneous mean frequency of the sEMG
signal, respectively, with

< f 0|t > =
∫ +∞

−∞
C(t, ω)dω = |ai(t)|2 (2)

< f 1|t > =
∫ +∞

−∞

C(t, ω)

< f 0|t >ωdω = fim(t), (3)

where ai(t) is the instantaneous amplitude—a parameter that is approximately equal to
the RMS amplitude of the sEMG signal [48,49]. The instantaneous mean frequency, labeled
as fim(t), and instantaneous amplitude, ai(t), are widely used as myoelectric indicators of
fatigue. As a result, significant decreasing trends in fim(t) and increasing trends in ai(t)
during the constant-force endurance task would substantiate the presence of localized
muscle fatigue [2,18,19].

Previous system-based monitoring studies [31–33] used the instantaneous energy
(< f 0|t >), rather than ai(t), as an input to the dynamic model described in Section 2.6.3.
However, we adopted ai(t) because it is analogous to the RMS amplitude of the sEMG
signal that reflects changes in “neural drive” due to fatigue [1]. Moreover, the square root
calculation in (2) attenuates the high magnitude spikes produced when computing the zero-
order moment, which is apparent in [31]. Previous works also extracted two additional
sEMG features, representing the second-order moment and entropy of the signal, to be
used as model inputs [32–34]. When including these features in our dynamic model, the
performance degradation metric described in Section 2.6.4 did not significantly change.
Therefore, we reduced the complexity of our model by restricting the number of model
inputs to include only ai(t) and fim(t) for each muscle.

2.6.2. Normalization

Data from the MVC and endurance tasks were smoothed using 10 ms and 1.5 ms
sliding windows, respectively. Maximal values obtained over a 1.5 s period around the
peak MVC reference force were determined for each muscle and used to normalize the
corresponding ai(t) signals from the endurance task. Force and fim(t) signals from the
endurance task were normalized to their average values during the initial 10 s of the
endurance task. All signals were then downsampled to 100 Hz. This procedure prepared
the data to be used in the model described in Section 2.6.3 and shown in Figure 2. Figure 3
depicts the force and sEMG features after normalization for one representative participant.

The normalization strategy presented in this work was another improvement made to
previous system-based monitoring attempts, which used data from the entire endurance
task to normalize the signals [32,33]. By scaling ai(t) to MVC values and fim(t) to initial
values, our normalization approach produced signals that are more representative of
neural activation signals and the frequency-based sEMG indices found in the literature for
assessing localized muscle fatigue. Moreover, our approach could be employed for online
performance assessment because the only data needed for normalization was collected at
the beginning of the experiment (i.e., baseline MVC contractions performed before testing
and the initial few seconds of the endurance task).
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Figure 3. Normalized signals for a single representative participant during the endurance task.
(Top) Elbow extension force. (Middle) Instantaneous amplitude (ai(t)) and (Bottom) instantaneous
frequency ( fim(t)) features for the elbow extensor muscles. Gray shaded area signifies the training
data set.

2.6.3. Modeling

Human skeletal muscle can be considered a viscoelastic system whose physiological
input is a neural signal and output response is a generated force [50]. Thus, the normalized
sEMG features extracted from the triceps brachii (long, lateral, and medial heads) and
anconeus muscles were used as neural inputs to a dynamic model whose output is elbow
extension force. The dynamics were represented using an autoregressive moving average
model with exogenous inputs (ARMAX). This form of parametric system identification
approximates force as a linear transformation of sEMG features and noise terms and can
be expressed as

A(q)y(t) =
nu

∑
i=1

Bi(q)ui(t) + C(q)e(t), (4)
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where the system output, y(t), is the elbow extension force, the system input, ui(t), is an nu
× 1 vector of the normalized sEMG features, and e(k) is the model disturbance considered
to be zero mean Gaussian process noise. Since two sEMG features (ai(k) and fim(k)) were
extracted from each muscle, nu = 8. The polynomials A, Bi, and C are expressed in terms
of the time-shift operator, q−1, and can be written as

A(q) = 1 + a1q−1 + ... + ana q−na

Bi(q) = b1 + b2q−1 + ... + bnb q−nb+1 (5)

C(q) = 1 + c1q−1 + ... + cnc q−nc ,

where na, nb, and nc are their respective orders. The model was structured such that each
muscle is considered a second-order dynamic system [32]. This approach is in line with
Gottlieb and Agarwal [50] and Thelen et al. [51] who found that a second-order system
can adequately describe the functional relationship between sEMG and force [50] or joint
torque [51]. Thus, the orders of the polynomials were selected to be 8 for A(q) and Bi(q)
and 7 for C(q). Separate models were trained for each user with data selected from the
initial 15 s of the endurance task (Figures 2 and 3). This training data set captures the state
of the users before significant fatigue could develop. Thus, the trained model, referred to
as the “fresh model” (Figure 3), captures the system dynamics corresponding to the user’s
least degraded, or least fatigued, state.

2.6.4. Performance Tracking

Using the training data set, a reference distribution, P, of 1-step ahead prediction
errors was generated by the “fresh model” (Figure 2). The remaining data from the
endurance task was segmented into T epochs that were 4 s in length. The endurance time
for each participant determined the total number of epochs. These data segments were
sequentially presented to the “fresh model” to calculate the latest 1-step ahead prediction
error distributions, QT . The Fidelity similarity metric [52,53] was then calculated to evaluate
the amount of overlap between the reference and updated distributions over time. The
metric, which is referred to as the Freshness Similarity Index (FSI), is defined as

FSI = 1−
N

∑
i=1

√
P(i)QT(i) (6)

and ranges from 0 to 1, where values near 0 indicate a high degree of similarity and those
close to 1 suggest little similarity. For context, if the dynamic system remains unaltered with
time, the updated distributions will be comparable to the fresh distribution. However, if
the system dynamics change due to fatigue or injury, for example, the updated distribution
will shift or change shape, reducing the amount of overlap with the fresh distribution. Thus,
the FSI is a metric that reflects how the ARMAX approximation of the system dynamics
degrades over time with respect to a normal, unfatigued state.

Previous system-based monitoring studies used similarity/divergence measures, in-
cluding Matusita’s overlap coefficient measure [31–33] and the Kullback-Leibler divergence
measure [33]. However, the Fidelity similarity metric was used in this work due to its
superior sensitivity to changes in modeling errors for the data in this study. All data
processing and modeling was conducted using MATLAB software (R2017b) [54].

2.7. Statistical Analysis

A paired samples t-test was used to test for differences between baseline (pre-endurance
task) and follow-up (post-endurance task) MVC forces, and Cohen’s d was used to calculate
the effect size between time points. A one-factor repeated measures analysis of variance
(RM-ANOVA) was used to evaluate mean differences in RPE scores collected after the
first, middle, and last 30 s of the endurance task. For each sEMG feature, a two-factor
RM-ANOVA was used to test for differences across time and within muscles using average
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values over the first, middle, and last 30 s of the endurance task. FSI was quantified in two
ways. For statistical analysis, averages over the first, middle, and last 30 s of the endurance
task were used in a one-factor RM-ANOVA to evaluate mean differences over time. For
graphical representation, average FSI values over each 1% of the endurance time were pre-
sented. A Greenhouse-Geisser correction was applied to correct for violations of sphericity
when Mauchly’s test was significant. Significant main effects were further examined using
estimated marginal means with a Tukey-Kramer adjustment for multiple comparisons.

Within-subject correlations [55] were performed using repeated-measures correlation
(rmcorr) [56] analysis to evaluate the associations between FSI and measures of force-
generating capacity (MVC force) and self-perceived fatigue (RPE scores). Although as-
sociations between parameters may typically be analyzed using simple correlations that
quantify between-subject associations, within-subject associations are more important to
this study because FSI is an individual-specific metric. Rmcorr analysis also provides
benefits over simple correlation techniques when considering the change in variables over
time. Multiple data points per participant can be used in a rmcorr, whereas simple corre-
lations require time-series data to be aggregated so that all observations are independent
of each other. As a result, rmcorr can yield much greater power than simple correlation
methods and detect relationships between variables that might otherwise be masked when
using aggregated data. Two rmcorr analyses were used to estimate linear models with
subject-specific intercepts relating FSI to MVC force and FSI to RPE scores. Paired data
from the start (i.e., pre-endurance task/first 30 s) and end (i.e., post-endurance task/last
30 s) of the endurance task was used for the rmcorr between MVC force and FSI. Paired
data from the first, middle, and last 30 s of the task was used for the rmcorr between RPE
and FSI. The resulting rmcorr coefficient (rrm) quantified the common within-individual
association between variables.

Although the results from the rmcorr analyses were used to evaluate the FSI metric,
between-subject associations were also reported based on simple correlations. Pearson’s
product-moment correlation coefficient (r) was used to assess the association between FSI
and MVC force. The Spearman rank correlation coefficient (rS) was used to evaluate the
relationship between FSI and RPE because the RPE scores were treated as ordinal data. To
minimize biases introduced by the time-dependency among data points, the paired data
was aggregated into difference scores representing the overall change in measures from
the start (i.e., pre-endurance task/first 30 s) to the end (i.e., post-endurance task/last 30 s)
of the endurance task. Shapiro-Wilk tests verified that all difference scores were normally
distributed. We hypothesized that FSI would be negatively correlated with MVC force and
positively correlated with RPE.

Using the guidelines presented in [57], correlation coefficients were interpreted as
very strong (r ≥ 0.9), strong (0.7 ≤ r < 0.9), moderate (0.5 ≤ r < 0.7), weak (0.3 ≤ r < 0.5),
and negligible (r < 0.3). All statistical analyses were conducted using R software (3.6.1)
[58]. RM-ANOVAs and follow-up tests were analyzed using the afex and emmeans packages.
Within-subject correlations were determined using the rmcorr package [56]. Statistical
significance was set at p < 0.05 for all testing. Data are reported as mean ± standard error
of the mean (SE) unless stated otherwise.

3. Results
3.1. Confirmation of Fatigue

The average endurance time across participants was 287.4 ± 28.0 s. The average
MVC force at baseline was 139.8 ± 10.1 N and significantly declined by 49.5± 8.8 N, or
35.6± 6.1%, (t(7) = −5.63, p < 0.001, d = −1.99; Figure 4a) at follow-up. This substantial
decline in MVC force from baseline to follow-up verifies that the experimental protocol
successfully induced fatigue across participants.
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Figure 4. Measures of fatigue. (a) Maximal voluntary contraction (MVC) forces taken at baseline (pre-endurance task)
and follow-up (post-endurance task). (b) Ratings of perceived exertion (RPE) during the first, middle, and last 30 s of the
endurance task. Dark blue bars and data points connected by solid lines are means ± SE. Dotted lines represent data from a
single participant (n = 8) whose assigned color is consistent across figures. MVC force significantly declined (p < 0.001,
d = −1.99) and RPE significantly increased over time (p < 0.001, η2

p = 0.91).

A significant change in mean RPE scores occurred during the endurance task (F(2, 14) =
74.15, p < 0.001, η2

p = 0.91; Figure 4b). Post hoc pairwise comparisons revealed significant
differences between all measured time points (all p-values < 0.001). There was an overall
mean increase of 5.9± 0.5 across participants, with slightly higher changes in scores during
the first half (3.2± 0.5) compared to the last half (2.6± 0.5) of the task. The overall rise
in RPE scores indicates the endurance task became increasingly more difficult for the
participants as time progressed, providing evidence of self-perceived fatigue.

3.2. Evidence of Localized Muscle Fatigue

A significant main effect of time was found for the instantaneous amplitude (ai(t))
during the endurance task (F(1.38, 9.68) = 116.65, p < 0.001, η2

p = 0.83; Figure 5). No
significant differences were present across muscles (F(2.04, 14.27) = 3.48, p = 0.058,
η2

p = 0.33), nor was there a muscle by time interaction (F(1.94, 13.58) = 3.26, p = 0.071,
η2

p = 0.32). The mean ai(t) across all muscles at the beginning, midpoint, and end of
the task was 0.17 ± 0.02, 0.2 ± 0.02, and 0.34 ± 0.02, respectively. There was an average
increase of 16 ± 1% (p < 0.001) over the course of the task, with a greater increase in ai(t)
during the second half of the task (13 ± 1%, p < 0.05) compared to the first half (3 ± 1%,
p < 0.001).



Sensors 2021, 21, 1024 12 of 23

S1 S2 S3 S4 S5 S6 S7 S8 Mean

0

0.2

0.4

0.6

0.8

In
s
ta

n
ta

n
e
o
u
s
 A

m
p
lit

u
d
e
 (

%
)

Triceps lateral Triceps long Triceps medial Anconeus

First 30 s
Mid 30 s

Last 30 s
0.4

0.6

0.8

1

In
s
ta

n
ta

n
e
o
u
s
 F

re
q
u
e
n
c
y
 (

%
)

First 30 s
Mid 30 s

Last 30 s

First 30 s
Mid 30 s

Last 30 s

First 30 s
Mid 30 s

Last 30 s

Endurance Time

Figure 5. Normalized sEMG features from the elbow extensor muscles. (Top) Instantaneous amplitude (ai(t)) and (Bottom)
instantaneous mean frequency ( fim(t)). Dark points separated by solid lines are means ± SE for the first, middle, and last
30 s of the task. Dotted lines represent data from a single participant (n = 8) whose assigned color is consistent across
figures. There was a significant main effect of time for fim(t) (p < 0.001, η2

p = 0.83) and ai(t) (p < 0.001, η2
p = 0.83).

There was a significant main effect of time for the instantaneous mean frequency ( fim(t))
during the endurance task (F(1.19, 8.34) = 33.97, p < 0.001, η2

p = 0.83; Figure 5). There were
no significant differences across muscles (F(1.88, 13.14) = 2.82, p = 0.098, η2

p = 0.29), nor was
there a muscle by time interaction (F(2.80, 19.57) = 2.55, p = 0.089, η2

p = 0.27). The mean
fim(t) across all muscles during the first, middle, and last 30 s was 0.98 ± 0.02, 0.86 ± 0.02,
and 0.77 ± 0.02, respectively. On average, the decrease in fim(t) during the first half of the
task (12 ± 2%, p < 0.001) was slightly greater than the decrease during the second half of
the task (9 ± 2%, p < 0.05), resulting in an overall decline from start to end of 20 ± 2%
(p < 0.001).

The average increase in ai(t) coupled with a decrease in fim(t) across muscles indicates
that significant localized fatigue developed in the elbow extensor muscles during the
endurance task. These trends in sEMG features can be attributed to central and peripheral
nervous system mechanisms and intramuscular adaptations [2,17,18]. Our results are
consistent with other studies that evaluated the elbow extensor muscles in male participants
during sustained isometric contractions [39,40]. For an isometric endurance task held at
25% MVC, Krogh-Lund and Jorgensen [40] found that the median frequency decreased
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almost linearly in the medial head of the triceps brachii. The RMS amplitude also increased
in this muscle, showing greater changes in the last half of the contraction compared to the
first. These results parallel the average trends across individuals in our study for fim(t)
and ai(t), respectively, of the triceps medial head (Figure 5, third column). Davidson and
Rice [39] observed significant increases in the RMS amplitude of all three triceps heads
(medial, lateral, and long) during an isometric endurance task at 20% MVC. The amplitude
of the anconeus muscle, however, revealed smaller increases from the start to the end of the
task. Moreover, the long head of the triceps displayed the greatest increase in amplitude
across participants at the end of the contraction compared to the other muscles when the
participants’ shoulder was in 90◦ of flexion [39]. The average trends in ai(t) in our study
are in agreement with these findings (Figure 5, top row).

The anconeus and long, lateral, and medial heads of the triceps brachii are considered
a synergistic muscle group because they all act to extend the elbow [59]. Evidence suggests
that these muscles follow a general hierarchic recruitment pattern to preserve energy [60],
where the order of activation depends upon the muscle’s size [60], joint articulation [60,61],
fiber composition [59,62,63], and level of effort required by the task [60,64]. Following
these principles, the anconeus muscle will activate first at low levels of force, followed
by the medial head of the triceps brachii. When effort reaches a moderate-to-high level,
the lateral head will be recruited next, followed by the long head [60]. When averaged
across individuals, the results from our study closely mirror this recruitment strategy
(Figure 5, top row). The anconeus displayed the greatest average ai(t) of all the synergists
at the start of the task. During the first half of the task, sEMG of the medial head showed a
moderate increase in ai(t) and the largest decrease in fim(t). The ai(t) of the lateral head
remained nearly unchanged, while the fim(t) showed a modest decrease during this period,
indicating it may not have been fully recruited yet. During the second half of the endurance
task, all muscles showed a steady increase in ai(t) and decrease in fim(t), with the long and
lateral heads of the triceps brachii showing the greatest mean changes. These results show
that the endurance task, whose target force was only 30% MVC, started as a low effort task
but progressed to a moderate-to-high effort task that required increased recruitment of all
muscles. The average rise RPE confirmed that subjects felt the level of effort required to
maintain force increased during the task.

Although a hierarchic recruitment pattern [60] is evident when averaged across partic-
ipants, considerable inter-individual variation in this strategy was present in our study. For
example, some participants (S6) showed the largest changes in sEMG activity for the long
head of the triceps, whereas others (S4) revealed more dynamic trends in the medial head
(Figure 5). Moreover, trends in the sEMG amplitude of the anconeus muscle varied widely
across individuals. Inter-muscular variability was also evident in our study. The fatigue
response within a muscle is known to be variable over time [28,65] and often exhibits curvi-
linear behavior depending on the intensity of the muscle contraction [66] and activation of
other synergist muscles. This type of behavior is most notable in the non-linear trends in
the instantaneous amplitude of the anconeus muscle and the reversed trends in the triceps
brachii heads over the last half of the endurance task for participant S8 (Figure 5).

3.3. Trends in Performance Degradation

There was a significant change in average FSI over the course of the endurance task
(F(2, 14) = 34.17, p < 0.001, η2

p = 0.83; Figure 6a). Post hoc pairwise comparisons showed
significant differences between all time points (all p-values < 0.001). From the first 30 s
to the last 30 s of the task, FSI increased by an average of 0.45 ± 0.05. These results
demonstrate that the FSI metric was sensitive to fatigue-induced changes in performance
over time. The significant increase observed in the FSI metric (Figure 6) indicates that a
progressive temporal change occurred in the dynamic relationship between muscle activity
and force output during the endurance task. This general trend coincides with changes in
force-generating capacity (MVC force), self-perceived exertion (RPE), and localized muscle
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fatigue ( fim(t) and ai(t)), suggesting that the phenomenon captured by the FSI metric
reflects a degradation in performance over time.

The full time-series of FSI values for each participant are shown in Figure 6b. Although
the average trend in FSI is close to linear when averaged across individuals, most par-
ticipants displayed a non-linear degradation in performance. Moreover, inter-individual
differences in the non-linear trends were also apparent. Performance degraded quickly for
some participants during the first half of the experiment (S7, S8), whereas others (S2, S5,
S6) showed higher rates of change during the latter half.
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Figure 6. Freshness similarity index (FSI). (a) Dark blue data points separated by solid lines are means ± SE for the first,
middle, and last 30 s of the task. (b) The dark blue line with shaded envelope represents the mean ± SE over each 1% of
endurance time. Additional colored lines (dotted in (a), solid in (b)) represent data from a single participant (n = 8) whose
assigned color is consistent across figures. FSI increased significantly over time (p < 0.001, η2

p = 0.83).

3.4. Relationship Between Measures of Performance Degradation and Fatigue

The rmcorr analyses revealed a strong, negative association between FSI and MVC
force (rrm(7) = −0.86, 95% CI [−0.98,−0.32], p < 0.01; Figure 7a), and a strong, pos-
itive association between FSI and RPE (rrm(15) = 0.87, 95% CI [0.64, 0.96], p < 0.001;
Figure 7b). These analyses were used to evaluate whether changes in performance degra-
dation were paralleled by changes in mechanical and self-perceived fatigue within the
individual. In other words, for a given individual, was an increase in FSI associated with a
decrease in MVC force and an increase in RPE. The results indicate that participants who
displayed significant performance degradation also experienced a considerable reduction
in force-generating capacity and a rise in perceived effort. These strong within-subject
relationships between FSI and both well-established measures of fatigue suggest that the
degradation in performance captured by the FSI metric is representative of fatigue, thereby
substantiating the use of an ARMAX-based monitoring paradigm for assessing fatigue.
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Figure 7. Repeated measures correlations between the freshness similarity index (FSI) and (a) maximum voluntary
contraction (MVC) force and (b) ratings of perceived exertion (RPE). Data points are grouped by participant (n = 8),
where each color summarizes all observations from one participant and corresponding lines represent the rmcorr fit for
that participant. Participant color assignments are consistent with those in other figures. FSI revealed a strong, negative
relationship with MVC force (rrm = −0.86, p < 0.01) and a strong, positive relationship with RPE (rrm = 0.87, p < 0.001).

Simple correlations between overall changes in FSI and MVC force (r(6) = 0.41,
p = 0.846) and overall changes in FSI and RPE across participants (rs = −0.34, p = 0.796)
were not significant. However, we did not expect to observe between-subject associations.
Between-subject associations would suggest that participants with high values of FSI also
tend to have high values of RPE and low values of MVC force. However, since the FSI is an
individual-specific metric, its absolute value may not be comparable across participants.

4. Discussion
4.1. Viability of a System-Based Monitoring Approach for Assessing Fatigue

The primary purpose of this study was to substantiate the viability of the system-based
monitoring paradigm for assessing fatigue by relating the FSI metric to well-accepted mea-
sures of fatigue that capture a net reduction in force-generating capacity (MVC force) and
self-perceived fatigue (RPE). The strong within-individual associations between FSI and
these traditional measures indicate that the system-based monitoring approach captured
fatigue-induced changes in performance, substantiating its use for assessing fatigue. These
findings provide the first direct, quantitative link between a system-based approach to
monitoring performance degradation and well-accepted measures of fatigue.

To that end, we verified that participants developed fatigue during the endurance task
by observing significant reductions in MVC force and increases in RPE. Previous studies
that implemented a system-based monitoring paradigm [31–33] verified their findings by
identifying fatigue in individual muscles using trends in sEMG features. However, trends in
the relevant sEMG features reflect localized intramuscular adaptations rather than a global
reduction in force-generating capacity [15] or heightened perception of exertion [11,12],
whereas the FSI metric is a global representation of system-based performance degradation.
Furthermore, in these works, the sEMG features were used as inputs to the vARX and
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ARMAX models, so comparisons of the sEMG features to the results of the FSI metric
might be biased. For these reasons, the present study sought to confirm fatigue using
well-accepted global measures of fatigue that are external to the modeling paradigm (i.e.,
MVC force and RPE) in addition to trends in localized muscle signals. Significant changes
in MVC force, RPE, and the sEMG features ( fim(t) and ai(t)) indicate that the participants
fatigued during the endurance task.

4.2. Improvements to the System-Based Monitoring Paradigm

Additional novelty to the research presented in this paper is in the improvements made
to the system-based monitoring paradigm presented in previous works. The modifications,
which were specified throughout Section 2.6 and are discussed in more detail below, serve
to more accurately represent changes occurring in the NMS and facilitate the use of the
system-based monitoring paradigm as an online assessment tool.

We selected the sEMG instantaneous amplitude (ai(t)) as an input to the ARMAX
model to minimize the influence of high magnitude transients associated with the instan-
taneous energy feature used in other studies [31–34] and provide a comparable sEMG
feature to the commonly used RMS amplitude. As such, ai(t) served to attenuate signal
artifacts and better reflected the neural activation of the muscle [1]. To simplify our model
structure, we excluded two additional sEMG features from the ARMAX formulation that
were used as model inputs in [32–34]. These extra features, which capture the variance and
entropy of the sEMG signal, provided redundant information and added complexity to
our model without improving the sensitivity of the FSI metric to fatigue-related changes in
the dynamic relationship between the sEMG features and force.

We normalized the model inputs and outputs in a way that is both consistent with
how sEMG signals are processed in the literature [18,67,68] and more suitable for online
fatigue assessment compared to previous works [31–33]. As a result, the magnitude of
the sEMG features fell within predictable bounds, and data from only the baseline MVC
contractions and the initial few seconds of the endurance task were needed for scaling. Our
strategy would allow for an ARMAX model to be trained using data from short contractions
performed before the endurance task, then employed for online monitoring during the
endurance task itself. This offers an improvement to previous works whose normalization
methods produced model input values that far exceeded the predictable bounds of 0 to
1 [31] or required data from the entire endurance task to obtain the scaling factors [32,33],
which would restrict the use of the methodology to post hoc analysis.

Lastly, sEMG features from all elbow extensor muscles were incorporated as inputs
to the dynamic model, providing a complete representation of the neuromuscular system
responsible for elbow extension. This comprehensive approach extends the capability of
previous works, which used a single synergistic calf [32] or forearm [34] muscle to represent
the neuromuscular system responsible for isometric plantar flexion and hand grasping,
respectively. Although evidence suggests that elbow extensor muscles follow a general
hierarchic recruitment pattern, these patterns can vary considerably between individuals
and muscles [60], and did vary in our study. Despite these differences, some researchers
choose to monitor only one head of the triceps brachii by assuming the sEMG activity
from one muscle is representative of the entire synergistic group (i.e., the “equivalent
muscle” concept [59]). Although this may be true for brief static contractions [59], the
concept does not apply during submaximal contractions held until failure [39]. As a result,
assessment approaches that only monitor how one muscle from a synergist group fatigues
could underestimate the fatiguing process as a whole. The inclusion of all contributing
muscles in our model accommodates the inter-individual differences in muscle recruitment
strategies without loss of information by excluding any one particular muscle. Moreover,
our approach eliminates the need for a priori information regarding muscle fatigability.
This is important because the factors contributing to the inter-individual variation (i.e.,
differences in muscle composition, anatomy, and fitness level) are difficult to measure,



Sensors 2021, 21, 1024 17 of 23

making it infeasible to know which muscles will be most fatiguable for a given participant
before an experiment is performed.

4.3. Performance of the FSI Metric

The FSI metric showed sensitivity to the performance degradation occurring across
multiple muscles and sensor sources during an isometric endurance task. The significant
increase in FSI demonstrates that the metric was sensitive to changes in the dynamic
relationship between sEMG features from the elbow extensor muscles and force that
occurred over time. Alterations in this relationship between sEMG amplitude and force
are known to occur in the presence of fatigue during isometric tasks [29]. Moreover, by
utilizing both amplitude and frequency based sEMG features from each muscle [5], our
multivariate ARMAX model effectively detected fatigue-induced changes in the muscle
signals [41] and accounted for changes in muscle behavior due to fatigue and those due to
altered force production [5].

As a single metric, the FSI also proved to be a concise representation of performance
degradation occurring across multiple muscles and sensor sources. Typically, researchers
will evaluate fatigue by using sEMG to separately assess intramuscular changes in indi-
vidual muscles from corresponding alterations in force or movement output. Instead, our
system-based methodology uses an ARMAX formulation to represent the neuromuscu-
loskeletal system as an input-output dynamic model and monitors the model’s residuals
error over time via the FSI metric. This approach reduces the number of potential monitor-
ing parameters from nine (eight sEMG features and one force signal) to one (FSI), thereby
providing a concise representation of fatigue-related degradation in performance.

Most importantly, monitoring the FSI metric also allows for the continuous assessment
of fatigue during a task. This can elucidate non-linear performance changes or adaptations
that arise over time due to fatigue, as evidenced by the curvilinear evolution of the FSI
metric for the majority of individuals in our study. As a result, the system-based monitoring
paradigm has clear benefits over MVC-based approaches that must be performed before
and after bouts of exercise.

4.4. Advantages of a System-Based Monitoring Approach over Alternative Model-Based
Techniques for Fatigue Monitoring

The system-based modeling paradigm presented in this paper offers decided advan-
tages over existing model-based fatigue monitoring strategies. First, the methodology does
not restrict how performance degradation can evolve over time, thereby allowing for a non-
linear progression of FSI. Compared to other model-based fatigue assessment approaches,
which utilize a priori assumptions that fatigue will progress linearly over time [23,25,26],
the methodology is less restrictive and can allow for a more accurate evolution of fatigue-
induced changes in performance. Secondly, the ARMAX model used in this study need
only be trained on a small data set from the initial portion of the task before fatigue onset.
Alternative fatigue modeling attempts require extensive data sets containing the entire
time-course of fatigue to train the models [23,25–28]. This constraint limits the practicality
of these approaches due to time-consuming data collection and computationally expensive
procedures. The system-based methodology also allows changes in performance to be
continually tracked during the endurance task itself, in contrast with other models that use
reference contractions to probe for fatigue-induced changes in parameters at discrete time
points (e.g., the beginning and end of a task) [28]. Furthermore, our paradigm produces a
single overall measure of fatigue, providing an advantage over a model-based technique
that used multiple model kernels to evaluate fatigue in each muscle individually [69].
Lastly, our black-box modeling approach requires very few biomechanical assumptions
and is capable of performing in a real-time capacity. This offers decided advantages over
musculoskeletal modeling approaches that demand knowledge of anatomical parameters
and involve time-consuming optimization procedures [70].
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4.5. Limitations of the Study

Since the system-based modeling paradigm is in a nascent state, the meaning of the
absolute value of the FSI is not yet well understood. This is a common issue shared among
fatigue metrics [25,27,28,71], however, because the relative change in the parameter over
time is generally of more interest than the absolute value of the parameter. The lack of
between-subject associations between FSI and other measures of fatigue found in our study
verified that the relative change in FSI is not reflecting the differences within individuals.
However, with further investigation and participant-specific considerations, FSI values
may become more interpretable.

The sample size may be a limitation of the simple Pearson and Spearman correlations
used in this work. With a larger group of participants, it may be possible to observe
significant between-subject associations between the FSI and both MVC force and RPE. In
fact, a multimuscle fatigue score (MMFS) developed in [28] showed weak (r = 0.31) and
moderate (r = −0.56) relationships with ratings of perceived fatigue (RPF) and changes
in MVC force, respectively, using Pearson product-moment correlations on data from 20
participants. In our study, the sample size was sufficient to evaluate the sensitivity of
the FSI to fatigue-related changes in performance using RM-ANOVAs and demonstrate
the within-subject associations between FSI and both MVC force and RPE using rmcorr
analyses. The rmcorr analysis can accommodate smaller sample sizes because it uses
multiple data points per participant and accounts for non-independence of error between
observations using analysis of covariance to statistically adjust for the inter-individual
variability [56]. As a result, the degrees of freedom and power will generally be higher
using rmcorr compared to simple correlations, which use aggregated measures to meet the
assumption that data is Independent and Identically Distributed (IID) [56].

This study tested only male participants. However, it is not uncommon for fatigue
studies to include only one gender in the participant group [25,28,39,40,65,72]. A related
study that evaluated elbow extensor fatigability during a sustained isometric task at 15%
MVC until failure reported no differences in endurance time or sEMG amplitude across
men and women [73], contrary to observations from other muscle groups that exhibit sex
differences [73,74]. Thus, despite the single-gender participant pool used in our study,
the findings in [73] provide evidence that our system-based paradigm could account for
gender in this muscle group. However, further investigation is necessary to confirm the
accuracy of the proposed system-based monitoring paradigm for gender and other factors,
such as age.

The ARMAX models were trained on data that was individual- and task-specific,
meaning the model parameters, which were estimated for each participant individually
during a specific submaximal isometric task, may not be generalizable to other participants
or exercises. However, this warrants further investigation. Although model specificity
is a shared limitation among other model-based fatigue assessment strategies [23,25,28],
personalized models are still essential for making patient-specific clinical decisions [75] or
when accurate fatigue monitoring is required, that is, during recovery after musculoskeletal
injuries or rehabilitation for patients with neuromuscular disorders [7].

Lastly, insight concerning the specific muscles experiencing fatigue is not reflected
in the FSI, as was the case in the model-based approach by [28]. However, the purpose of
the system-based monitoring paradigm is to provide a concise measure of fatigue-related
changes in performance across multiple muscles and sensor sources. Thus, condensing the
number of monitoring parameters down to a single metric allows for a uniform approach
to assessing how the entire NMS system responsible for the fatiguing task behaves across
individuals. Although only four muscles were considered in the NMS system responsible
for elbow extension in this study, the system-based monitoring paradigm is flexible to
accommodate any number of inputs.
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4.6. Applications of the Study

There are many practical applications of this research. The ability to characterize
and track fatigue-related changes in neuromuscular system performance during exercise
has the potential to inform therapeutic modalities for rehabilitation. It also can become
useful when personalizing exercise regimens to target strength or endurance deficits,
or by indicating when to stop exercising before significant fatigue leads to the onset
of injury. More specifically, this work has the potential to improve fatigue monitoring
techniques during robot-aided movement training, which typically apply traditional signal
processing methods to analyze localized fatigue of individual muscles using sEMG [10].
Robotic exoskeletons are equipped with high-resolution sensors, such as force sensors and
encoders, that can capture kinematic and kinetic measurements reflecting the quality of
a user’s movement [76]. In combination with physiological measures, such as sEMG, a
system-based monitoring paradigm could fuse the data from these sensor sources and
produce a single metric to assess fatigue, such as the FSI. This metric could then be used
as an input to an exoskeleton controller that alters the level of robot-applied assistance or
resistance to accommodate a patient’s capability and needs [77].

4.7. Future Work

Several aspects of the presented methodology are ripe for further exploration to
enhance its utility as a diagnostic and monitoring tool. In this work, we chose to use an
isometric task to validate that the FSI captures fatigue because it is a simple contraction
that does not require the muscle to change length, thereby minimizing the non-stationary
behavior of the sEMG signals. Further validation using concentric and eccentric exercises
will open the possibility of fatigue monitoring during dynamic movements, which are
integral to various therapeutic modalities. Additionally, a formal exploration of how the
FSI metric behaves across multiple days of testing and in response to periods of rest and
recovery would help prove its effectiveness as a clinical tool. Further advancements to
the dynamic model might also lead to improved modeling accuracy and fatigue tracking,
especially when expanding the application of this work to more dynamic movements
involving multiple joints. In this work, we assumed a linear dynamic relationship between
muscle activity and movement output for analytical tractability. Future work could examine
the appropriateness of the linear assumption by comparing its accuracy to non-linear
dynamic models [78]. In the long run, the approach presented in this paper could be
adapted to monitor fatigue in real-time and used to update control laws of robots, e.g.,
exoskeletons, for optimal human-robot performance.

5. Conclusions

This paper presented and validated a framework for continuously assessing fatigue
using a system-based monitoring paradigm. The paradigm modeled the dynamic relation-
ship between sEMG features extracted from multiple synergistic muscles to force output,
then employed statistical analysis of modeling errors to reveal how performance degraded
in each participant over time. The index of performance degradation (FSI) revealed strong,
within-individual associations with two well-established fatigue measures, substantiating
its applicability as a fatigue monitoring tool. The FSI provided a sensitive and concise
representation of the temporal changes in the dynamic relationship between limb force
and sEMG parameters during submaximal static exercise. Improvements were made to
the system-based monitoring paradigm to facilitate online fatigue assessment and more
accurately represent changes occurring in the NMS. This work presents the first step toward
evaluating the clinical viability of a system-based monitoring strategy for assessing fatigue
by comparing its performance with traditional fatigue measures. Ultimately, the ability
to monitor and assess fatigue has important implications for preventing neuromuscular
injury, optimizing training loads, and guiding effective, individualized treatment strategies
for rehabilitation.
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22. Cifrek, M.; Medved, V.; Tonković, S.; Ostojić, S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech.

2009, 24, 327–340. [CrossRef] [PubMed]
23. González-Izal, M.; Malanda, A.; Gorostiaga, E.; Izquierdo, M. Electromyographic models to assess muscle fatigue. J. Electromyogr.

Kinesiol. 2012, 22, 501–512. [CrossRef] [PubMed]
24. Rampichini, S.; Vieira, T.M.; Castiglioni, P.; Merati, G. Complexity Analysis of Surface Electromyography for Assessing the

Myoelectric Manifestation of Muscle Fatigue: A Review. Entropy 2020, 22, 529. [CrossRef]
25. MacIsaac, D.T.; Parker, P.A.; Englehart, K.B.; Rogers, D.R. Fatigue estimation with a multivariable myoelectric mapping function.

IEEE Trans. Biomed. Eng. 2006, 53, 694–700. [CrossRef]
26. Rogers, D.R.; MacIsaac, D.T. Training a multivariable myoelectric mapping function to estimate fatigue. J. Electromyogr. Kinesiol.

2010, 20, 953–960. [CrossRef]
27. Rogers, D.R.; MacIsaac, D.T. EMG-based muscle fatigue assessment during dynamic contractions using principal component

analysis. J. Electromyogr. Kinesiol. 2011, 21, 811–818. [CrossRef]
28. McDonald, A.C.; Mulla, D.M.; Keir, P.J. Using EMG amplitude and frequency to calculate a multimuscle fatigue score and

evaluate global shoulder fatigue. Hum. Factors 2019, 61, 526–536. [CrossRef]
29. Dideriksen, J.L.; Farina, D.; Enoka, R.M. Influence of fatigue on the simulated relation between the amplitude of the surface

electromyogram and muscle force. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 2765–2781. [CrossRef]
30. Isermann, R. Fault-Diagnosis Applications: Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and

Fault-Tolerant Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011.
31. Mussleman, M.; Gates, D.; Djurdjanovic, D. A System-Based Approach to Monitoring the Performance of a Human Neuromuscu-

loskeletal System. Int. J. Progn. Health Manag. 2016, 7, 14.
32. Xie, Y.Y.; Djurdjanovic, D. Monitoring of human neuromusculoskeletal system performance through model-based fusion of

electromyogram signals and kinematic/dynamic variables. Struct. Health Monit. 2019, 1475921719848006. [CrossRef]
33. Madden, K.E.; Djurdjanovic, D.; Deshpande, A.D. Monitoring human neuromusculoskeletal system performance during spacesuit

glove use: A pilot study. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; pp. 1–10.
34. Yang, K.; Nicolini, L.; Kuang, I.; Lu, N.; Djurdjanovic, D. Long-term modeling and monitoring of neuromusculoskeletal system

performance using tattoo-like EMG sensors. Int. J. Progn. Health Manag. 2019, 10, 004.
35. Hellmann, F.; Verdi, M.; Schlemper Junior, B.R.; Caponi, S. 50th anniversary of the Declaration of Helsinki: The double standard

was introduced. Arch. Med Res. 2014, 45, 600–601. [CrossRef] [PubMed]
36. Schiele, A.; van der Helm, F.C.T. Kinematic design to improve ergonomics in human machine interaction. IEEE Trans. Neural

Syst. Rehabil. Eng. 2006, 14, 456–469. [CrossRef] [PubMed]
37. Taylor, A.; Bronks, R. Reproducibility and validity of the quadriceps muscle integrated electromyogram threshold during

incremental cycle ergometry. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 70, 252–257. [CrossRef] [PubMed]
38. Ng, J.K.; Richardson, C.A. Reliability of electromyographic power spectral analysis of back muscle endurance in healthy subjects.

Arch. Phys. Med. Rehabil. 1996, 77, 259–264. [CrossRef]
39. Davidson, A.W.; Rice, C.L. Effect of shoulder angle on the activation pattern of the elbow extensors during a submaximal

isometric fatiguing contraction. Muscle Nerve 2010, 42, 514–521. [CrossRef]
40. Krogh-Lund, C.; Jørgensen, K. Changes in conduction velocity, median frequency, and root mean square-amplitude of the

electromyogram during 25% maximal voluntary contraction of the triceps brachii muscle, to limit of endurance. Eur. J. Appl.
Physiol. Occup. Physiol. 1991, 63, 60–69. [CrossRef] [PubMed]

http://dx.doi.org/10.3389/fpsyg.2018.01383
http://www.ncbi.nlm.nih.gov/pubmed/30174627
http://dx.doi.org/10.5271/sjweh.1815
http://www.ncbi.nlm.nih.gov/pubmed/2345867
http://dx.doi.org/10.1152/japplphysiol.91324.2008
http://www.ncbi.nlm.nih.gov/pubmed/19131473
http://dx.doi.org/10.1007/s40279-016-0672-0
http://dx.doi.org/10.1016/S0165-0270(97)02251-6
http://dx.doi.org/10.3389/fphys.2020.553296
http://dx.doi.org/10.1002/mus.880070902
http://dx.doi.org/10.1152/jappl.1990.69.5.1810
http://dx.doi.org/10.1109/10.930899
http://dx.doi.org/10.1249/00003677-200607000-00006
http://www.ncbi.nlm.nih.gov/pubmed/16829739
http://dx.doi.org/10.1016/j.clinbiomech.2009.01.010
http://www.ncbi.nlm.nih.gov/pubmed/19285766
http://dx.doi.org/10.1016/j.jelekin.2012.02.019
http://www.ncbi.nlm.nih.gov/pubmed/22440555
http://dx.doi.org/10.3390/e22050529
http://dx.doi.org/10.1109/TBME.2006.870220
http://dx.doi.org/10.1016/j.jelekin.2009.11.001
http://dx.doi.org/10.1016/j.jelekin.2011.05.002
http://dx.doi.org/10.1177/0018720818794604
http://dx.doi.org/10.1098/rsta.2010.0094
http://dx.doi.org/10.1177/1475921719848006
http://dx.doi.org/10.1016/j.arcmed.2014.10.005
http://www.ncbi.nlm.nih.gov/pubmed/25450586
http://dx.doi.org/10.1109/TNSRE.2006.881565
http://www.ncbi.nlm.nih.gov/pubmed/17190037
http://dx.doi.org/10.1007/BF00238572
http://www.ncbi.nlm.nih.gov/pubmed/7607201
http://dx.doi.org/10.1016/S0003-9993(96)90108-2
http://dx.doi.org/10.1002/mus.21717
http://dx.doi.org/10.1007/BF00760803
http://www.ncbi.nlm.nih.gov/pubmed/1915335


Sensors 2021, 21, 1024 22 of 23

41. Rogers, D.R.; MacIsaac, D.T. A comparison of EMG-based muscle fatigue assessments during dynamic contractions. J. Elec-
tromyogr. Kinesiol. 2013, 23, 1004–1011. [CrossRef]

42. Hermens, H.J.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hägg, G. European recommendations
for surface electromyography. Roessingh Res. Dev. 1999, 8, 13–54.

43. Merletti, R. Standards for reporting EMG data. J. Electromyogr. Kinesiol. 1999, 9, 3–4.
44. Potvin, J.; Brown, S. Less is more: High pass filtering, to remove up to 99% of the surface EMG signal power, improves EMG-based

biceps brachii muscle force estimates. J. Electromyogr. Kinesiol. 2004, 14, 389–399. [CrossRef] [PubMed]
45. Semmlow, J.L.; Griffel, B. Biosignal and Medical Image Processing; CRC Press: Boca Raton, FL, USA, 2014.
46. Dankaerts, W.; O’Sullivan, P.B.; Burnett, A.F.; Straker, L.M.; Danneels, L.A. Reliability of EMG measurements for trunk muscles

during maximal and sub-maximal voluntary isometric contractions in healthy controls and CLBP patients. J. Electromyogr.
Kinesiol. 2004, 14, 333–342. [CrossRef] [PubMed]

47. Bonato, P.; Gagliati, G.; Knaflitz, M. Analysis of myoelectric signals recorded during dynamic contractions. IEEE Eng. Med. Biol.
Mag. 1996, 15, 102–111. [CrossRef]

48. von Tscharner, V. Intensity analysis in time-frequency space of surface myoelectric signals by wavelets of specified resolution.
J. Electromyogr. Kinesiol. 2000, 10, 433–445. [CrossRef]

49. Boashash, B. Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, 2nd ed.; Academic Press: Oxford, UK, 2016;
Chapter 16.

50. Gottlieb, G.L.; Agarwal, G.C. Dynamic relationship between isometric muscle tension and the electromyogram in man. J. Appl.
Physiol. 1971, 30, 345–351. [CrossRef] [PubMed]

51. Thelen, D.G.; Schultz, A.B.; Fassois, S.D.; Ashton-Miller, J.A. Identification of dynamic myoelectric signal-to-force models during
isometric lumbar muscle contractions. J. Biomech. 1994, 27, 907–919. [CrossRef]

52. Cha, S.H. Comprehensive survey on distance/similarity measures between probability density functions. Int. J. Math. Model.
Methods Appl. Sci. 2007, 1, 1.

53. Hernández-Rivera, E.; Coleman, S.P.; Tschopp, M.A. Using similarity metrics to quantify differences in high-throughput data
sets: Application to X-ray diffraction patterns. ACS Comb. Sci. 2017, 19, 25–36. [CrossRef]

54. MATLAB. Version 9.3.0 (R2017b); The MathWorks Inc.: Natick, MA, USA, 2017.
55. Bland, J.M.; Altman, D.G. Statistics notes: Calculating correlation coefficients with repeated observations: Part 1—Correlation

within subjects. BMJ 1995, 310, 446. [CrossRef]
56. Bakdash, J.Z.; Marusich, L.R. Repeated measures correlation. Front. Psychol. 2017, 8, 456. [CrossRef] [PubMed]
57. Mukaka, M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [PubMed]
58. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2019.
59. Le Bozec, S.; Maton, B.; Cnockaert, J.C. The synergy of elbow extensor muscles during static work in man. Eur. J. Appl. Physiol.

Occup. Physiol. 1980, 43, 57–68. [CrossRef] [PubMed]
60. Neumann, D.A. Kinesiology of the Musculoskeletal System; Foundation for Rehabilitation, 2nd ed.; Mosby/Elsevier: St. Louis, MO,

USA, 2010; Chapter 6.
61. Zhang, L.Q.; Nuber, G.W. Moment distribution among human elbow extensor muscles during isometric and submaximal

extension. J. Biomech. 2000, 33, 145–154. [CrossRef]
62. Elder, G.C.; Bradbury, K.; Roberts, R. Variability of fiber type distributions within human muscles. J. Appl. Physiol. 1982,

53, 1473–1480. [CrossRef]
63. Le Bozec, S.; Maton, B. Differences between motor unit firing rate, twitch characteristics and fibre type composition in an agonistic

muscle group in man. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 350–355. [CrossRef]
64. Kuo, K.H.M.; Clamann, H.P. Coactivation of synergistic muscles of different fiber types in fast and slow contractions. Am. J. Phys.

Med. Rehabil. 1981, 60, 219–238.
65. Gonzalez-Izal, M.; Falla, D.; Izquierdo, M.; Farina, D. Predicting force loss during dynamic fatiguing exercises from non-linear

mapping of features of the surface electromyogram. J. Neurosci. Methods 2010, 190, 271–278. [CrossRef]
66. Merletti, R.; Conte, L.R.; Orizio, C. Indices of muscle fatigue. J. Electromyogr. Kinesiol. 1991, 1, 20–33. [CrossRef]
67. Hostens, I.; Seghers, J.; Spaepen, A.; Ramon, H. Validation of the wavelet spectral estimation technique in biceps brachii and

brachioradialis fatigue assessment during prolonged low-level static and dynamic contractions. J. Electromyogr. Kinesiol. 2004,
14, 205–215. [CrossRef]

68. Woods, J.J.; Bigland-Ritchie, B. Linear and non-linear surface EMG/force relationships in human muscles. An anatomi-
cal/functional argument for the existence of both. Am. J. Phys. Med. 1983, 62, 287–299. [PubMed]

69. Asefi, M.; Moghimi, S.; Kalani, H.; Moghimi, A. Dynamic modeling of SEMG–force relation in the presence of muscle fatigue
during isometric contractions. Biomed. Signal Process. Control 2016, 28, 41–49. [CrossRef]

70. Rao, G.; Berton, E.; Amarantini, D.; Vigouroux, L.; Buchanan, T.S. An EMG-driven biomechanical model that accounts for the
decrease in moment generation capacity during a dynamic fatigued condition. J. Biomech. Eng. 2010, 132, 071003. [CrossRef]

71. Dimitrov, G.V.; Arabadzhiev, T.I.; Mileva, K.N.; Bowtell, J.L.; Crichton, N.; Dimitrova, N.A. Muscle fatigue during dynamic
contractions assessed by new spectral indices. Med. Sci. Sport. Exerc. 2006, 38, 1971–1979. [CrossRef]

http://dx.doi.org/10.1016/j.jelekin.2013.05.005
http://dx.doi.org/10.1016/j.jelekin.2003.10.005
http://www.ncbi.nlm.nih.gov/pubmed/15094152
http://dx.doi.org/10.1016/j.jelekin.2003.07.001
http://www.ncbi.nlm.nih.gov/pubmed/15094147
http://dx.doi.org/10.1109/51.544517
http://dx.doi.org/10.1016/S1050-6411(00)00030-4
http://dx.doi.org/10.1152/jappl.1971.30.3.345
http://www.ncbi.nlm.nih.gov/pubmed/5544113
http://dx.doi.org/10.1016/0021-9290(94)90263-1
http://dx.doi.org/10.1021/acscombsci.6b00142
http://dx.doi.org/10.1136/bmj.310.6977.446
http://dx.doi.org/10.3389/fpsyg.2017.00456
http://www.ncbi.nlm.nih.gov/pubmed/28439244
http://www.ncbi.nlm.nih.gov/pubmed/23638278
http://dx.doi.org/10.1007/BF00421356
http://www.ncbi.nlm.nih.gov/pubmed/7371628
http://dx.doi.org/10.1016/S0021-9290(99)00157-8
http://dx.doi.org/10.1152/jappl.1982.53.6.1473
http://dx.doi.org/10.1007/BF00690904
http://dx.doi.org/10.1016/j.jneumeth.2010.05.003
http://dx.doi.org/10.1016/1050-6411(91)90023-X
http://dx.doi.org/10.1016/S1050-6411(03)00101-9
http://www.ncbi.nlm.nih.gov/pubmed/6650674
http://dx.doi.org/10.1016/j.bspc.2016.04.002
http://dx.doi.org/10.1115/1.4001383
http://dx.doi.org/10.1249/01.mss.0000233794.31659.6d


Sensors 2021, 21, 1024 23 of 23

72. González-Izal, M.; Malanda, A.; Navarro-Amézqueta, I.; Gorostiaga, E.M.; Mallor, F.; Ibañez, J.; Izquierdo, M. EMG spectral
indices and muscle power fatigue during dynamic contractions. J. Electromyogr. Kinesiol. 2010, 20, 233–240. [CrossRef] [PubMed]

73. Dearth, D.J.; Umbel, J.; Hoffman, R.L.; Russ, D.W.; Wilson, T.E.; Clark, B.C. Men and women exhibit a similar time to task failure
for a sustained, submaximal elbow extensor contraction. Eur. J. Appl. Physiol. 2010, 108, 1089–1098. [CrossRef] [PubMed]

74. Hunter, S.K. The relevance of sex differences in performance fatigability. Med. Sci. Sport. Exerc. 2016, 48, 2247. [CrossRef]
[PubMed]

75. Forkan, A.R.M.; Khalil, I. A clinical decision-making mechanism for context-aware and patient-specific remote monitoring
systems using the correlations of multiple vital signs. Comput. Methods Programs Biomed. 2017, 139, 1–16. [CrossRef]

76. Nordin, N.; Xie, S.Q.; Wünsche, B. Assessment of movement quality in robot-assisted upper limb rehabilitation after stroke:
A review. J. Neuroeng. Rehabil. 2014, 11, 137. [CrossRef]

77. Marchal-Crespo, L.; Reinkensmeyer, D.J. Review of control strategies for robotic movement training after neurologic injury.
J. Neuroeng. Rehabil. 2009, 6, 1–15. [CrossRef]

78. Musselman, M.; Gates, D.; Djurdjanovic, D. System based monitoring of a neuromusculoskeletal system using divide and
conquer type models. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017; pp. 1–12.

http://dx.doi.org/10.1016/j.jelekin.2009.03.011
http://www.ncbi.nlm.nih.gov/pubmed/19406664
http://dx.doi.org/10.1007/s00421-009-1323-z
http://www.ncbi.nlm.nih.gov/pubmed/20024575
http://dx.doi.org/10.1249/MSS.0000000000000928
http://www.ncbi.nlm.nih.gov/pubmed/27015385
http://dx.doi.org/10.1016/j.cmpb.2016.10.018
http://dx.doi.org/10.1186/1743-0003-11-137
http://dx.doi.org/10.1186/1743-0003-6-20

	Introduction
	Background
	Related Literature

	Materials and Methods
	Participants
	Experimental Setup
	Experimental Protocol
	Data Acquisition
	Data Processing
	System-Based Monitoring
	sEMG Feature Extraction
	Normalization
	Modeling
	Performance Tracking

	Statistical Analysis

	Results
	Confirmation of Fatigue
	Evidence of Localized Muscle Fatigue
	Trends in Performance Degradation
	Relationship Between Measures of Performance Degradation and Fatigue

	Discussion
	Viability of a System-Based Monitoring Approach for Assessing Fatigue
	Improvements to the System-Based Monitoring Paradigm
	Performance of the FSI Metric
	Advantages of a System-Based Monitoring Approach over Alternative Model-Based Techniques for Fatigue Monitoring
	Limitations of the Study
	Applications of the Study
	Future Work

	Conclusions
	References

