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Summary In this article, we analyzed pedigree information on males from 12 bovine breeds born in

France between 2015 and 2019. We report an overall small number of paternal lineages

with, for example, a minimal number of ancestors accounting for 95% of the Y-

chromosome pool of their breed ranging from only 2 to 15 individuals. Then, we mined

whole-genome sequence data from 811 sires (2 ≤ n ≤ 510 per breed) and built a median-

joining network using 1411 SNPs. Most branches were breed-specific and in agreement

with the geographic and genetic relatedness of these populations. The within-breed

haplotype diversity was lower than expected based on genealogical information, which

supports the existence of major male founder effects predating pedigree recording. In

addition, we observed de novo mutation events among the descendants of the same

ancestors, which are of interest to define paternal sub-lineages. Our results pave the way to

future studies on the estimation of the effects of Y-chromosome haplotypes on male

reproductive performances and on the conservation of Y-chromosome diversity.
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In mammals, the Y chromosome is essential for male sex

determination and fertility. In spite of its potential interest for

breeding more fertile males, only a few research studies have

focused on the genetic diversity and gene composition of the

Y chromosome in cattle (Yue et al. 2015; Hughes et al.

2020). This lack of interest for the Y chromosome is due to

the fact that breeding schemes have long focused on

production traits (milk or meat) only, and massively used a

few bulls with high genetic breeding value through artificial

insemination (AI), without other consideration. In addition,

the presence of a large number of highly repetitive and

palindromic sequences, have posed a technological challenge

in terms of sequencing and assembly of this chromosome’s

sequence. Nevertheless, the absence of chromosomal recom-

bination outside the pseudo-autosomal region preserves the

original haplotypes, and the transmission of the Y chromo-

some can therefore be followed by studying paternal lines in

pedigrees. In this study, we investigated Y-chromosome

diversity in 12 beef and dairy breeds bred in France (Table 1)

using both pedigree and molecular marker information.

As a preliminary analysis, we mined the genealogies of

males born between 2015 and 2019 using the Lineage

program, one of the latest updates of the PEDIG package

(Boichard 2002). We considered only the individuals with

both parents known and, for each breed, we calculated the

proportion of males born from AI versus natural mating, as

well as the contributions to the present Y-chromosome pool

of the most ancient paternal ancestors recorded within each

pedigree.

Regardless of the breed, the number of male lineages was

very small and the main ancestor (defined as the individual

with the highest contribution to the Y pool of its breed

among the most ancient paternal ancestors) accounted for

23.2–58% of these (MainA, Table 1). However, we observed

significant differences between dairy versus dual-purpose

and beef breeds for all the metrics calculated. Dairy breeds

showed a higher use of AI and, as a consequence, a smaller

number of ancestors contributing to more than 1% of the

paternal lineages (NbA > 1), smaller minimal numbers of

ancestors accounting for 95% of the paternal lineages

(MinNbA95), and higher contributions from the main

ancestors (MainA; Table 1, Table S1). This phenomenon is

particularly significant in our dataset for Holstein cattle in

which 98.3% of the Y-chromosomes of the investigated

population derive from only two ancestors: Wis Burke

Ideal (HOLUSAM000001013415 born in 1947 with a

contribution of 47.5%) and Rosafe Pearl Hannibal,
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(HOLUSAM000001322381, 1955, 50.8%), which are

the paternal grand sires of the influential AI bulls Eleva-

tion (HOLUSAM000001491007) and Chief (HOLU-

SAM000001427381), respectively. Yue et al. (2015)

reported similar results in a study on North American

Holsteins, and also traced these paternal lineages back to

two bulls born in 1880.

To evaluate Y-chromosome diversity at the molecular

level, we mined the vcf files from run 8 of the 1000 Bull

Genomes Project, which were obtained after aligning

whole-genome sequences of 4104 Bos taurus against the

ARS-UCD1 genome assembly and a 43-Mb long draft

sequence of chromosome Y (accession no. CM001061.2

in GenBank; http://www.ncbi.nlm.nih.gov/genbank/), as

described in Bouwman et al. (2018). Due to the highly

repetitive nature of the Y chromosome, we applied a series

of filters to reduce the risk of considering false variants. We

retained only SNPs: (i) that were present in two or more

animals; (ii) that had a root mean square mapping quality

higher than 40 and a FisherStrand value lower than 60

(https://gatk.broadinstitute.org/hc/en-us/articles/

360035890471-Hard-filtering-germline-short-variants);

(iii) that were carried by less than 5% of the 479 purebred

Bos taurus females available in run 8 of the 1000 Bull

Genomes Project; and (iv) for which less than 5% of the

heterozygous genotypes among males carried the alterna-

tive allele. In addition, we considered only the males from

the breeds investigated and for which genotypes were

available for at least 90% of the variants (with heterozygous

genotypes considered as missing). We used Fimpute3

without pedigree information to impute missing genotypes

(Sargolzaei et al. 2014), and POPART v1.7 (Leigh & Bryant

2015) to create a preliminary median-joining network.

Then, we verified all individual genotypes that generated

web-like structures in the network and manually edited

putative errors of variant calling or imputation according to

the principle of parsimony (number of corrected genotypes

n = 56/1 144 321). The final median-joining network was

based on information from 811 sires (2 ≤ n ≤ 453 per breed;

Tables S2 & S3) genotyped for 1411 SNPs, which to our

knowledge represents the largest dataset analyzed to date in

cattle in terms of individuals combined with number of

markers. In total, 1266 SNPs (89.7%) supported the

existence of the two main North-East (Y1) and South-

West (Y2) European haplogroups that were initially

described by Edwards et al. (2011) based on sequence

information from three Y-chromosome genes and two

microsatellite markers (Fig. 1). Among these 1266 SNPs,

66 were included in the panel of 68 markers used by Chen

et al. (2018) to differentiate the Y1 and Y2 haplogroups.

Within these haplogroups, most of the branches were breed-

specific and reflected the geographic and genetic relatedness

of these populations as previously evaluated using autoso-

mal markers (Gautier et al. 2010; Park et al. 2015). For

example, some Blonde d’Aquitaine bulls shared identical Y-

haplotypes with Limousin and Salers bulls, and the same

occurred between Montb�eliarde and Simmental or between

Abondance and Tarentaise. The within-breed haplotype

diversity was lower than expected based on pedigree

information with independent influential ancestors carrying

the same Y-chromosome haplotype. For example, in Nor-

mande, we did not observe any variation between the Y-

chromosomes of 30 bulls descending from five ancestors.

These results support the existence of major male founder

effects dating back to the creation of the breeds, and thus

several decades before the advent of modern reproduction

and selection techniques. The availability of 453 male

whole genomes for the sole Holstein breed enabled us to

Table 1 Indicators of paternal lineages diversity for males born between 2015 and 2019 using pedigree information.

Purpose Breed Number of males AI NbA > 1 MinNbA95 MainA

Dairy Holstein 8 259 344 93% 3 2 50.8%

Montb�eliarde 1 866 789 91% 6 6 36.2%

Normande 986 395 97% 4 4 52.3%

Abondance 111 424 80% 5 5 44.3%

Brown Swiss 75 638 95% 5 5 34.2%

Tarentaise 39 927 83% 5 4 58.0%

Dual Simmental 80 741 94% 12 11 38.5%

Beef Charolaise 1 893 381 32% 9 11 23.2%

Limousine 1 359 913 16% 12 15 39.5%

Blonde d’Aq. 805 828 30% 11 15 36.1%

Salers 199 433 13% 9 9 46.1%

Rouge des Pr�es1 98 254 25% 10 9 28.6%

P-value dairy vs beef2 7.4 9 10�8 1.3 9 10�5 9.5 9 10�4 3.8 9 10�2

AI: proportion of males born from artificial insemination or multiple ovulation embryo transfer; NbA > 1: number of male ancestors contributing for

more than 1% of the paternal lineages in the population analyzed; MinNbA95: minimal number of ancestors accounting for 95% of the paternal

lineages; MainA: contribution of the main ancestor to the paternal lineages; Aq.: Aquitaine; Nb: number.
1The Rouge Des Pr�es breed was previously known as Maine Anjou.
2Two sample t-test with the alternative hypothesis that the means are not equal.
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identify 41 carriers of a third Y-chromosome haplotype

in Holstein, which originates from the bull HOLU-

SAM000000827071 (born before 1950) that is the pater-

nal great-grand sire of the influential AI bull Ivanhoe Star

(HOLUSAM000001441440; Fig. 1). Nowadays, this rare

haplotype account for only 1.2% of the Y paternal lines (See

Suppl. Table S1). Moreover, our results show that only five

of the 1411 SNPs differentiated the three basal Y-

chromosome haplotypes found in the Holstein breed and

we report six additional mutation events that occurred

among the descendants of the two main paternal lines from

Rosafe Pearl Hannibal, (HOLUSAM000001322381, n = 4)

and Wis Burke Ideal (HOLUSAM000001013415, n = 2;

Fig. 1). Adding these variants to custom SNP chips

(Boichard et al. 2018) would be very useful to distinguish

sub-lineages and estimate the effects on male-related traits

of other types of mutations that may have accumulated

over time, and require long-read sequencing technologies or

quantitative PCR to be detected. Previously published

analyses demonstrated that: (i) the ampliconic region of

the Y chromosome can experience substantial loss or gain of

gene copies within a few generations (Yue et al. 2015); (ii)

Figure 1 Median joining network based on 1411 Y-chromosome SNPs and 811 individuals. (a) Results for the whole data set. Each circle represents a

haplotype and the size of the circle is proportional to the number of bulls bearing this haplotype. Branches connecting circles represent nucleotide

changes between haplotypes. The number of variants is indicated on the branches when they are supported by more than one SNP. Colors refer to

breeds of origin. The most represented haplotypes of each breed have been placed on a map on the geographic cradle of that breed. (b) Focus on

Holstein derived Y1-haplotypes. Patterns refer to the most ancient male ancestor of carriers of each haplotype. Absence of pattern means that no

pedigree information was available for the carrier of this specific haplotype in the French pedigree database. Annotations b, d, and bd refer respectively

to beef, dairy, and dual-purpose breeds.
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some of these copy number variants are associated with

scrotal circumference and male fertility in Holsteins (Yue

et al. 2013, 2014); and (iii) consequently that the estima-

tion of the impact of the Y-chromosome on traits based on

paternal lineage is inaccurate (Yue et al. 2015).

In addition, we observed very rare carriers of the Holstein

Y1 haplotype within the Simmental (1/70) and Mon-

tb�eliarde (1/45) breeds, which result from planned intro-

gressions during the 1970s and 1980s to improve milk

production. Based on pedigree information, there is a single

Holstein paternal lineage still segregating at a low rate

(0.3%, seventh most important lineage) in the population of

Montb�eliarde males born between 2015 and 2019. The

founder of this lineage is the Red Holstein bull Janes Royal

(HOLUSAM000001599157, born in 1970), a remote

descendant of the ancestor bull HOLUSAM000000798226

(born around 1950), the lineage of which has disappeared

from the present Y-chromosome pool of French Holstein.

Given the large genetic distance between the Y1 and Y2

haplogroups, it is likely that they have accumulated many

mutations in addition to the SNPs we are studying, with

some of them potentially affecting male reproduction. The

presence of Y1 and Y2 haplotypes on a similar genomic

background in Montb�eliarde represent a unique opportunity

to study the impact of the Y variations on fertility traits in

the future, when the number of Y1-haplotype carriers

among Montb�eliarde AI bulls will be sufficient. Estimating

the phenotypic consequences of the variants associated with

the different Y haplogroups and haplotypes found in West-

European cattle breeds is a prerequisite before starting

conservation introgression programs to improve Y-

chromosome variability and/or male reproductive perfor-

mances. Finally, we also identified six additional examples of

Y1-haplotype carriers within breeds that are normally fixed

for the Y2 haplotype. After verification, three of them were

attributed to errors in pedigree data, breed affiliation, or in

the correspondence between DNA samples and animal ID

(Data S1). These results call for a systematic verification of

the identity (and breed affiliation) of the individuals whole

genome sequenced for example by studying the concor-

dance between genotypes derived from SNP array and from

WGS, prior to any analysis. Such errors may have impor-

tant consequences on imputation and subsequent GWAS or

on filtering of breed-specific variants when searching for

mutations responsible for recessive genetic defects (Michot

et al. 2016).

In conclusion, using pedigree information and whole-

genome sequence data, we report an extremely low within-

breed Y-chromosome diversity in 12 dairy and beef cattle

breeds. This situation due to ancient bottlenecks was

particularly exacerbated in dairy breeds due to the increased

use of modern reproduction techniques. The large set of

informative SNPs identified in this study are of particular

interest for future studies dedicated to the estimation of the

effects of the various Y-chromosome haplotypes on male

reproductive performances and to the conservation of Y-

chromosome diversity.
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