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Aims Mathematical models previously developed to predict outcomes in patients with heart failure (HF) generally have limited 
performance and have yet to integrate complex data derived from cardiopulmonary exercise testing (CPET), including 
breath-by-breath data. We aimed to develop and validate a time-to-event prediction model using a deep learning framework 
using the DeepSurv algorithm to predict outcomes of HF.

Methods 
and results

Inception cohort of 2490 adult patients with high-risk cardiac conditions or HF underwent CPET with breath-by-breath 
measurements. Potential predictive features included known clinical indicators, standard summary statistics from CPETs, 
and mathematical features extracted from the breath-by-breath time series of 13 measurements. The primary outcome 
was a composite of death, heart transplant, or mechanical circulatory support treated as a time-to-event outcomes. 
Predictive features ranked as most important included many of the features engineered from the breath-by-breath data 
in addition to traditional clinical risk factors. The prediction model showed excellent performance in predicting the com
posite outcome with an area under the curve of 0.93 in the training and 0.87 in the validation data sets. Both the predicted 
vs. actual freedom from the composite outcome and the calibration of the prediction model were excellent. Model perform
ance remained stable in multiple subgroups of patients.

Conclusion Using a combined deep learning and survival algorithm, integrating breath-by-breath data from CPETs resulted in improved 
predictive accuracy for long-term (up to 10 years) outcomes in HF. DeepSurv opens the door for future prediction models 
that are both highly performing and can more fully use the large and complex quantity of data generated during the care of 
patients with HF.
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Background
The number of patients living with heart failure (HF) has been steadily 
increasing owing to an aging population, increased survival of patients at 
high risk for HF (e.g. those with ischaemic heart disease), and improved 
outcomes of those living with HF (secondary to the use of guideline- 
directed therapies).1,2 The ability of predictive models to guide therapy, 
counsel patients, and anticipate disease progression is of critical import
ance. Indeed, many models have been developed to predict prognosis in 
patients with HF, often focusing exclusively on clinical risk factors.3–5

Data from cardiopulmonary exercise testing (CPET) have been found 
to be an important prognostic factor for patients with heart failure, 
both as specific indices6–8 and through composite scores derived 
from those indices.9,10 These data have been included in predictive 
models10–12; however, these models have suffered from poor perform
ance with c-statistics generally <0.75.13

In a typical CPET, various physiological parameters are measured ei
ther on a breath-by-breath basis or monitored continuously. From 
these data, measurements at pre-specified clinical landmarks, calcula
tions of rate of change (slopes), or ratios between specific variables 
are used to summarize the results of the test and these are the data 
that are used to guide clinical care and are incorporated in clinical pre
diction models. Thus, the majority of the measurements generated dur
ing an exercise test is generally not used either clinically or in prediction 
models. However, we recently found breath-by-breath data substan
tially improved predictive model performance for 1-year outcomes in 
HF patients over single CPET indices or published composite scores de
rived from CPET.14 The challenge with using these data is that without 

data reduction techniques (which substantially reduces the informative
ness of the data), time series do not integrate well into classic probabil
istic modelling methods. However, recent advances with the 
integration of time-to-event analysis in machine learning algorithms 
now make this possible.15 Thus, the objective of this study was to 
use machine learning to create and internally validate a predictive model 
for a combined outcome of death, need for heart transplant, or mech
anical circulatory support that integrates clinical risk factors, CPET in
dices, and breath-by-breath data.

Methods
Patient population
This single-centre retrospective study included consecutive ambulatory pa
tients 18 years or older with a high-risk condition for which CPET surveil
lance was indicated (gene-carrying/heritable cardiomyopathy, cardiotoxic 
exposure) or with an established diagnosis of HF from any aetiology other 
than congenital heart disease. Patients with severe pulmonary disease were 
not included in this study. Patients were followed at the Peter Munk Cardiac 
Centre at University Health Network between December 2001 and 
December 2018. Patients were included if they had at least one CPET 
with available breath-by-breath data performed during the review period 
and followed for at least 12 months afterwards (unless they experienced 
an event during the 12-month observation period). The original patient 
population included 3460 unique patients/CPET pairs, of whom 673 
were excluded because the breath-by-breath data were improperly saved 
at the time of the test, 255 had congenital heart disease, and 2 were ex
cluded because of a previous ventricular assist device implantation 
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(subsequently recovered), leaving a final cohort of 2490 patients. The 
Research Ethics Board of the University Health Network (Toronto, ON, 
Canada) approved this study. The requirement for patient consent was 
waived because of the retrospective nature of the study. C.M. had full access 
to all of the data in this study and takes responsibility for its integrity and for 
the data analysis.

Clinical exercise protocol
Clinical exercise protocol at our institution is standardized for all patients 
and is based on the 2002 American College of Cardiology (ACC)/ 
American Heart Association (AHA) Guidelines for Exercise Testing.16

Tests were performed by a single operator (M.W.) who decided on appro
priate clinical deviations to the testing protocol for each individual patient as 
needed. Cardiopulmonary exercise testing was performed using the ramp 
protocol with a cycle ergometer (Lods MedGraphics) and a metabolic 
cart (MedGraphics CardioO2 Ultima); equipment and software were up
dated over time as appropriate and as directed by the manufacturer. 
Tests start with an initial minute of rest in a seated position an addition mi
nute of warm-up (at a load of 0 watts). Thereafter, an individualized (in dur
ation and intensity) ramp protocol is used to achieve full exercise with 
increments of 10 watts per min. Ventilation (VE), VO2, and VCO2 were 
collected through the breath-by-breath analysis of expired gases. The aver
age of the middle five of the last seven breaths was used to calculate peak 
VO2. Oxygen uptake efficiency slope (OUES) was calculated from the 
following standardized formula (OUES indicated by a): VO2 (mL/min) =  
a[log10(VE)] + b. A least square mean regression fitted over the entire ex
ercise test was used to calculate the VE/VCO2 slope. Exercise tests were 
excluded from the analysis if the total test duration was <60 s, likely indicat
ing a technical problem, or the test was deemed to be faulty based on an 
average respiratory rate <10 breaths per min. While the duration of 
CPETs varied between patients, <5% of patients of tests had a duration be
low 5 min, ∼30% of tests had a duration >12 min, and 99% of patients had 
tests in the 4–19 min range. Test duration was included as a feature in the 
prediction model.

Study outcomes
The primary study outcome was a composite endpoint including death 
from any cause or need for heart transplantation or mechanical circulatory 
support [durable left ventricular assist device (most common), extracor
poreal membrane oxygenation (ECMO), intra-aortic balloon pump, or 
Impella-type devices] for any duration. All-cause mortality was used as an 
outcome instead of mortality from cardiovascular cause only as many pa
tients with HF die proximally of non-cardiac causes which are at least par
tially associated with the underlying HF; furthermore, in many cases, cause 
of death is not sufficiently well documented to adjudicate cause of death ap
propriately.17 All analyses were performed as time-to-event analyses with 
the starting time being defined as the first qualifying CPET for each patient 
(in order to allow us to consider the largest possible time frame, subsequent 
studies were not considered in this analysis). Patients without outcomes 
were censored at the end of follow-up or on 31 December 2019 whichever 
came first. Outcome ascertainment was done through chart review, regular 
clinical follow-up, and active contact with patients by the HF clinical staff.

Predictive features
Predictive features in this study included both data generated from the 
CPETs and clinical data obtained at or around the test (corresponding clin
ical visit or ±3 months for laboratory, echocardiogram, and electrocardio
gram findings). For the purpose of this study, we define clinical data as 
patient characteristics, medications, previous medical history, and diagnos
tic investigations. Three levels of data were extracted from the testing soft
ware: (i) summary data included in the standard exercise test report (which 
included both machine-generated and operator-acquired features), 
(ii) staged data which consisted of salient exercise performance indices 
measured at pre-specified exercise landmarks (at rest, at anaerobic thresh
old, and at maximal exertion), and (iii) breath-by-breath (i.e. measured for 
each breathing cycle) data. Indices measured on a breath-by-breath basis 
included end-tidal carbon dioxide (petCO2) and oxygen (petO2) tension, 
respiratory exchange ratio (RER), oxygen saturation (SpO2), oxygen uptake 
(VO2) efficiency slope, carbon dioxide production (VCO2), minute 

ventilation (VE), and workload (watts) along with various ratios and indices 
derived from these measurements. Systolic and diastolic blood pressure and 
heart rate were monitored continuously throughout the CPET, and we 
aligned the blood pressure and heart rate time series to the breath-by- 
breath time series to generate heart rate and blood pressure measurements 
for each breath.

Clinical data (provided in Table 1) were extracted manually from the 
medical records and included patient demographics; aetiology of HF; co
morbidities; presence and type of pacemaker, cardiac resynchronization de
vices, or implantable cardioverter defibrillator (ICD); cardiac medications at 
the time of the test; laboratory investigations; New York Heart Association 
(NYHA) functional class; and ejection fraction and heart rhythm.

Data preprocessing
Cardiopulmonary exercise testing breath-by-breath data consist of a collec
tion of time series variables captured on a breath-by-breath base. From 
these time series, over 2000 mathematical features are derived using the 
tsfresh python library.18 For clinical variables and data generated from the 
CPET other than the breath-by-breath data, categorical fields were con
verted to binary fields using one-hot-encoding methods, and fields with 
continuous values were processed to remove outliers or irrelevant infor
mation. Patient records with ≥20% missing data were removed from the 
analysis, and variables with ≥35% missing values were not considered fur
ther in the analysis. The remainder of missing values was imputed using 
the R’s Multivariate Imputation by Chained Equations (MICE) library.19

Algorithm development
The DeepSurv survival analysis method previously described15 was used 
to model patients’ outcome over their follow-up period. The method is 
essentially a multi-layer feed-forward neural network that models the ef
fect of patients’ covariates with their hazard rate using the network’s 
weights. Each hidden layer of the network consists of a fully connected 
layer of nodes separated with a dropout layer.20 The output of this model 
is a single node with linear activation which estimates the log-risk function 
in a Cox model. In order to train the network, modern deep learning 
techniques have been used including Scaled Exponential Linear Unit 
(SELU)21 as activation functions, Adaptive Moment Estimation (Adam)22

as gradient descent optimizer algorithm with Nesterov momentum,23

and learning rate scheduling,24 all of which are summarized in the original 
paper by Katzman et al.15

Data were randomly divided into mutually exclusive train (70%) and val
idation test (30%) sets. The training set was used to tune modelling para
meters and generate a final model using all training data and with the best 
tuning parameters. The validation test set was then used to evaluate 
the performance of the final tuned model. A 5-fold cross-validation scheme 
was used to tune parameters using the training set. Hyperparameter tuning 
was done semi-automatically. That is, first, the number of layers and 
nodes was experimented, and second, the following parameters were tuned 
using cross-validation: learning rate, dropout rate, layer activation functions, 
feature dimensionality, and optimization method. The final network that 
was used in this study consisted of 2 hidden layers each with 100 nodes, 
with a learning and dropout rate of 0.1 and 0.4, respectively. In order to re
duce dimensionality of the tsfresh-derived features from breath-by-breath 
data (initially over 2000 features), an initial feature selection technique 
was used. A systematic search of feature dimensionalities was performed 
with numbers (K) ranging from 5 to 500 on breath-by-breath–derived fea
tures only. For this study, we used analysis of variance (ANOVA) F-test 
method25 for reducing the number of breath-by-breath–derived features. 
Specifically, the P-values for individual features were found and used to 
rank features in order; the top K features were taken as the feature subset. 
Finally, highly correlated variables were also removed from the selected set 
of breath-by-breath–derived features. The medical data were then added to 
the selected features.

Prediction of outcomes by the algorithm was performed using the same 
time interval from CPET as in the original data (e.g. if follow-up/event occurs 
x years after the qualifying CPET, then the same value of x was used for the 
timing of the prediction). To calibrate model probabilities and prediction 
threshold, a logistic regression (LR) model was used on the training prob
abilities and their labels to obtain coefficients and intercept of the LR model. 
Next, to calibrate test set probabilities, the found intercept and coefficient 
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Table 1 Patient characteristics and outcomes stratified in training vs. validation cohorts

N Training cohort N Validation 
cohort

N All 
patients

P

Demographics and comorbidities
Age at baseline (years) 1749 46.5 ± 16.1 741 46.3 ± 16.5 2490 46.4 ± 16.2 0.78

Female (vs. male) 1749 594 (34.0%) 741 273 (36.7%) 2490 867 (34.8%) 0.17

HF status/diagnosis 1749 741 2490 0.26
High-risk condition 472 (27.0%) 222 (30.0%) 694 (27.9%)

Dilated cardiomyopathy 493 (28.2%) 190 (25.6%) 683 (27.4%)

Ischaemic cardiomyopathy 287 (16.4%) 127 (17.1%) 414 (16.7%)
Other aetiologies 295 (16.9%) 108 (14.6%) 403 (16.2%)

Unknown 202 (11.6%) 94 (12.7%) 296 (11.9%)

History of atrial fibrillation 1745 281 (16.1%) 738 121 (16.4%) 2483 402 (16.2%) 0.86
Chronic renal disease 1744 124 (7.1%) 738 44 (6.0%) 2482 168 (6.8%) 0.34

Diabetes 1744 235 (13.5%) 738 93 (12.6%) 2482 328 (13.2%) 0.60

Hypertension 1742 476 (27.3%) 737 181 (24.6%) 2479 657 (26.5%) 0.16
Previous malignancy 1747 121 (6.9%) 738 57 (7.7%) 2485 178 (7.2%) 0.50

Smoking status 1742 737 2479

Current 191 (11.0%) 73 (9.9%) 264 (10.7%) 0.48
Former 337 (19.4%) 174 (23.6%) 511 (20.6%) 0.02

Body mass index (kg/m2) 1746 27.2 ± 5.8 739 27.3 ± 5.8 2485 27.2 ± 5.8 0.80

Cardiac status
Ejection fraction (%) 1580 44 ± 16 667 45 ± 16 2247 44 ± 16 0.26

≥50% 762 (48.2%) 345 (51.7%) 1140 (50.7%) 0.14

NYHA class 1749 741 2490 0.35
I 664 (38.0%) 290 (39.1%) 954 (38.3%)

II 334 (19.1%) 142 (19.2%) 476 (19.1%)

III 224 (12.8%) 79 (10.7%) 303 (12.2%)
IV 25 (1.4%) 15 (2.0%) 40 (1.4%)

Not documented 502 (28.7%) 215 (29.0%) 717 (28.8%)

Conduction abnormalities 1482 457 (30.8%) 623 178 (28.6%) 2105 635 (30.2%) 0.32
Current atrial fibrillation/flutter 1535 141 (9.2%) 652 73 (11.2%) 2187 214 (9.8%) 0.16

Pacemaker/resynchronization device 1749 212 (12.1%) 741 112 (15.1%) 2490 324 (13.0%) 0.04

ICD 1749 328 (18.8%) 741 127 (17.1%) 2490 455 (18.3%) 0.36
QRS duration (ms) 1319 125 ± 34 562 127 ± 38 1881 126 ± 35 0.16

Heart rate (beats/min) 1603 70 ± 14 689 71 ± 13 2292 70 ± 13 0.43

Medications
ACE inhibitors (all classes) 1678 757 (45.1%) 697 307 (44.1%) 2375 1064 (44.8%) 0.65

Angiotensin receptor blockers (all classes) 1678 221 (13.2%) 697 72 (10.3%) 2375 293 (12.3%) 0.06

Beta-blockers (all classes) 1678 1048 (62.5%) 698 415 (59.5%) 2376 1048 (62.5%) 0.18
Bisoprolol 1678 352 (21.0%) 698 131 (18.8%) 2376 483 (20.3%) 0.24

Carvedilol 1678 464 (27.7%) 698 178 (25.5%) 2376 642 (27.0%) 0.29

Metoprolol 1678 209 (12.5%) 698 97 (13.9%) 2376 306 (12.9%) 0.35
Aldosterone receptor antagonist (MRA) 1676 534 (31.9%) 697 218 (31.3%) 2373 752 (31.7%) 0.81

Antiarrhythmics (all classes) 1678 434 (25.9%) 697 176 (25.3%) 2375 610 (25.7%) 0.80

Digoxin 1677 296 (17.7%) 697 118 (16.9%) 2374 414 (17.4%) 0.72
Anticoagulants (all classes) 1676 465 (27.7%) 697 190 (27.3%) 2373 655 (27.6%) 0.84

Diuretics (all classes) 1678 671 (40.0%) 697 271 (38.9%) 2375 942 (39.7%) 0.65

Thiazide 1674 75 (4.5%) 697 32 (4.6%) 2371 107 (4.5%) 0.91
Loop diuretics (all classes) 1674 641 (38.3%) 696 257 (36.9%) 2370 898 (37.9%) 0.55

Furosemide 1674 633 (37.8%) 695 255 (36.7%) 2369 888 (37.5%) 0.64

Lipid lowering medications (all classes) 1678 525 (31.3%) 697 228 (32.7%) 2375 753 (31.7%) 0.50
Platelet inhibitors 1678 504 (30.0%) 698 204 (29.2%) 2376 708 (29.8%) 0.73

Continued 
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along with test probabilities were substituted in the regression equation. 
The new threshold was then chosen in such a way that the same proportion 
of positive and negative cases (compared with training cohort) was found 
using the calibrated probabilities.

Data analyses
Data are described using means with standard deviations, median with 25th 
and 75th percentiles, and frequencies as appropriate. Comparisons be
tween the training and validation sets were performed using Student’s 
t-test assuming unequal variance between groups and Fisher’s exact 
test. All performance and calibration metrics are reported separately 
for the training and validation sets. Feature importance was calculated 
by taking coefficients of a ridge regression model fitted on the data sam
ples and their predicted survival probability into consideration. A scree 
plot was used to illustrate the ranking of features by importance sepa
rated between clinical markers and classic CPET indices vs. advanced 
CPET indices based on the breath-by-breath analysis. Finally, the perform
ance of the prediction model in various subsets of patients in the valid
ation set was evaluated. All analyses were performed using R 3.5.3 and 
Python 3.6.9.

Results
A total of 2490 patients were included in this analysis of which 741 
(30%) were randomly segregated in the validation data set and 1749 
(70%) were used for model training and internal cross-validation. 
Patient characteristic and exercise test results at baseline and incidence 

of outcomes over time were similar between the training and validation 
data sets (Tables 1 and 2).

Model performance metrics for both the training and the validation 
data sets are reported in Table 3 with the corresponding area under the 
curve (AUCs) reported in Figure 1 and predicted vs. actual freedom 
from the composite endpoint reported in Figure 2. In the validation 
data set, the AUC of the prediction model was 0.87. We explored 
more comprehensive model performance metrics using three potential 
cut-off points: (i) to maximize raw accuracy, (ii) to match the prevalence 
of outcome in both the training and hold out set, and (iii) to maximize 
sensitivity and specificity. The decision point based on maximizing ac
curacy had a sensitivity of 0.58 and a specificity of 0.94. Matching the 
prevalence of outcomes in the training set did not substantially affect 
accuracy (90% vs. 91%), sensitivity (0.58), or specificity (0.94). 
However, using a decision point maximizing specificity and sensitivity 
reduced overall accuracy (78%) and specificity (0.80) but substantially 
increased sensitivity to 0.72. Performance metrics in the training data 
set were marginally higher (AUC of 0.93), but the difference in effect 
did not suggest overfitting. There was substantial concordance be
tween actual vs. predicted freedom from the composite endpoint in 
the training and validation data sets.

An examination of the scree plot of coefficient of variable import
ance (Figure 3) shows that the variables with the highest importance 
to generate predictions were, in descending order of importance, mi
nute ventilation/carbon dioxide production ratio, minute ventilation/ 
oxygen intake ratio and expiration volume, and finally heart rate recov
ery. Clinical features of high importance for the prediction model, in 
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Table 1 Continued  

N Training cohort N Validation 
cohort

N All 
patients

P

Laboratory investigations

BNP (pg/mL) 1077 103 (31–326) 431 97 (32–282) 1508 101 (31–315) 0.77
White blood cell count (×109 cells/L) 1178 7.3 ± 2.3 470 7.4 ± 2.5 1648 7.3 ± 2.4 0.29

Basophils (×109 cells/L) 1171 0.03 (0.01–0.06) 470 0.04 (0.01–0.06) 1641 0.03 (0.01–0.06) 0.10

Eosinophils (×109 cells/L) 1173 0.15 (0.01–0.24) 470 0.16 (0.10–0.25) 1643 0.15 (0.10–0.24) 0.64
Lymphocytes (×109 cells/L) 1169 1.75 (1.30–2.20) 470 1.63 (1.29–2.24) 1639 1.72 (1.30–2.21) 0.71

Monocytes (×109 cells/L) 1173 0.56 (0.44–0.70) 470 0.59 (0.47–0.73) 1643 0.57 (0.45–0.71) 0.08

Neutrophils (×109 cells/L) 1173 4.31 (3.40–5.56) 470 4.43 (3.45–5.69) 1643 4.34 (3.40–5.61) 0.21
Haematocrit 1178 0.42 ± 0.05 471 0.42 ± 0.05 1649 0.42 ± 0.05 0.74

Haemoglobin (g/L) 1175 142 ± 17 471 142 ± 17 1646 142 ± 17 0.82

Platelet count (×109 cells/L) 1175 218 ± 65 467 221 ± 72 1642 219 ± 67 0.45
Red blood cell count (×1012 cells/L) 1173 4.7 ± 0.6 471 4.7 ± 0.7 1644 4.7 ± 0.6 0.66

Chloride (mmol/L) 1160 103 ± 4 468 103 ± 4 1628 103 ± 4 0.99

Potassium 1183 4.2 ± 0.4 480 4.2 ± 0.4 1663 4.2 ± 0.4 0.29
Sodium (mmol/L) 1183 139 ± 4 482 138 ± 4 1665 138 ± 4 0.36

Serum creatinine (umol/L) 1184 99 ± 69 488 96 ± 43 1672 98 ± 62 0.28

Glomerular filtration rate (mL/min/1.73 m2) 1172 77 ± 24 484 77 ± 24 1656 77 ± 24 0.93
Outcome

Combined outcome 1749 226 (12.9%) 741 97 (13.1%) 2490 323 (13.0%) 0.90

Mechanical circulatory support 53 (3.0%) 14 (1.9%) 67 (2.7%) 0.14
Heart transplantation 57 (3.3%) 26 (3.5%) 83 (3.3%) 0.81

Death 116 (6.6%) 57 (7.7%) 173 (7.0%) 0.35

Duration of follow-up (months) 1749 56.0 ± 33.3 741 55.6 ± 32.9 2490 55.9 ± 33.2 0.78

Data reported as means ± standard deviations, medians with interquartile range or frequencies as appropriate. 
ACC, American College of Cardiology; AHA, American Heart Association; BNP, beta-natriuretic peptide; ICD, implantable cardioverter defibrillators; MRA, mineralocorticoid receptor 
antagonist.
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decreasing order of importance, were body mass index (BMI), the use 
of diuretics, presence of ICD, use of antiarrhythmic medications, wor
sening NYHA class, blood urea, leucocyte count, the presence of atrial 
fibrillation, and the use of angiotensin receptor blockers. Many engi
neered mathematical features derived from the breath-by-breath mea
surements were highly ranked features confirming their prognostic 
value in patients with HF.

Calibration of the prediction model (Figure 4) was excellent in the 
training data set (average absolute difference of 0.6%) and remained 
very good in the validation data set (average absolute difference of 
3.2%). In the validation data set, the prediction model slightly underes
timated risk of outcomes in the 6th, 7th, and 10th decile of risk, but the 
magnitude of the differences is unlikely to be clinically important. Finally, 
Figure 5 reports model AUC in various subgroups of patients in the 
validation cohort. The results show that model AUC in all subgroups 
assessed remained above 0.75, with the exception of patients with is
chaemic cardiomyopathy for whom the model AUC only reached 
∼0.70.

Discussion
In this study, we have shown that by using a deep survival network, we 
could effectively incorporate breath-by-breath data generated during 
CPET to improve the accuracy of prediction model for a composite 
endpoint of HF outcomes defined as death, need for heart transplant
ation, or mechanical circulatory support. Our final prediction model 
was able to accurately predict patients who are at high risk of the com
posite outcome over a 10-year period. It is important to note, however, 
that the prediction model is built so that it is capable of predicting risk of 
outcome for any horizon up to 10 years. Therefore, an end-user could 
select a short (1–2 years) prediction horizon for sick/elderly patients 
and a longer (5–10 years for younger high-risk patients).

Although not directly comparable because of the inclusion of high-risk 
patients, performance metrics of this new model was excellent and 
above the usual threshold for it to be used clinically for the prognostica
tion of patients with HF.13 Furthermore, the underlying hazard function 
of the prediction model could be used to generate predictions over one 
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Table 2 Cardiopulmonary parameters stratified by training vs. validation cohorts

N Training cohort N Validation 
cohort

N All 
patients

P

Systolic blood pressure at rest (mmHg) 1744 115 (104–126) 739 114 (105–125) 2483 115 (104–126) 0.48
Diastolic blood pressure at rest (mmHg) 1748 72 (66–79) 739 72 (66–79) 2487 72 (66–79) 0.41

Heart rate at rest (b.p.m.) 1746 70 (61–78) 740 71 (62–80) 2486 70 (61–79) 0.10

O2 saturation at rest (%) 1745 98 (98–99) 740 99 (98–99) 2485 98 (98–99) 0.58
Forced vital capacity at rest (L) 1729 3.4 (2.8–4.2) 728 3.4 (2.7–4.1) 2457 3.4 (2.7–4.2) 0.29

PP forced vital capacity at rest (%) 1729 79 (66–90) 728 79 (67–89) 2457 79 (67–90) 0.43

Forced expiratory capacity at rest (L) 1726 2.74 (2.19–3.36) 727 2.69 (2.15–3.31) 2453 2.73 (2.17–3.34) 0.29
PP forced expiratory capacity at rest (%) 1729 80 (67–92) 729 80 (67–91) 2458 80 (67–91) 0.69

Peak systolic blood pressure (mmHg) 1745 146 (130–162) 737 144 (127–166) 2482 145 (128–163) 0.90

Peak diastolic blood pressure (mmHg) 1745 77 (70–80) 737 78 (70–82) 2482 78 (70–80) 0.75
Peak heart rate (b.p.m.) 1747 125 (102–150) 738 122 (100–151) 2485 123 (102–150) 0.58

Heart rate—1 min post peak (b.p.m.) 1742 101 (85–122) 738 101 (83–127) 2480 101 (84–123) 0.90

Heart rate recovery 1 min (b.p.m.) 1746 21 (13–29) 740 20 (13–28) 2486 20 (13–28) 0.11
O2 saturation at peak (%) 1746 98 (98–99) 739 98 (98–99) 2485 98 (98–99) 0.56

Exercise time (s) 1744 603 (453–781) 736 584 (422–760) 2480 597 (440–774) 0.18

Workload (watts) 1701 90 (70–122) 722 90 (60–120) 2423 90 (70–120) 0.08
PP workload (%) 1698 62 (47–78) 719 61 (47–76) 2417 61 (47–78) 0.24

Peak indexed VO2 (mL/kg/min) 1748 17.0 (13.0–22.0) 740 16.2 (12.6–21.9) 2488 16.7 (12.8–22.0) 0.34

PP peak indexed VO2 (%) 1697 58 (46–72) 721 57 (46–71) 2418 58 (46–72) 0.40
Peak VO2 (L/min) 1747 1.33 (1.02–1.76) 739 1.28 (0.98–1.71) 2486 1.35 (1.01–1.75) 018

PP peak VO2 (%) 1749 61 (50–75) 741 60 (49–74) 2490 61 (50–75) 0.50

Peak ventilation (L/min) 1749 46.1 (35.4–58.8) 741 45.8 (34.1–57.5) 2490 46.0 (35.1–58.7) 0.63
Peak VCO2 (L/min) 1744 1.45 (1.10–1.94) 740 1.42 (1.05–1.92) 2484 1.45 (1.08–1.94) 0.18

VE/VCO2 slope 1576 31 (27–35) 677 31 (28–35) 2253 31 (27–35) 0.28

VE/VCO2 at anaerobic threshold 1695 30 (27–34) 717 30 (27–34) 2412 30 (27–34) 0.16
Anaerobic threshold (mL/kg/min) 1693 10.8 (8.5–13.8) 710 10.7 (8.4–13.7) 2403 10.7 (8.5–13.8) 0.98

Per cent of peak VO2 at AT (%) 1688 63 (58–69) 708 64 (59–69) 2396 64 (58–69) 0.17

PP of peak VO2 at AT (%) 1693 38 (30–46) 710 37 (31–45) 2403 37 (30–46) 0.79
Peak respiratory exchange ratio 1746 1.10 (1.03–1.16) 740 1.09 (1.03–1.16) 2486 1.10 (1.03–1.16) 0.34

End-tidal partial pressure of CO2 (mmHg) 736 35 (32–39) 312 36 (33–39) 1048 35 (32–39) 0.67

Oxygen uptake efficiency slope 737 1.60 (1.20–2.01) 310 1.63 (1.23–2.02) 1047 1.61 (1.21–2.02) 0.81

AT, anaerobic threshold; CO2, carbon dioxide; O2, oxygen; PP, per cent predicted; VCO2, carbon dioxide production; VE, ventilation; VO2, oxygen consumption.
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or more specific horizons, thus further improving utility compared with 
traditional models which predict the outcome at a single point in the future 
(i.e. survival at x years). This study is novel in two respects. First, it is the first 
clinical prediction model for HF outcomes to integrate mathematical fea
tures derived from breath-by-breath data generated during CPETs as op
posed to relying on classic summary indices, which are easier to obtain but 
likely less informative. Second, it uses a novel deep learning framework 
which integrates survival analysis as opposed to relying on a binary, time- 
delimited outcome. Both of these characteristics are important advances 
as they open the door for future prediction models in the field of HF that 
are both better performing and can more fully use the large quantity of 
data that are generated in the care of patients with HF, particularly diag
nostic investigations such as laboratory values and cardiac imaging.

Previous studies have shown the utility of using machine learning for 
the long-term prognosis of patients with HF. Myers et al.10 showed that 
the use of neural networks marginally increased the performance of 
predictive models generated from summary CPET data over LR. In 
this study, the use of an artificial neural network to predict death 
from cardiac mortality in patients with HF resulted in an increase in 
AUC from 0.70 with LR to 0.72 when five classic CPET summary indi
ces were used as predictors. A recent review of machine learning– 
based prediction models developed for HF showed that the majority 
of previous attempts has used the strictly binary, time-restricted, con
fines that are necessary for most classic supervised machine learning al
gorithms.26 In the case of time-to-event outcomes, this strategy 
requires the creation of a time-landmarked version of the outcome 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Comparison of model performance metrics

Optimized for highest accuracy Optimized to match prevalence Optimized for highest Sn/Sp

Training cohort 

AUC: 0.928 (0.008)

Cut-off probability 0.573 0.383 0.154
Accuracy (%) 0.91 0.90 0.85

Sensitivity 0.77 0.63 0.85

Specificity 0.93 0.95 0.85
False positive rate 0.07 0.05 0.15

False negative rate 0.23 0.37 0.15

Validation cohort 
AUC: 0.865 (0.021)

Cut-off probability 0.408 0.399 0.096

Accuracy (%) 0.89 0.89 0.78
Sensitivity 0.58 0.58 0.72

Specificity 0.94 0.94 0.80

False positive rate 0.06 0.06 0.21
False negative rate 0.42 0.42 0.28

AUC, area under the curve; Sn, sensitivity; Sp, specificity.

Figure 1 Area under the curve (AUC) for prediction models in the training vs. validation cohorts.
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Figure 2 Actual vs. predicted freedom from the combined heart failure outcome in the training vs. validation cohorts. CPET, cardiopulmonary 
exercise test.

Figure 3 Feature importance ranking for prediction model for combined outcome. Abbreviations: AF, atrial fibrillation; AICD, automatic implantable 
cardioverter defibrillators; ARB, angiotensin receptor blockers; BMI, body mass index; CRT, cardiac resynchronization therapy; HR, heart rate; CPET, 
cardiopulmonary exercise test; NYHA, New York heart association; max, maximum; SBP, systolic blood pressure; VE, ventilation; VO2, volume oxygen.

Figure 4 Calibration curves in the training vs. validation cohorts.
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(e.g. outcomes at x years after time 0) as opposed to using the right cen
soring methodology which is normally used for such outcomes. This 
strategy results in a loss of information (and often a reduction in sample 
size) but allows the use of supervised machine learning models in this 
context. Random survival forest has been used in studies,27,28 and 
this method is also not ideal as it can only approximate the framework 
of survival analysis and as such still present substantial limitations. This is 
why the use of DeepSurv,15 as implemented in this study, is novel and a 
substantial advance given that it does not require the use of an alterna
tive or approximation to survival models for the prediction of long- 
term outcomes. Moreover, it enables the use of complex predictive fea
tures for prediction through deep learning.

Predicting outcomes in patients with HF, either through classic prob
abilistic models or more recently through machine learning, has histor
ically been a challenge given the heterogeneity of the patient population, 
the complex interrelation between numerous risk factors, the large 
spectrum of clinical severity, and varying treatments received.26,29,30

Studies using machine learning algorithms over conventional methods 
have shown slightly better performance in predicting mortality and hos
pitalization in HF patients.31 However, the extent to which these minor 
improvements in performance further improve clinical prediction re
mains uncertain. Generally speaking, risk factors for adverse outcomes 
in HF patients include age, functional class, ejection fraction, BMI, blood 
pressure, heart rate, renal and liver function, and natriuretic peptide 
levels.32

Summary indices from CPETs have been associated with outcomes 
in patients with HF but historically have only marginally improved the 
performance of prediction models over those including only clinical 

features.3,33 However, recently, we showed a substantial improvement 
in prediction of 1-year adverse outcomes in patients with HF when 
mathematical features derived from breath-by-breath data were in
cluded in a neural network over summary CPET indices and basic clin
ical data.14 In the current study, we have further demonstrated that 
these complex features can be integrated in clinical prediction models 
for long-term outcomes in survival analysis through deep learning.

Historically, the majority of prediction models developed for HF has 
shown AUCs in the low to mid 0.70 s.13,34,35 Many of the most com
mon risk scores for mortality in patients with chronic HF fall in this cat
egory; this includes models such as the Seattle Heart Failure (AUC =  
0.73),36 CORONA (AUC = 0.72),37 MAGGIC (AUC = 0.74),38 and 
CHARMS (AUC = 0.75)39 models. These models all use combinations 
of clinical data, medical history, and echocardiography, but not exercise 
testing, to predict medium-term mortality. Two additional models inte
grated these features and added the results of exercise testing with 
marginal improvement: HF-ACTION (AUC = 0.73)40 and the MECKI 
score (AUC = 0.76–0.80 over 1–4 year horizons).41 In a recent review 
of 40 prediction models developed in patients with HF between 2013 
and 2018, only 15% of models reached an AUC between 0.80 and 0.85 
in external validation cohorts and none reached an AUC above 0.85.42

When considering only prediction models using a composite outcome 
such as the one in this study, only 1 of 13 models reached an AUC 
above 0.80.42 As such, the algorithm presented here represents a sub
stantial improvement with an AUC of 0.87 in the validation data set 
[mild HF (NYHA I/II): 0.81, severe HF (NYHA III/IV): 0.85]. 
Nevertheless, it is worth noting that our population represents a 
younger age group and as such comparisons with other prediction 

Figure 5 Model performance metrics in various patient subgroups in the validation cohort.
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models developed on different HF populations might not be entirely 
accurate.

There are a number of important technical considerations about our 
algorithm that should be mentioned. The stratified performance infor
mation shows that performance was maintained in all subgroups of pa
tients, including various diagnoses, patients with abnormal or paced 
rhythm, and patients on beta-blockers. The lower AUC in patients 
with ischaemic cardiomyopathy is likely a reflection of the smaller sam
ple size and the higher event rate (26%) in this group than in the other 
groups (18%), suggesting that group-specific segmentation of the algo
rithm might be necessary in future iterations. Traditionally, patients 
with abnormal or paced heart rhythm represent a challenge to the 
integration of some CPET indices in HF prediction models and have 
either been excluded or considered separately in this context. The fact 
that they could be included in the current algorithm without diminishing 
performance is an important improvement over previous studies. The 
ability of the algorithm to handle a heterogeneous patient population is 
also evidenced by the generally consistent performance across diagnoses, 
albeit with a small reduction in performance for patients with ischaemic 
cardiomyopathy. Patients with congenital heart disease were excluded 
from the study for logistic reasons and require future analysis.

We elected to train the model using patients with all stages of HF. 
This approach had several advantages; first, it increased the size of 
the training data set and provided a good number of training cases 
with a ‘normal’ exercise response, something that would be rare in pa
tients with advanced HF, thus preventing training bias towards sicker 
patients. Second, this strategy allows the model to be used for all 
CPET indications (diagnostic confirmation, monitoring of high-risk 
but stable patients, and prognostication for patients with advanced dis
ease). We were able to demonstrate that model performance was pre
served across NYHA functional classes, thus confirming that our 
strategy of including all patients regardless of stage of HF did not 
come to the detriment of either ends of the spectrum.

For this study to be feasible, we used a composite outcome of death, 
cardiac transplantation, or mechanical circulatory support although 
previous studies have shown that models focusing on a single outcome 
in patients with HF tend to perform better.42 It is expected that future 
iterations of this algorithm will be able to separate each outcome and 
consider them distinctly and that this strategy will result in improved 
algorithm performance. Finally, the calibration of the algorithm shows 
clear concordance between predicted and actual risk of outcomes. 
Thus, rather than using a single cut-off point to predict a binary out
come, the accurate calibration suggests that the expected probability 
of adverse outcomes can be used to guide clinical care and, therefore, 
to improve clinical utility.

This study should be considered in light of some limitations. First, it is 
a single-centre study with a retrospective design and a younger patient 
population; thus, we cannot fully establish the generalizability of our 
findings or extrapolate future performance in an external validation 
cohort. Second, data regarding the diagnosis of patients in regard to 
reduced vs. preserved ejection fraction are not available for the patients 
included in this study; as such, we were not able to assess the event 
prevalence, contribution to the prediction model, and performance 
of the prediction in patients with preserved vs. reduced ejection frac
tion. Third, given that heart transplantation is included in the composite 
outcome and that exercise testing is one of the indications for heart 
transplantation, the model performance might be overestimated be
cause of target leaking; however, this is a common problem for all 
such models in patients with HF.

While the algorithm development is still at the prototype stage, fu
ture versions of this algorithm could be deployed through an applica
tion programming interface integrated within the user interface and 
reporting system of standard CPET systems, thus facilitating their use 
by clinicians despite the complex underlying computational infrastruc
ture needed to execute the algorithm.43 It is important to note that, 

while complete breath-by-breath data are not currently routinely 
stored by most CPET systems, the changes needed for this algorithm 
to be available in other institutions are minimal. Cardiopulmonary ex
ercise testing system needs to be modified to standardize file naming 
and storage location and for the source data to be mapped to the algo
rithm’s input format. Those changes can easily be done by information 
technology staff at local sites as part of the routine configuration and 
maintenance of the CPET systems.

In conclusion, using a survival model integrated in a deep learning 
framework, we were able to create a prediction model for a composite 
endpoint (death, heart transplant, or mechanical circulatory support) in 
patients with HF that incorporated clinical data, classic summary indices 
from CPETs, and mathematical features derived from the 
breath-by-breath data generated during CPETs. Model performance 
was characterized by high discrimination with excellent calibration. 
This level of performance is superior to other similar models for HF 
that have been previously published and indicates a high potential for 
clinical utility in future iterations.
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