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Abstract: Chest X-rays (CXRs) are the most commonly performed diagnostic examination to detect
cardiopulmonary abnormalities. However, the presence of bony structures such as ribs and clavicles
can obscure subtle abnormalities, resulting in diagnostic errors. This study aims to build a deep learn-
ing (DL)-based bone suppression model that identifies and removes these occluding bony structures
in frontal CXRs to assist in reducing errors in radiological interpretation, including DL workflows, re-
lated to detecting manifestations consistent with tuberculosis (TB). Several bone suppression models
with various deep architectures are trained and optimized using the proposed combined loss function
and their performances are evaluated in a cross-institutional test setting using several metrics such
as mean absolute error (MAE), peak signal-to-noise ratio (PSNR), structural similarity index mea-
sure (SSIM), and multiscale structural similarity measure (MS–SSIM). The best-performing model
(ResNet–BS) (PSNR = 34.0678; MS–SSIM = 0.9828) is used to suppress bones in the publicly available
Shenzhen and Montgomery TB CXR collections. A VGG-16 model is pretrained on a large collec-
tion of publicly available CXRs. The CXR-pretrained model is then fine-tuned individually on the
non-bone-suppressed and bone-suppressed CXRs of Shenzhen and Montgomery TB CXR collections
to classify them as showing normal lungs or TB manifestations. The performances of these models
are compared using several performance metrics such as accuracy, the area under the curve (AUC),
sensitivity, specificity, precision, F-score, and Matthews correlation coefficient (MCC), analyzed for
statistical significance, and their predictions are qualitatively interpreted through class-selective
relevance maps (CRMs). It is observed that the models trained on bone-suppressed CXRs (Shenzhen:
AUC = 0.9535 ± 0.0186; Montgomery: AUC = 0.9635 ± 0.0106) significantly outperformed (p < 0.05)
the models trained on the non-bone-suppressed CXRs (Shenzhen: AUC = 0.8991 ± 0.0268; Mont-
gomery: AUC = 0.8567 ± 0.0870).. Models trained on bone-suppressed CXRs improved detection
of TB-consistent findings and resulted in compact clustering of the data points in the feature space
signifying that bone suppression improved the model sensitivity toward TB classification.

Keywords: deep learning; bone suppression; tuberculosis; convolutional neural networks; classifica-
tion; statistical analysis; interpretation; chest X-rays

1. Introduction

The World Health Organization (WHO) reports that millions of people suffer from
lung-related diseases and their complications worldwide [1]. Chest X-rays (CXRs) are the
most frequently performed diagnostic examination that helps detect various cardiopul-
monary abnormalities. Portable digital CXRs are becoming part of modern point-of-care
diagnostics for pulmonary abnormalities including tuberculosis (TB) [2]. However, it can
be difficult for radiologists and computer-aided diagnostic (CADx) systems to detect and
localize subtle findings related to TB when they occur in apical regions in which lung
parenchyma is obscured by overlying ribs and the clavicles [3]. Due to the two-dimensional
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nature of image projection, the posterior and anterior bony structures on a typical CXR
overlap with the lung tissues, resulting in a cross-hatching pattern. Further, the resulting
strong edges from ribs and clavicles may occlude abnormalities in the lung regions thereby
complicating diagnosis. Therefore, removing the superimposing bony structures could
assist in reducing interpretation errors and enhance the value of screening digital chest
radiography in underserved and remotely located populations [4].

Bone suppression involves subtracting the bones from the CXRs to create a soft-tissue
image. It would be of potential use to radiologists and CADx systems in screening for subtle
lung abnormalities by increasing the quality of soft tissue visibility. A common practice
for suppressing bony structures involves the use of dual-energy subtraction (DES) chest
radiography. The DES-based radiographic acquisition is performed to improve diagnosis
by producing two different images, thereby separating the bony structures from the soft
tissues. However, compared to conventional CXRs, DES has several limitations, namely,
(a) DES radiography exposes the subject to slightly higher radiation doses compared to
conventional CXR acquisition protocols and is not recommended for patients younger than
16 years of age [5]; (b) DES is not used for portable chest radiography, which limits its
use in low and middle resource regions (LMRR); and (c) DES is performed only on the
posterior-anterior view.

Literature review reveals several image processing techniques for automated detection
and removal of bony structures in CXRs [6,7]. In one study [8], the authors used a mul-
tiresolution artificial neural network to generate bony structures, subtracted these from the
original CXRs to suppress the clavicles and ribs, and generated soft-tissue images. Another
study [9] used independent component analysis to separate the ribs and soft tissues in
CXRs to increase the visibility of lung nodules. Following this study, subsequent research
adopted bone suppression to improve the detection of lung nodules and other pulmonary
abnormalities [10–12], including pneumonia detection [13].

Inspired by their superior performance in natural and medical image recognition
tasks [14,15], convolutional neural networks (ConvNets) have supplanted traditional tech-
niques to perform bone suppression in CXRs. In one study [16], the authors used a cascade
of ConvNets to predict bony structures at multiple resolutions and fused them to produce
the final estimate of the bone image. The fused images are subtracted from their respective
CXRs to produce soft-tissue images. In another study [17], the authors used a custom Con-
vNet model to classify the original, lung-segmented, and bone-suppressed versions of the
Japanese Society of Radiological Technology (JSRT) CXR dataset [18]. It was observed that
the model trained on the bone-suppressed dataset offered superior performance toward
nodule detection, compared to those trained on the original and lung-segmented datasets.

Bone suppression would help detect TB-consistent findings that often manifest in the
apical lung regions so that their visibility is not obstructed by the occlusion of ribs and
clavicles [3,19]. The effect of bone suppression on improving TB detection is discussed
in the literature. For instance, the authors [20] fused information from local and global
texture descriptors and a clavicle detection system toward detecting TB manifestations in
CXRs. The performance with the fused detection system was observed to be superior (area
under the curve (AUC) = 0.86), compared to using only the textural features (AUC = 0.67).
In another study [21], the authors compared the performance of two CADx systems
toward detecting TB-consistent findings in CXRs. One of the systems was trained on bone-
suppressed images generated by commercially available software and the other was trained
using original CXRs. It was observed that the CADx system trained on bone-suppressed
images delivered superior performance in classifying CXRs as showing TB-consistent
findings or normal lungs, compared to the other CADx system trained on the original CXRs.
CXRs were digitally reconstructed from CT images in another study [22]. The authors
suppressed bones in these reconstructed CXRs by leveraging a bone decomposition model
that was trained on unpaired CT images. A ConvNet-based model was proposed [23]
to extract bones from CXRs and subtract them from the original input CXRs to generate
bone-subtracted images. In another study [24], the authors performed multilevel wavelet-
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based decomposition to predict bone images and subtract them from the original CXRs
to produce bone-suppressed images. Other than these studies, literature that discusses
the effect of bone suppression on TB detection is limited. Additionally, these methods
involve multiple steps including predicting bony structures and then subtracting them from
the original image to create bone-suppressed images. However, the literature is limited
considering the availability of a bone suppression approach that would directly produce a
bone-suppressed image from the input CXR. At the time of writing this manuscript, there
is no literature available that evaluates the use of ConvNet-based bone suppression models
toward improving automated detection of TB-consistent findings in CXRs.

In this study, we propose a systematic methodology toward training customized
ConvNet-based bone suppression models and evaluating their performance toward clas-
sifying and detecting TB-consistent findings in CXRs: First, we retrain an ImageNet-
trained VGG-16 [25] model on a large-scale collection of publicly available CXRs from
varied sources, where images were acquired for different clinical goals, to help it learn
CXR modality-specific features and classify them as showing normal lungs or other pul-
monary abnormalities. This model is hereafter referred to as the CXR–VGG-16 model. We
use the VGG-16 model since it has demonstrated superior classification and localization
performances in CXR classification tasks [26]. Next, we assess the performance of the
CXR–VGG-16 model toward classifying CXRs in the Shenzhen and Montgomery TB CXR
collections [27] as showing normal lungs or pulmonary TB manifestations. These are
referred to as the baseline models. Then, we train several customized ConvNet-based
bone suppression models with varying architecture on the JSRT CXR dataset [18] and
its bone-suppressed counterpart [28]. We conduct cross-institutional testing using the
National Institutes of Health (NIH) clinical center (CC) dual-energy subtraction (DES) CXR
test set [29]. The best performing model is then used to suppress the bones in the Shenzhen
and Montgomery TB CXR collections. The CXR–VGG-16 model is individually fine-tuned
on the bone-suppressed images of the Shenzhen and Montgomery TB CXR collections
toward classifying them as showing normal lungs or pulmonary TB manifestations. They
are referred to as bone-suppressed models. Finally, the performance of the baseline and
bone-suppressed models is quantitatively compared through several performance metrics
and analyzed for statistically significant differences. Additionally, the predictions of the
baseline and bone-suppressed models are qualitatively interpreted using class-selective
relevance map (CRM)-based visualization [30].

The contributions of this retrospective study are highlighted as follows:
(i) This is the first study to propose and compare the performance of several cus-

tomized ConvNet-based bone suppression models with a diversified architecture, includ-
ing a sequential ConvNet model, an autoencoder (AE) model, a residual learning (RL)
model, and a residual network (ResNet) model toward suppressing bones in CXRs.

(ii) This study performs rigorous empirical evaluations, statistical significance analysis,
and qualitative evaluation of the bone suppression and classification models.

(iii) The models proposed in this study are not limited to the task of CXR bone
suppression but can potentially be extended to other image denoising problems.

The rest of the study is organized as follows: Section 2 discusses the datasets and
methods used, Section 3 interprets the results, and Section 4 discusses and concludes
this study.

2. Materials and Methods

The materials and methods are further divided into the following sub-sections:
(i) datasets and their characteristics, (ii) bone suppression models, (iii) evaluating bone
suppression models, (iv) histogram similarity assessment, (v) classification models, and
(vi) statistical analysis.

2.1. Datasets and Their Characteristics

The following CXR collections are used in this study:
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(i) JSRT CXR: The JSRT [18] released a set of 247 CXR images with and without lung
nodules. The collection includes 154 images with a nodule, of which 100 nodules are
malignant, 54 are benign, and 93 images are without nodules.

(ii) NIH–CC–DES CXR: A set of 27 DES CXRs is acquired as a part of routine clinical
care using the GE Discovery XR656 digital radiography system [29]. The DES images were
taken at 120 and 133 Kilovoltage-peak (kVp) to, respectively, capture the soft-tissue images
and bony structures. This dataset is used as the cross-institutional test set to evaluate the
performance of the bone suppression models proposed in this study.

(iii) Shenzhen TB CXR: This de-identified dataset contains 326 CXRs with normal
lungs and 336 abnormal CXRs showing various TB manifestations [27]. The CXRs are
collected from Shenzhen No.3 hospital in Shenzhen, China. It is exempted from institutional
review board (IRB) review (OHSRP#5357) by the National Institutes of Health (NIH) Office
of Human Research Protection Programs (OHSRP) and made publicly available by the
National Library of Medicine (NLM). An equal number of normal and abnormal CXRs
(n = 326) is used in this study.

(iv) Montgomery TB CXR: The CXR images and their associated radiology reports in
this collection are acquired through the TB control program of the Department of Health
and Human Services of Montgomery County, Maryland, USA [27]. The collection includes
58 CXRs showing TB-consistent findings and 80 CXRs with normal lungs. The CXRs are
de-identified to ensure patient privacy and are made publicly available. An equal number
of normal and abnormal CXRs (n = 58) is used in this study.

(v) Radiological Society of North America (RSNA) CXR: A subset of the NIH CXR
dataset [31] is curated by the RSNA [32] and made publicly available. The collection
includes 17,833 frontal CXRs showing various lung abnormalities and 8851 CXRs showing
normal lungs.

(vi) Pediatric pneumonia CXR: A collection of 4273 CXRs, acquired from children 1 to
5 years of age, showing bacterial and viral pneumonia manifestations, and 1493 normal
CXRs is publicly available [33].

Table 1 provides the demographic details of the datasets used in this study.

Table 1. Demographic study. Details including patient count, sex, and the count of abnormal and
normal images available for various datasets used in this study are shown. NA denotes Not Available.
A total of 33,497 CXRs are included. Of these, 22,654 are abnormal with 394 being positive for TB
(1.74% of abnormals, 1.18% of the entire sample).

Dataset
Total Images

Male Female Normal Abnormal

JSRT CXR 119 128 93 154
Pediatric pneumonia CXR NA NA 1493 4273

RSNA CXR 17,006 12,888 8851 17,833
Shenzhen TB CXR 449 213 326 336

Montgomery TB CXR 64 74 80 58

2.2. Bone Suppression Models

The researchers from the Budapest University of Technology and Economics used
their in-house clavicle and rib–shadow removal algorithms to suppress the bones in the
247 JSRT CXRs and made the bone-suppressed soft-tissue images publicly available [28].
Affine transformations including rotations (−10 to 10 degrees), horizontal and vertical
shifting (−5 to 5 pixels), horizontal mirroring, zooming, median, maximum, and mini-
mum, and unsharp masking are used to generate 4500 image pairs from this initial set
of CXRs and their bone-suppressed counterparts. The augmented images are resized to
256 × 256 spatial resolution. The image contrast is enhanced by saturating the bottom and
top 1% of all image pixel values. The grayscale pixel values are then normalized.

Several ConvNet-based bone suppression models with varying architecture are trained
on this augmented dataset. We evaluated their performance with the cross-institutional
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NIH–CC–DES test set. During training, we allocated 10% of the training data for validation
using a fixed seed. Four different model architectures are proposed toward the task of bone
suppression in CXRs as follows: (a) Autoencoder (AE) model (AE–BS) where BS denotes
bone suppression; (b) Sequential ConvNet model (ConvNet–BS); (c) Residual learning
model (RL–BS); and (d) Residual network model (ResNet–BS). The architectures of these
models are as follows:

(i) AE–BS Model: The AE–BS model is a convolutional denoising AE with symmetrical
encoder and decoder layers. The encoder consists of three convolutional layers with 16, 32,
and 64 filters, respectively. The size of the input is decreased twice at the encoder layers
and increased correspondingly in the decoder layers. As opposed to the conventional
denoising AEs, the noise in the proposed AE–BS model represents the bony structures.
The model trains on the original CXRs and their bone-suppressed counterparts to predict
a bone-suppressed soft-tissue image. Figure 1 illustrates the architecture of the proposed
AE–BS model.

Figure 1. The architecture of the proposed AE–BS model. The AE–BS model has a symmetrical
convolutional encoder (shown with red-colored boxes) and decoder (shown with blue-colored
boxes) architecture.

(ii) ConvNet–BS model: The ConvNet–BS model is a sequential model consisting
of seven convolutional layers having 16, 32, 64, 128, 256, 512, and 1 filter, respectively.
Zero paddings are used to preserve the dimensions of the input image at all convolutional
layers. Lasso regularization (L1) penalties are used at each convolutional layer to induce
penalty on weights that seldom contribute to learning meaningful feature representations.
This helps in improving model sparsity and generalizing to unseen data. The deepest
convolutional layer with the sigmoidal activation produces the bone-suppressed soft-tissue
image. Figure 2 illustrates the architecture of the proposed ConvNet–BS model.

(iii) RL–BS model: The architecture of the RL–BS model consists of eight convolutional
layers having 8, 16, 32, 64, 128, 256, 512, and 1 filter, respectively. Zero paddings are used
at all convolutional layers to preserve the dimensions of the input image. The RL–BS
model learns the residual error between the predicted bone-suppressed image and its
corresponding ground truth. The deepest convolutional slayer produces bone-suppressed
images. Figure 3 shows the architecture of the proposed RL–BS model. The RL–BS
model learns the residual error between the predictions and ground truth to produce
bone-suppressed images.
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Figure 2. The architecture of the proposed ConvNet–BS model. The ConvNet–BS model has seven
convolutional layers (shown with blue-colored boxes) with zero paddings to preserve original input
dimensions. The deepest convolutional layer with the sigmoidal activation produces bone-suppressed
soft-tissue images.

Figure 3. The architecture of the proposed RL–BS model.

(iv) ResNet–BS model: The architecture of the proposed ResNet–BS model is illustrated
in Figure 4. The residual design utilizes shortcuts to skip over layers thereby eliminating
learning convergence issues due to vanishing gradients. This facilitates reusing previous
layer activations until the weights are updated in the adjacent layer. These shortcuts lead
to improved convergence and optimization and help to construct deeper models.

Inspired by [34], ReLU activation layers are not used outside the residual blocks. This
literature [34] also demonstrates that batch normalization leads to loss of information and
reduces the range tractability of activations. Hence, the batch normalization layer and
the final ReLU activation are removed from each ResNet block. A sequence of 16 ResNet
blocks are used, each having 64 filters of size 3 × 3 and zero paddings to preserve original
image dimensions. Scaling layers with a scaling factor of 0.1 are added after the deepest
convolutional layer in each ResNet block to scale down the residuals before adding them
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back to the convolutional path [35]. The deepest convolutional layer with the sigmoidal
activation predicts the bone-suppressed image.

Figure 4. The architecture of the proposed ResNet–BS model. The convolutional block is denoted
by C, having 64 filters of size 3 × 3 and zero paddings to preserve input dimensions. R denotes
the modified ResNet block where the final ReLU activation is removed together with the batch
normalization layer. The proposed model has 16 ResNet blocks. The deepest convolutional layer C1
with a single filter, zero paddings, and sigmoidal activation, predicts the bone-suppressed image.

2.3. Evaluating Bone Suppression Models

The bone suppression models are trained to suppress the bony structures in the CXRs
and produce soft-tissue images. This can be treated as an image denoising problem in
which the bones are considered noise. To obtain superior bone suppression results, we aim
to reduce the error between the predicted bone-suppressed image and its ground truth and
maximize the structural similarity. The selection of the loss function plays a prominent role
in the bone suppression task.

In this study, the performance of the proposed bone suppression models is evaluated
through constructing a loss function that benefits from the combination of mean absolute
error (MAE) and multiscale structural similarity index measure (MS–SSIM) losses, herein
referred to as combined loss. Other pixel-based evaluation metrics used in this study include
peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). The
mean-squared error (MSE), also known as L2 loss, is a pixel loss measure that computes the
sum of the squared distance between the predicted image and its ground truth. However,
MSE does not interpret the quality of the predicted image. The MAE, otherwise called
L1 loss, computes the sum of absolute differences between the ground truth and the
predicted image. Studies in the literature reported that, unlike MSE, MAE provides a more
natural measure of average error and is useful in performing intercomparisons of average
model performance errors [36]. PSNR computes the peak signal-to-noise ratio between the
predicted and ground truth images. This ratio is used to provide a quantitative assessment
of the predicted image. A higher value for PSNR indicates a higher quality of prediction.
SSIM provides a measure of similarity between the ground truth and predicted images.
A previous study [37] reveals that SSIM provides a superior indication of prediction
performance as it exemplifies human visual perception. The MS–SSIM measure is an
extension of SSIM that computes structural similarity at various scales and combines them.
Another study [38] reveals that MS–SSIM is an improved measure to use, compared to SSIM
while characterizing the performance of the models because (i) it is measured over multiple
scales, and (ii) it is demonstrated to preserve contrast at higher frequencies, compared to
SSIM. On the other hand, MAE preserves luminance and contrast in the predicted image.
The mathematical formulations of these metrics can be found in the literature [36–38]. We
propose to train the bone suppression models using a combined loss function that benefits
from both MAE and MS–SSIM as shown in equation [1].

LossCombined = (Ω × MS − SSIM) + ((1 − Ω)× MAE) (1)

We set the value of Ω = 0.84 after empirical evaluations. Greater weight is given
to MS–SSIM since we want the bone-suppressed image to be highly similar (i.e., least
structural alteration) to the ground truth. The MAE is given lower significance in this
measure since it focuses on overall luminance and contrast in the image, which is expected
to change due to bone (white pixels) suppression.
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2.4. Histogram Similarity Assessment

The histograms of the ground truth and the bone-suppressed image predicted by the
proposed models are plotted and compared to observe their tonal distributions. Various
metrics including correlation, intersection, chi-square distance, Bhattacharyya distance,
and Earthmover distance (EMD) are used to compare these histograms and provide a
measure of similarity. The higher the value of correlation and intersection, the closer (or
more similar) is the histogram of the image pairs. This implies that the histogram of the
predicted bone-suppressed image closely matches that of the ground truth. For distance-
based metrics including chi-square, Bhattacharyya, and EMD, a smaller value indicates a
superior match between the histogram pairs, signifying that the predicted bone-suppressed
image closely matches that of the ground truth. The mathematical formulations of these
metrics can be found in the literature [39].

2.5. Classification Models

In this study, an ImageNet-pretrained VGG-16 model [25] is retrained on a large col-
lection of CXRs combined using RSNA CXR and pediatric pneumonia CXR data collections
producing sufficient diversity in terms of image acquisition and patient demographics to
learn the characteristics of abnormal and normal lungs. This VGG-16 model is truncated at
its deepest convolutional layer and appended with a global average pooling (GAP) layer,
a dropout layer with an empirically determined dropout ratio (0.5), and an output layer
with two nodes to predict probabilities of the input CXRs as showing normal lungs or
other pulmonary abnormalities. This CXR modality-specific retraining helps in improving
the specificity of the network weights conforming to the CXR classification task under
study. This approach is followed to learn CXR modality-specific characteristics about the
normal lungs and an extensive selection of pulmonary abnormalities. The modality-specific
knowledge would be relevant to be transferred to the CXR classification task, as compared
to using the ImageNet weights from the natural image processing domain. A previous
study [40] shows the benefits of using CXR modality-specific models retraining toward
improving classification and localization performance and model generalization. Dur-
ing CXR modality-specific pretraining, the data are split at the patient level into 90% for
training and 10% for testing. We allocated 10% of the training data for validation using
a fixed seed value. This CXR–VGG-16 model is fine-tuned on the original Shenzhen and
Montgomery TB CXR collection (baseline models) and their bone-suppressed counterparts
(bone-suppressed models) to classify them as showing normal lungs or pulmonary TB
manifestations. The bone-suppressed datasets are constructed by using the best-performing
bone suppression model among the proposed models. For the finetuning task, fourfold
cross-validation is performed in which the baseline and bone-suppressed CXRs in the
Shenzhen and Montgomery TB collections are split at the patient level into four equal
folds. The hyperparameters of the models are tuned while training on the three folds and
validating with the fourth fold. The validation process is repeated with each fold, resulting
in four different models.

During model training, data are augmented with random horizontal and vertical pixel
shifts (−5 to 5 pixels), horizontal mirroring, and rotations (−10 to 10 degrees) to introduce
data diversity into the training process and reduce overfitting to the training data. Class
weights are used to penalize majority classes and reduce class imbalance errors. The models
are trained and evaluated using stochastic gradient descent (SGD) optimization to estimate
learning error and classification performance. Callbacks are used to store checkpoints of
the models. The model weights delivering superior performance with their respective
validation fold are used for further analysis.

The ground truth disease annotations for the Montgomery TB dataset were provided
by an expert radiologist with more than 45 years of experience. The ground truth disease
annotations for a subset (n = 68) of the Shenzhen TB dataset were provided by another
expert radiologist with more than 30 years of experience. The web-based, VGG Image
Annotator tool [41] was used by the radiologists to independently annotate the collections.
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The radiologists were asked to annotate TB-consistent ROIs using rectangular bounding
boxes. These annotations were exported to JSON for subsequent analyses.

The performance of the models is quantitatively compared using the following metrics
and analyzed for statistical significance: (a) Accuracy, (b) AUC, (c) Sensitivity, (d) Specificity,
(e) Precision, (f) F-measure, and (g) Matthews correlation coefficient (MCC). The predictions
of the best-performing models trained on the baseline and bone-suppressed data are
interpreted through CRM-based visualization. A Windows® system with Intel Xeon CPU
and NVIDIA GeForce GTX 1070 graphics card and Keras DL framework with Tensorflow
backend is used to train the models. The trained models and codes are available at
https://github.com/sivaramakrishnan-rajaraman/CXR-bone-suppression.

2.6. Statistical Analysis

We performed statistical analyses to identify the existence of a statistically significant
difference in performance between the models. For the bone suppression task, we used
95% confidence intervals (CI) as the “Wilson” score interval for the MS–SSIM metric to
compare the performance of the proposed bone suppression models and estimate their
precision through the error margin. For the classification task, we used one-way analysis of
variance (ANOVA) [42] to investigate if there exists a statistically significant difference in the
MCC values obtained using the baseline and bone-suppressed models. Before performing
one-way ANOVA analysis, we conducted Shapiro–Wilk, and Levene analyses [43] to check
if the assumptions of data normality and variance homogeneity are satisfied. We used R
statistical software (v. 3.6.1) to perform these evaluations.

3. Results

Recall that the proposed bone suppression models are trained on the augmented JSRT
dataset and its bone-suppressed counterpart. The performance of the trained models is
evaluated with the cross-institutional NIH–CC–DES test set (n = 27). The performance
achieved by the various bone suppression models is shown in Table 2.

Table 2. Performance achieved by the proposed bone suppression models using the cross-institutional NIH–CC–DES
test set. Data in parenthesis are 95% CI for the MS–SSIM values measured as the “Wilson” score interval. Combined
loss = 0.16 * MAE + 0.84 * MS–SSIMloss. The best performances are denoted by bold numerical values in the corresponding
columns. The ResNet–BS model statistically significantly outperformed the AE–BS model in all categories (p < 0.05), and the
ConvNet–BS, and RL–BS models for the PSNR metric (p < 0.05). For other metrics, the ResNet–BS model demonstrated
superior performance than the CNN–BS, and RL–BS models.

Model Combined Loss MAE MS–SSIMloss PSNR SSIM MS–SSIM

AE–BS 0.0251 0.0212 0.0258 30.462 0.9206 0.9742 (0.8759, 1.0)
ConvNet–BS 0.0217 0.0198 0.0221 30.9518 0.9352 0.9779 (0.8867, 1.0)

RL–BS 0.0211 0.0219 0.021 31.7495 0.9375 0.979 (0.8901, 1.0)
ResNet–BS 0.0167 0.014 0.0172 34.0678 0.9492 0.9828 (0.9022, 1.0)

It is observed that the 95% CI for the MS–SSIM metric achieved by the ResNet–BS
model demonstrates a tighter error margin and hence higher precision, compared to the
other models. The ResNet–BS model demonstrated the least values for the combined loss,
MAE, and MS–SSIMloss and superior values for PSNR, SSIM, and MS–SSIM. The ResNet–BS
model statistically significantly outperformed the AE–BS model (p < 0.05) and the ConvNet–
BS and RL–BS models for the PSNR metric (p < 0.05). For other metrics, the ResNet–BS
model demonstrated superior performance than the CNN–BS, and RL–BS models. Figure 5
shows the final bone suppression images along with the original unsuppressed CXR from
a normal CXR in the NIH–CC DES test set. All approaches appear to show substantial
suppression of the bony structures in the apical regions. For differentiation among them,
quantitative indices are needed. A quantitative comparison of the bone-suppressed CXR
images in Figure 5 is provided by histogram similarity comparisons in Figure 6 and

https://github.com/sivaramakrishnan-rajaraman/CXR-bone-suppression
https://github.com/sivaramakrishnan-rajaraman/CXR-bone-suppression
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Table 3 that follow. Based on the comparison findings, the ResNet–BS model was used in
subsequent analyses.

Figure 5. Bone-suppressed CXR images predicted by the proposed models using a CXR sample from
the cross-institutional NIH–CC DES test set. (a) Original CXR; (b) AE–BS model; (c) ConvNet–BS
model; (d) RL–BS model; (e) ResNet–BS model; and (f) Ground truth.

Figure 6. Comparing the histogram of the predicted image using the proposed bone suppression
models and the ground truth using the sample CXR from Figure 2. (a) Ground truth and AE–BS
model; (b) Ground truth and CNN–BS model; (c) Ground truth and RL–BS model; and (d) Ground
truth and ResNet–BS model.

Figure 6 shows several comparisons of the histogram of the images predicted using
the bone suppression models and the histogram of the ground truth using the sample CXR
from Figure 5. It is observed from Figure 6d that the histogram of the bone-suppressed
image predicted by the ResNet–BS model closely matched the ground truth, compared to
the histogram obtained with other models. We assessed the similarity of the histograms of
the predicted images to the ground truth through several performance metrics including
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correlation, intersection, chi-square distance, Bhattacharyya distance, and EMD, as shown
in Table 3. We used Open Source Computer Vision (OpenCV) library (v. 3.4) to perform
these evaluations.

Table 3. Histogram similarity assessment. The similarity of the histograms of the predicted images using the bone suppres-
sion models and their corresponding ground truths are measured. Bold numerical values denote superior performance in
respective rows.

Method
Histogram Pairs

GT–GT GT–AE–BS GT–ConvNet–BS GT–RL–BS GT–ResNet–BS

Correlation 1 0.4368 0.4406 0.4644 0.6723
Intersection 10.6273 7.1058 7.1681 7.2151 9.2880

Chi-square distance 0 122.59 80.9075 60.30 1.7931
Bhattacharyya distance 0 0.4288 0.4272 0.4249 0.3595

EMD 0 0.0141 0.0135 0.0114 0.0089

We observed from Table 3 that the similarity of the ground truth to itself resulted
in a value of 0 for all the distance measures and a value of 1 for the correlation metric.
This demonstrates a perfect match. Higher values for the correlation and intersection
metrics computed using the GT–ResNet–BS histogram pair demonstrate that the histogram
of the ResNet–BS-predicted bone-suppressed image closely matches that of the ground
truth image. For distance-based metrics including chi-square, Bhattacharyya, and EMD, a
smaller value indicates a superior match between the histogram pairs. This signifies that
compared to other models, the bone-suppressed image predicted by the ResNet–BS closely
matches that of the ground truth.

The best performing ResNet–BS model is further used to suppress bones in Shenzhen
and Montgomery TB CXR collections. Figure 7 shows the bone-suppressed instances of a
sample CXR from the Shenzhen and Montgomery CXR collections. It is observed that the
ResNet–BS model generalized to the Shenzhen and Montgomery TB CXR collections that
are not seen by the model during training or validation. The bone shadows are completely
suppressed, and the resolution of the CXRs is preserved.

Recall that for the classification task, the CXRs in the Shenzhen and Montgomery TB
CXR collections are split at the patient level into four equal folds for performing cross-
validation studies. The mean performance of the cross-validated models is given in Table 4.
It is observed that the classification performance achieved with the bone-suppressed
models using the Shenzhen and Montgomery TB CXR collections is superior, compared to
the baseline models. The bone-suppressed models demonstrated superior values for all
performance metrics.

Table 4. Mean performance achieved by the cross-validated models using the bone-suppressed and non-bone-suppressed
(baseline) CXR instances of the Shenzhen and Montgomery TB CXR dataset. Acc = Accuracy; Sens. = Sensitivity;
Spec. = Specificity; Prec. = Precision; F = F-measure. One-way ANOVA is performed using the MCC values obtained by the
baseline and bone-suppressed cross-validated models to analyze for the existence of a statistically significant difference
in performance. Bold numerical values denote superior performances in corresponding columns for the Shenzhen and
Montgomery TB CXR collections. The performance of the bone-suppressed models is statistically significantly superior
(p < 0.05) to the baseline models in all categories.

Dataset Model ACC AUC Sens. Spec. Prec. F MCC

Shenzhen
(n = 326)

Bone
suppressed

0.8879 ±
0.0247

0.9535 ±
0.0186

0.8805 ±
0.0205

0.8954 ±
0.0423

0.8949 ±
0.0376

0.8873 ±
0.0233

0.7765 ±
0.0492

Baseline 0.8304 ±
0.0117

0.8991 ±
0.0268

0.8068 ±
0.0203

0.8537 ±
0.0345

0.8469 ±
0.0265

0.8259 ±
0.0089

0.6620 ±
0.0238
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Table 4. Cont.

Dataset Model ACC AUC Sens. Spec. Prec. F MCC

Montgomery
(n = 58)

Bone
suppressed

0.9230 ±
0.0312

0.9635 ±
0.0106

0.8772 ±
0.0708

0.9687 ±
0.0625

0.9706 ±
0.0588

0.9188 ±
0.0345

0.8539 ±
0.0581

Baseline 0.7701 ±
0.0820

0.8567 ±
0.0870

0.7991 ±
0.1931

0.7411 ±
0.0342

0.7517 ±
0.0274

0.7682 ±
0.1039

0.5537 ±
0.1761

Figure 7. Bone-suppressed CXRs predicted by the ResNet–BS model using a sample CXR from
the Shenzhen and Montgomery TB collection. (a) Shenzhen abnormal CXR; (b) Predicted bone-
suppressed image; (c) Montgomery abnormal CXR; and (d) Predicted bone-suppressed image.

We performed one-way ANOVA to analyze the existence of a statistically significant
difference in the AUC and MCC metrics achieved by the baseline and bone-suppressed
models trained on the Shenzhen TB CXR collection. One-way ANOVA assumes normality
of data and homogeneity of variances. For the AUC metric, we observed that the p-values
for Shapiro–Wilk and Levene analyses are greater than 0.05 (Shapiro–Wilk (p) = 0.1022 and
Levene (p) = 0.1206). This demonstrated that the assumptions of the data normality and
variance homogeneity are satisfied. Through one-way ANOVA analysis, we observed that
a statistically significant difference existed in the AUC values achieved by the baseline
and bone-suppressed models (F(1, 6) = 5.943, p = 0.005). This underscored the fact that the
AUC values obtained by the bone-suppressed models are significantly superior to those
achieved by the baseline models. We performed similar analyses using the MCC metric.
We observed from Shapiro–Wilk and Levene analyses that the assumptions of the normal
distribution of data and variance homogeneity hold valid (Shapiro–Wilk (p) = 0.7780 and
Levene (p) = 0.4268). We observed that there existed a statistically significant difference
in the MCC values obtained by the baseline and bone-suppressed models (F(1, 6) = 17.58,
p = 0.00573). This demonstrated that the MCC values obtained by the bone-suppressed
models are significantly higher compared to the baseline models.

A similar analysis is performed using the AUC and MCC metrics achieved by the cross-
validated baseline and bone-suppressed models that are trained on the Montgomery TB
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CXR collection. Analyses of the AUC metric led to the observation that (i) the assumptions
of data normality and variance homogeneity hold valid (Shapiro–Wilk (p) = 0.4102 and
Levene (p) = 0.5510) and (ii) a statistically significant difference existed in the AUC values
obtained by the baseline and bone-suppressed models (F(1, 6) = 11.13, p = 0.0157). Analyz-
ing the MCC values led to the observation that (i) the assumptions of normal distribution
of data and homogeneity of variances are satisfied (Shapiro–Wilk (p) = 0.6767 and Levene
(p) = 0.808) and (ii) there existed a statistically significant difference in the MCC values
obtained by the baseline and bone-suppressed models (F(1, 6) = 10.48, p = 0.0177). This un-
derscored the fact that the AUC and MCC values obtained by the bone-suppressed models
are significantly higher than the baseline models. These statistical evaluations demon-
strated the fact that the classification performance achieved by the bone-suppressed models
toward TB detection significantly outperformed those trained on non-bone-suppressed images.

Figures 8 and 9 show the following visualizations obtained using the best-performing
cross-validated bone-suppressed model, respectively, using the Shenzhen and Montgomery
TB CXR collection: (a) confusion matrix; (b) AUC–ROC curve; and (c) Normalized Sankey
diagram. Recall that the bone-suppressed models demonstrated statistically superior
values for all performance metrics, compared to their baseline counterparts.

We also used CRMs to interpret the predictions of the best-performing baseline and
bone-suppressed models using the Shenzhen and Montgomery TB CXR collections to
localize TB-consistent findings. Figure 10a,d show instances of original CXRs, respectively,
from the Shenzhen and Montgomery TB CXR collections. The expert ground truth anno-
tations are shown with red bounding boxes. Figure 10b,e show how the best-performing
baseline models interpret their prediction toward localizing TB-consistent ROI. Figure 10c,f
show the TB-consistent ROI localized by the best-performing bone-suppressed models. It
is observed that the bone-suppressed models demonstrated superior TB-consistent ROI
localization, compared to the baseline models. From Figure 10b,e, it is observed that the
baseline models are learning the surrounding context but not meaningful features. The
TB-consistent ROI localization achieved by the bone-suppressed models conformed to
the expert knowledge of the problem, as observed from Figure 10c,f, and showed that it
learned meaningful, salient feature representations.

Figure 8. Performance visualization using the best-performing cross-validated bone-suppressed model that is trained and
evaluated on the Shenzhen TB CXR collection. (a) Confusion matrix; (b) AUC–ROC curves; and (c) Normalized Sankey
flow diagram.
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Figure 9. Performance visualization using the best-performing cross-validated bone-suppressed model that is trained and
evaluated on the Montgomery TB CXR collection. (a) Confusion matrix; (b) AUC–ROC curves; and (c) Normalized Sankey
flow diagram.

Figure 10. CRM-based TB-consistent ROI localization achieved by the best-performing baseline and
bone-suppressed model, respectively, using a sample CXR from the Shenzhen and Montgomery TB
CXR collection. (a) a CXR instance from the Shenzhen TB CXR collection with expert ground truth
annotations (shown with red bounding boxes); (b) TB-consistent ROI localization achieved by the
best-performing baseline model using the Shenzhen CXR instance; (c) TB-consistent ROI localization
achieved by the best-performing bone-suppressed model using the Shenzhen CXR instance; (d) a CXR
instance from the Montgomery TB CXR collection with expert ground truth annotations (shown with
red bounding boxes); (e) TB-consistent ROI localization achieved by the best-performing baseline
model using the Montgomery CXR instance, and (f) TB-consistent ROI localization achieved by the
best-performing bone-suppressed model using the Montgomery CXR instance.
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We performed a systematic visualization of the learned features in the initial and
deepest convolutional layers of the trained bone-suppressed models to interpret the fea-
tures detected for a given CXR image. Figures 11 and 12 show the features learned by
the first 64 filters using the best-performing bone-suppressed models for a sample CXR
from the Montgomery and Shenzhen TB collections, respectively. From Figures 11 and 12,
we observed that the filters in the first convolutional layer learned the edges, contours,
orientations, and their combinations, specific to the input image. However, in the deepest
convolutional layer, the filter activations were abstracted to encode class-specific informa-
tion. Additionally, the activation sparsity increased with model depth. This demonstrated
that deeper convolutional layers encode class-specific details, while the initial layers contain
image-specific activations. The bone-suppressed model distilled the input to repeatedly
transform it to encode only class-relevant information with increasing depth while filtering
out irrelevant information specific to the visual characteristics of the input CXR image.

Figure 11. Visualizing the activations of the first 64 filters using the best-performing bone-suppressed model with a sample
CXR from the Montgomery TB collection. The layer naming conventions follow Keras DL library. (a) block1-Conv1 layer
and (b) block5-conv3 layer.

We further used the CRM algorithm and the best-performing bone-suppression mod-
els to visualize the overall pulmonary location of TB manifestations in Shenzhen and
Montgomery TB CXR collections. The average CRMs for the two datasets are shown in
Figure 13. The steps taken to generate the average CRMs independently for the Shenzhen
and Montgomery TB collection are (i) The average of CRMs were computed for the TB class
in each dataset; (ii) the average of the ground truth lung masks for the Montgomery [24]
and Shenzhen TB CXR [44] collections were computed, and (iii) a bitwise-AND operation
was performed using the average CRMs and the averaged lung masks to visualize the
activations in the lung ROI. The average CRMs appeared quite interesting and showed
that the Shenzhen TB-positive group had primarily upper lobe CXR abnormalities. The
average CRM obtained using the Montgomery TB CXR collection also showed upper lung
predominance as well as other zones.
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Figure 12. Visualizing the activations of the first 64 filters using the best-performing bone-suppressed model with a sample
CXR from the Shenzhen TB collection. (a) block1-Conv1 layer and (b) block5-conv3 layer.

Figure 13. Average CRM computed for the TB class using the (a) Shenzhen and (b) Montgomery TB
CXR collection.

We visualized the learned features from the Shenzhen and Montgomery TB CXR
collections by the best-performing baseline and bone-suppressed models using t-SNE [45].
The t-SNE is a dimensionality reduction technique that helps to visualize the learned feature
space by embedding high-dimensional images into low dimensions while maintaining
the pairwise distances of the points. The 512-dimensional vector extracted from the GAP
layer of the baseline and bone-suppressed models is plugged into t-SNE to visualize
feature embeddings in the two-dimensional space. From Figure 14, it is observed that the
feature space learned by the bone-suppressed models demonstrated a better and more
compact clustering of the normal and TB class features. Such feature clustering facilitates
markedly superior separation between the classes, as compared to the baseline models.
This improved behavior is observed with the bone-suppressed models fine-tuned on both
Shenzhen and Montgomery TB CXR collections.
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Figure 14. Feature embedding visualization with the t-SNE algorithm. The blue-colored points
denote the feature embeddings for the TB class and the orange-colored points denote that of the
normal class. (a) t-SNE visualization obtained by the best-performing baseline model evaluated
using the Shenzhen TB CXR collection; (b) t-SNE visualization obtained by the best-performing
bone-suppressed model evaluated using the Shenzhen TB CXR collection; (c) t-SNE visualization
obtained by the best-performing baseline model evaluated using the Montgomery TB CXR collection,
and (d) t-SNE visualization obtained by the best-performing bone-suppressed model evaluated using
the Montgomery TB CXR collection.

4. Discussion

Observations made from this study include the need for (i) CXR modality-specific
model pretraining, (ii) model customization suiting the problem, (iii) statistical validation,
(iv) localization studies with expert annotations conforming to the problem, and (v) feature
embedding visualization.

CXR modality-specific pretraining: Previous studies reveal that compared to using
ImageNet weights, CXR modality-specific model pretraining results in learning meaningful
modality-specific features that can be transferred to improve performance in a relevant
classification task [40,46]. We performed CXR modality-specific pretraining using a selec-
tion of various publicly available CXR data collections to introduce sufficient diversity
into the training process in terms of acquisition methods, patient population, and other
demographics, to help the models broadly learn significant features from CXRs showing
normal lungs and other pulmonary abnormalities. The learned knowledge is transferred to
improve convergence and performance in a relevant classification task to classify CXRs as
showing normal or TB manifestations. This approach may have helped the DL models to
distinguish salient radiological manifestations of normal lungs and TB-consistent findings.

Model customization: Residual networks are one of the most commonly used back-
bones for computer vision tasks including segmentation, classification, and object detec-
tion [47]. The use of residual blocks helps construct and train deeper models since they
alleviate the problem of vanishing gradients. In this study, we explored the use of residual
networks in the context of an image denoising problem where the bony structures in the
CXRs are considered noise. Through empirical evaluations, we observed that the proposed
ResNet–BS model outperformed other models by demonstrating superior values for the
PSNR, SSIM, and MS–SSIM metrics. The bone-suppressed image predicted by the ResNet–
BS model effectively suppressed the bony structures and the image appeared sharp while
preserving the soft tissues, rendering it suitable for lung disease screening/diagnosis.
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Statistical validation: Studies in the literature that accomplish bone suppression in
CXRs have not performed a quantitative assessment of the bone-suppressed images by
comparing them to their respective ground truths [48]. Statistical analysis would help
evaluate model performance based on quantitative measures and help distinguish between
realistic and uncertain assumptions. In our study, we performed histogram-based similarity
assessments using several performance metrics including correlation, intersection, and
other distance measures including chi-square distance, Bhattacharyya distance, and EMD
to statistically demonstrate the closeness of the predicted bone-suppressed images with the
ground truth. This led to the observation that, unlike other proposed bone suppression
models, the histogram of the bone-suppressed CXRs predicted by the ResNet–BS model
closely matched their respective ground truth images. We performed statistical analysis
using 95% CI as the “Wilson” score interval to investigate the existence of a statistically
significant difference in performance between the bone suppression models. We also
performed one-way ANOVA analyses to observe the existence of a statistically significant
difference in the classification performance using the baseline and bone-suppressed models.
To this end, we observed a statistically significant difference (p < 0.05) existed in the MCC
values obtained using the baseline and bone-suppressed models toward classifying the
CXRs in the Shenzhen and Montgomery TB CXR collections. This demonstrated that
the bone-suppressed models that are trained and evaluated individually on the Shen-
zhen and Montgomery TB CXR collections statistically significantly outperformed their
baseline counterparts.

Localization studies: We observed from the CRM-based localization study that the
bone-suppressed models learned meaningful feature representations conforming to the
expert knowledge of the problem under study. On the other hand, the baseline models,
though demonstrating good classification accuracy, revealed poor TB-consistent ROI local-
ization. These models learned the surrounding context irrelevant to the problem to classify
the CXRs to their respective classes. This led to an important observation that the model
accuracy is not related to its disease-specific ROI localization ability.

The average CRMs obtained using the Shenzhen and Montgomery TB CXR datasets,
collected from TB clinics in two different countries, showed upper lung predominance.
These observations conform to the findings in the literature [49] that discusses that 58% of
patients with sputum-positive TB had upper lobe infiltrates. Another study [50] demon-
strated that reactivation TB was especially common in the posterior segment of the upper
lobe and the superior segment of the lower lobe. On frontal CXRs, those segments can
appear to be in the midzone. The improved CRM localization achieved using the bone-
suppressed models could be attributed to the fact that the suppression of bones helped
to detect TB-consistent findings that often manifest in the apical lung regions so that
their visibility is not obstructed by the occlusion of ribs and clavicles, thereby increasing
model sensitivity.

Feature embedding visualization: We visualized the feature space learned by the
baseline and bone-suppressed models using the t-SNE dimensionality reduction algorithm
that embeds the learned high-dimensional features into the 2D space. To this end, we ob-
served that the bone-suppressed model demonstrated a compact clustering of the features
learned for the TB and normal classes. The decision boundary between the normal and TB
categories are well defined, showing that meaningful feature embeddings are learned by
the bone-suppressed models.

Limitations: This study, however, suffers from the following limitations: (i) To train
and validate the proposed bone-suppression models, we used limited data that may not
encompass a wide range of bone structure variability. With the increased availability of
bone-suppressed CXRs in frontal and lateral projections, it would be possible to train
deeper architectures with sufficient data diversity to build confidence in the models and
improve their generalization to real-world data, and (ii) this study does not empirically
identify the best classification model but investigates the impact of bone suppression on
improving the classification performance in different TB datasets and substantiates the
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need for bone suppression toward improving TB detection. The impact of this approach on
patient triage and treatment planning can only be theorized. Deriving guidance for them is
beyond the scope of this study.

In sum, models trained on bone-suppressed CXRs improved detection of TB-consistent
findings resulted in compact clustering of the data points in the feature space, signifying
that bone suppression improved the model sensitivity toward TB classification. The models
proposed in this study are not limited to improving TB detection. The results suggest
that the proposed ResNet–BS bone suppression model could be extended to other CXR
applications such as improved performance in detecting and differentiating lung nodules,
pneumonia, COVID-19, and other pulmonary abnormalities. This could further enhance
the utility of digital CXRs for the evaluation of pulmonary disorders for underserved
patients in low-resource or remote locations. We believe our results will improve human
visual interpretation of TB findings, as well as automated detection in AI-driven workflows.
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