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Abstract

Background: Identifying the gene regulatory networks governing the workings and identity of cells is one of the
main challenges in understanding processes such as cellular differentiation, reprogramming or cancerogenesis. One
particular challenge is to identify the main drivers and master regulatory genes that control such cell fate transitions.
In this work, we reformulate this problem as the optimization problems of computing a Minimum Dominating Set
and a Minimum Connected Dominating Set for directed graphs.

Results: Both MDS and MCDS are applied to the well-studied gene regulatory networks of the model organisms E.
coli and S. cerevisiae and to a pluripotency network for mouse embryonic stem cells. The results show that MCDS can
capture most of the known key player genes identified so far in the model organisms. Moreover, this method suggests
an additional small set of transcription factors as novel key players for governing the cell-specific gene regulatory
network which can also be investigated with regard to diseases. To this aim, we investigated the ability of MCDS to
define key drivers in breast cancer. The method identified many known drug targets as members of the MDS and
MCDS.

Conclusions: This paper proposes a new method to identify key player genes in gene regulatory networks. The Java
implementation of the heuristic algorithm explained in this paper is available as a Cytoscape plugin at http://apps.
cytoscape.org/apps/mcds. The SageMath programs for solving integer linear programming formulations used in the
paper are available at https://github.com/maryamNazarieh/KeyRegulatoryGenes and as supplementary material.
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Background
Although all the cells in multicellular organisms basi-
cally share the same DNA sequence with the same set
of genes, in each cell type only a particular set of genes
is actively expressed which then defines its specific mor-
phology and function. Thus, different types of cells are
controlled by different sets of active genes and by the
interactions between them [1–4]. Inside each cell, a set of
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target genes and regulatory genes, namely the transcrip-
tion factors (TFs), interacts with each other and forms a
gene regulatory network (GRN). GRNs topologically com-
prise a highly connected component and a few nodes
with low connectivity [5]. Embryonic stem cells (ESCs),
for example, can be distinguished from other cells mainly
based on their pluripotency network. This network in
ESCs is spanned up by few connected TFs which share
many target genes [6]. A slight change in the expression
levels of such a tightly interwoven network of TFs leads to
ESC differentiation [6].
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Of particular interest are the groups of key driver genes
and master regulatory genes in condition-specific and
unspecific gene regulatory networks. Key driver genes are
basically those genes that control the state of the network
[7–9]. The termmaster regulatory gene was introduced by
Susumu Ohno over 30 years ago. According to his defini-
tion, a master regulator is a gene which stands at the top
of a regulatory hierarchy and is not regulated by any other
gene [10]. Later on, this term was redefined to involve a
set of genes which either directly govern the particular
cellular identity or are at the inception of developmen-
tal lineages and regulate a cascade of gene expressions to
form specific lineages [11].
To address the problem of computational iden-

tification of key and master regulatory genes, we
have modeled and solved two optimization problems
named Minimum Dominating Set (MDS) and Mini-
mum Connected Dominating Set (MCDS) on the GRNs.
We compared these sets against well-known central-
ity measures such as degree, betweenness and close-
ness centrality as described in [12]. These attribute
the importance of genes to their centrality in the
networks. However, it is unclear whether high cen-
trality genes provide a full control of the underlying
network.
A recent study derived a minimum input theorem based

on structural control theory which can be applied to
directed graphs to fully control the network [7]. For this,
the authors introduced a deep relation between struc-
tural controllability and maximum matching. The idea
is to control the whole network by covering all the reg-
ulatory interactions with a minimum number of genes.
Their results show that a few nodes are sufficient to con-
trol dense and homogeneous networks, but this number
increases dramatically when the nodes in the network are
sparsely connected.

An MDS is a related concept in which the goal is to
control the network by covering all expressed genes with
a minimum number of TFs. Since each node that does
not belong to the MDS is adjacent to at least one node in
the MDS, full control over the network is provided by the
MDS solution. Our group has previously applied the con-
cept of MDS to the area of complex diseases. The results
showed that this method can capture several important
disease and drug target genes [9, 13]. The MDS method
can be applied to any connected or disconnected regu-
latory network to identify key dominator nodes. In this
work, we use MDS in directed graphs to identify key
driver genes. Besides the MDS concept, we suggest to also
consider the task of identifying a set of master regulatory
genes as an analogue of another optimization problem,
namely that of constructing an MCDS. We suggest to
apply MCDS mainly to networks that are related to cell
fate transitions such as the pluripotency network of an
embryonic stem cell. This idea is motivated by the obser-
vation that the pluripotency network in mouse ESCs is
maintained by a few connected TFs which share many
target genes [6]. The concepts of MDS and MCDS are
visualized for a small toy network in Fig. 1.
The concept of MCDS has already been applied to

protein-protein interaction networks (which are repre-
sented by undirected graphs). There, the proteins which
compose a MCDS solution contributed significantly to
related biological processes [14]. In this work, we show
how the MCDS concept can be applied to GRNs (repre-
sented by directed graphs) to detect the TFs and target
genes which determine a specific cellular identity.We start
with the model organisms E. coli and S. cerevisiae because
their GRNs have been extensively characterized in exper-
imental studies. Then, we present applications to a mouse
pluripotency network and to a breast cancer regulatory
network.

a b

Fig. 1 A graphical representation that illustrates the MDS and MCDS solutions of an example network. The network can be controlled by MDS and
MCDS nodes. In the case of a GRN, directed arcs symbolize that a transcription factor regulates a target gene. In panel a, the MDS nodes {A,B} are the
dominators of the network. Together, they regulate all other nodes of the network (C, E, D). Panel b visualizes the respective set of MCDS nodes
(black and gray). Here, node C is added in order to preserve the connection between the two dominators A and B to form an MCDS



Nazarieh et al. BMC Systems Biology  (2016) 10:88 Page 3 of 12

Methods
Minimum dominating set
A dominating set (DS) in an undirected graph G = (V ,E)

is a subset of nodes D ⊆ V with the property that for each
node v ∈ V we have that v ∈ D or that there is a node
u ∈ D and an edge {u, v} ∈ E. We call a set D ⊆ V amini-
mum dominating set (MDS) if it is a dominating set and it
has minimum cardinality among all dominating sets forG.
Computing a MDS is known to be an NP-complete prob-
lem [15]. In biological networks, the set of dominators can
provide full control over the whole network. Since each
node that does not belong to the MDS is at least adjacent
to one node in the MDS, full control over the network
can be obtained by the MDS solution. To address GRNs
which are represented by directed graphs, we define an
MDS for a directed graph G = (V ,E) to be a set D ⊆ V
of minimum cardinality such that for each node v ∈ V
we have that v ∈ D or that there is a node u ∈ D and
an arc (u, v) ∈ E. The integer linear programming (ILP)
formulation of MDS for directed graphs is given below.
Here, for each node v ∈ V we denote by δ−(v) the set
of incoming nodes of v, i.e., the set of nodes u such that
(u, v) ∈ E.

minimize
∑

v∈V
xv

subject to xu +
∑

v∈δ−(u)

xv ≥ 1 ∀u ∈ V

xv ∈ {0, 1} ∀v ∈ V

(1)

Here, variables xu and xv are binary variables associated
to the nodes u and v in the graph. Using this formu-
lation, we select a node v as a dominator if its binary
variable xv has value 1 in the computed solution and oth-
erwise we do not select it. Since our objective function is
to minimize

∑
v∈V xv this yields a minimum dominating

set. For all networks considered here, MDS solutions were
constructed in less than 1 minute of running time.

Minimum connected dominating set
A minimum connected dominating set (MCDS) for a
directed graph G = (V ,E) is a set of nodes D ⊆ V of
minimum cardinality that is a dominating set and that
additionally has the property that the graphG[D] induced
by D is weakly connected, i.e., such that in the underlying
undirected graph between any two nodes v, v′ ∈ D there
is a path using only vertices in D. Computing an optimal
MCDS in undirected graphs is known to be NP-hard [15].
Since GRNs are represented by directed graphs, we are
interested in MCDSs for directed graphs.

Optimal solution via ILP
To this end, we modified the existing integer linear pro-
gramming (ILP) formulation of MCDS in undirected
graphs [16] to determine a MCDS for directed graphs.

As before, the set V is the set of vertices and E is the
set of edges in the input graph. For a set S ⊆ V , the
set E(S) stands for all the edges connecting two vertices
u, v with u, v ∈ S. The binary valued yv variables indi-
cate whether node v is selected to belong to the minimum
connected dominating set. The binary variables xe for the
edges then yield a tree that contains all selected vertices
and no vertex that was not selected. Thus, the selected
vertices form a connected component. The first constraint
guarantees that the number of edges is one unit less than
the number of nodes. This is necessary for them to form a
(spanning) tree but is not sufficient. The second constraint
guarantees that the selected edges imply a tree. The third
constraint guarantees that the set of selected nodes in the
solution forms a dominating set of the graph. For dense
undirected graphs, this formulation provides a quick solu-
tion, but in the case of sparse graphs, finding the optimal
solution may take considerable running time [16].

minimize
∑

v∈V
yv

subject to
∑

e∈E
xe =

∑

i∈V
yi − 1

∑

e∈E(S)
xe ≤

∑

i∈S\{j}
yi ∀S ⊂ V ,∀j ∈ S

yu +
∑

v∈δ−(u)

yv ≥ 1 ∀u ∈ V

yv ∈ {0, 1} ∀v ∈ V

xe ∈ {0, 1} ∀e ∈ E
(2)

The above IP formulation contains an exponential num-
ber of constraints since it has one constraint for each
subset S ⊆ V . Therefore, already for relatively small
instances it is impractical to generate all its inequalities.
Instead, we used the following approach: we generate the
first constraint and all constraints of the third type (i.e.,∑
e∈E

xe = ∑
i∈V

yi − 1 and yu + ∑
v∈δ−(u)

yv ≥ 1 for each u ∈ V ).

Then we compute the optimal IP solution subject to these
constraints. Then we check whether the found solution
satisfies all constraints of the above IP (even those that
we did not add to our formulation). This is the case if and
only if the computed set of vertices yields a connected
(dominating) set. If this is the case then we found the opti-
mal solution and we stop. Otherwise, we add (violated)
constraints of the second type (i.e.,

∑
e∈E(S)

xe ≤ ∑
i∈S\{j}

yi

for some subset V and some node j) to our formulation
and compute the optimal IP solution to this stronger for-
mulation and repeat. If the computed set of vertices has
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more than one connected component then we add such a
constraint for each connected component S and for each
vertex j ∈ S. In order to improve the running time of our
procedure, we added some valid inequalities to our initial
formulation. These inequalities discard all the solutions
that select an edge e = {u, v} (i.e., xe = 1) such that not
both of its incident vertices were selected (i.e., not both
yu = 1 and yv = 1). Formally, for each edge e = {u, v} we
added the inequalities

xe ≤ yu
xe ≤ yv

(3)

Despite adding these valid inequalities, some prob-
lem instances were not solved in appropriate time. To
overcome this problem, we also considered a heuristic
approach. It is known that an approximate MCDS can
be found by heuristic approaches in polynomial time
[17, 18]. For graphs with low node density and high node
degree, the optimal ILP solution can be found at com-
parable running times as such heuristic solutions [17].
However, the heuristic solution outperforms the ILP for
graphs with high node density and low node degree in
terms of running time [17]. In this work, all computations
were conducted on a single threaded Intel XEON CPU at
2.2 Ghz. We determine the ILP solution using the glpk
solver version 4.35 [19]. In cases where the network is very
sparse we used the heuristic algorithm (see next section).

Heuristic solution
In this study, we computed the heuristic solution for
all networks except for the modules of a breast cancer
network. There, the optimal MCDS solution could be
obtained within a few minutes to several hours of com-
pute time. We adapted the heuristic algorithm presented
in [18] that was inspired by one of the two general approxi-
mation approaches mentioned in [20] to find solutions for
MCDS. We modified the algorithm to determine a MCDS
for directed graphs rather than an undirected graph. The
algorithm has three main phases as described in the fol-
lowing. Initially, all nodes are white. In the first phase,
a white node with the highest outdegree is selected as
a dominator and colored black. In cases where multiple
nodes have the same outdegree, we select the node with
the highest indegree. This selection guarantees higher
connectivity compared to nodes with smaller indegree. Its
(directed) child neighbors are colored gray to indicate that
they are already dominated. This step is repeated until all
nodes are either black or gray. From these, we check if
the (black) set of dominators forms a connected dominat-
ing set. If yes, we move to the third phase, otherwise we
move to the second phase. In the second phase, a node
with maximum number of arcs to black nodes, that we

term a connector, is colored dark gray. This dark gray
node is then added to the connected dominating set if
it belongs to a path between two connected components
that are not connected so far. This step is repeated until all
black and dark gray nodes form a connected component
in the underlying undirected graph. In the third phase, the
size of the connected dominating set is reduced as much
as possible by repeatedly removing a node with small-
est outdegree while making sure that the dominating set
remains connected and the graph remains covered by the
connected dominating set. In cases where multiple nodes
have the same outdegree, we again select the node with
highest indegree.
One can also interpret the algorithm biologically in the

context of GRNs. We start by selecting a TF with the most
target genes as a dominator. This process is repeated until
all the genes are either selected as dominators or as tar-
get genes. If the dominating set is not connected, the next
step is to connect the dominators by adding a few number
of connector genes. This step is motivated by the modu-
larity of cellular networks [21]. We will investigate below
whether defining a connected set of dominator nodes is
beneficial for the biological interpretability of the con-
trol hierarchy. As connectors, we consider TFs as well as
target genes. The last step is to reduce the size of the
connected dominating set. Then, the connected dominat-
ing set comprises of dominators and connectors, whereby
all dominators are TFs and the connectors comprise of
TFs and/or target genes. Note that the set of MCDS
identified as dominators or connectors provides potential
candidates for key drivers and master regulatory genes.
For the networks considered here, the running time for

the heuristic MCDS solution was less than 1 minute.

Components
Unlike MDS, the task of computing an MCDS only makes
sense for input graphs that are connected since other-
wise there can be no solution. Therefore, if we are given a
disconnected undirected graph, we compute MCDSs for
connected components of the graph. For directed graphs,
we distinguish between strongly connected components
and (weakly) connected components.

Strongly connected component
A component is called a strongly connected component
(SCC) in a directed graph if each of its nodes is reachable
via directed edges from every other node in the com-
ponent. In a SCC, there is a path between each pair of
nodes in the component. Here, we implemented Tarjan’s
algorithm to find SCCs as described in [22].

Largest connected component
A component is a (weakly) connected component if in the
underlying undirected graph, there exists a path between
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any pair of nodes of this component. The connected com-
ponent of highest cardinality is termed the largest con-
nected component (LCC). The connected components
were found by breadth first search (BFS) as described
in [23]. Note that each strongly connected component is
also a (weakly) connected component but the converse
is not necessarily true. Since a MCDS does not exist in
graphs that are not connected, we consider the largest
connected component (LCC) and the largest strongly con-
nected component (LSCC) in such cases, see Fig. 2. We
compared the results of MCDS when the network has
only one connected component to those obtained with a
directed version of MDS in terms of the size of the result
set and enrichment analysis.

Criteria to select the component
MDS is always applied to the whole network. If the input
network is not connected, we select either LCC or the
LSCC as the input for MCDS. If the cardinality of the
network is equal to the LCC of the network, we select
the whole network. Otherwise, we consider the compo-
nent density of LCC and LSCC. For a directed graph
G = (V ,E), the component density is defined as |E|

|V |(|V |−1) ,
where E denotes the set of edges and V denotes the set
of nodes in the component. The component density is
equal to the ratio of existing edges (interactions) |E| in the

component to the total number of possible edges (inter-
actions). According to the definitions in [24], in a dense
graph the number of edges is close to the maximal num-
ber of edges which is in contrast to a sparse graph. In
this study, an MCDS is then derived for the component
(LCC or LSCC) with highest density, as we were inter-
ested to find the minimum number of genes. High density
components are more promising in this regard, because
they need a smaller number of connectors to connect the
dominators.

Enrichment analysis
The biological relevance of the results obtained by the
directed forms of MDS and MCDS was evaluated using
the enrichment analysis tool provided at the DAVID por-
tal of NIH [25]. p-values below the threshold 0.05 obtained
by the hypergeometric test were adjusted for multiple
testing using the Benjamini & Hochberg (BH) procedure
[26].

Functional similarity
Functional similarity was examined based on Gene Ontol-
ogy (GO) Biological Process (BP) terms among the pairs
of MCDS nodes. This was then compared to the func-
tional similarity of gene pairs from the entire network as
described in [27]. The permutation test was repeated 100

a

b

c

d

Fig. 2 A graphical representation that illustrates the concept of MDS on a toy network. In addition, the MCDS nodes are colored black on three
types of components (LSCC, LCC of the underlying directed graph and LCC of the underlying undirected graph) in the toy network. The above toy
network includes 14 nodes and 14 edges as shown in yellow in panel (a). The nodes {J, B, C, H, L} are the dominators of the network obtained by
computing a MDS (right panel). The nodes colored blue in panel b, make up the largest connected component of the underlying undirected graph.
MCDS nodes for this component are {J, D, B, C, G, H}. Green colored nodes in panel c are elements of the largest connected component underlying the
directed graph. The two nodes {B, C} form the MCDS for this component. The nodes colored orange in panel d show the LSCC in the network. Here,
the node A is the only element of the MCDS
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times and Kolmogorov-Smirnov (KS) test was applied to
get the p-value.

Hypergeometric test
The statistical significance of the results was assessed
using the hypergeometric test which is based on sampling
without replacement. The p-value for the test is calculated
from the following formula:

p − value = 1 −
x∑

i=0

(k
i
)(M−k

N−i
)

(M
N

)

where M is the total number of genes in the network, N
is the sample size which is equal e.g. to the size of the
MCDS, k is the number of genes inMwith a specific prop-
erty and x is the number of genes in the MCDS having
that property. The cutoff value was set to p = 0.05 to
report a set obtained by MCDS as a significant result. To
apply the test, we used the online tool (GeneProf) which
is described in [28].

Data and software
We tested the presented approaches to identify key player
and master regulatory genes in several GRNs for E. coli,
S. cerevisiae, a human breast cancer network and for the
pluripotency of mouse ESC. We will present the obtained
results one by one in the next section.
The dataset of E. coli is a GRN of the Escherichia coli

strain K-12 that was downloaded on 22-July-2014 from
RegulonDB [29]. It contains curated data for 1807 genes,
including 202 TFs.
The dataset of S. cerevisiae was taken from the Yeast

Promoter Atlas (YPA) downloaded on 26-March-2014
[30]. It contains 5026 genes including 122 TFs. In this
database, the target genes for each TF is a set of genes
whose promoter regions contain the associated transcrip-
tion factor binding site for the TF binding motif.
The dataset for mouse is a manually curated GRN of

mouse (Mus musculus) ESCs. It consists of 274 mouse
genes/proteins and 574 molecular interactions, stimula-
tions and inhibitions [31]. The network consists of genes
that are involved in either induction, maintenance or loss
of the pluripotency state and is thus termed pluripotency
network throughout the text.
The breast cancer network used here was generated

in [9] using a Bayesian learning approach that was cou-
pled to an integrative network-based approach based on
whole-genome gene expression profiling, DNA methy-
lome, and genomic mutations of breast cancer samples
from TCGA. The GRN networks were constructed via
three steps: first the co-expression network was generated
based on the topological overlapmatrix as a distancemea-
sure. Then, we connected the co-expression interactions

to regulatory information retrieved from publicly avail-
able regulatory databases accompanied with motif search
for all known binding motifs of the TFs represented in
the co-expression network against the promoter regions
of all genes in the network. Finally, a causal probabilis-
tic Bayesian network was inferred from the co-expression
modules utilizing the directed edges obtained from the
previous step as a start search point to infer directionality
between nodes. Clustering yielded ten network modules
of dysregulated genes [9]. Each module turned out to
have distinct functional categories, cellular pathways, as
well as oncogene and tumor suppressor specificity. We
also extracted breast cancer specific subnetworks from
the human genome regulatory interactome induced by the
dysregulated mRNAs.
We implemented the ILP formulas for the directed

forms of MDS and MCDS in the SageMath software
system [32] version 6.8 using the glpk solver [19]. We
implemented the heuristic algorithm in Java and made it
available as a plugin for the popular biological network
analysis platform Cytoscape [33] at http://apps.cytoscape.
org/apps/mcds and in Additional files 1 and 2. Additional
file 3 provides a user guide and example files. Additional
file 4 provides the GRN Networks used in this study.

Results and discussion
Global E. coli GRN
The GRN for E. coli studied here contains 1807 genes,
including 202 TFs and 4061 regulatory interactions. This
set of regulatory interactions in E. coli forms a gen-
eral network which controls all sorts of responses which
are needed in different conditions. With network density
0.001, the network can be considered as sparse. Due to
this sparsity, MDS deems 199 TFs to be necessary to con-
trol the network. The network does not have any SCC
with size larger than 5 nodes. For computing an MCDS,
we therefore used the LCC underlying directed graph that
contains 1198 genes. Based on the directed form of the
LCC, target genes are placed at the bottom level and a
set of TFs comprises the MCDS. In the LCC, the algo-
rithm identified an heuristic MCDS containing 34 genes
(11 dominators and 23 connectors) that cover the entire
component, see Additional file 5: Table S1.
Additional file 5: Figure S1 illustrates the hierarchical

structure between the 34 TFs contained in the MCDS.
The hierarchical structure was drawn based on general-
ized hierarchies using breadth-first search as described in
[34]. A previous study that was based on an earlier version
of RegulonDB identified 10 global regulators that regu-
late operons in at least three modules [35]. Two of them,
H-NS and CspA, do not belong to the LCC considered
here. Two other global TFs identified previously (RpoS
and RpoN) are no longer contained in the list of regula-
tors in the version of RegulonDB used here. Out of the six

http://apps.cytoscape.org/apps/mcds
http://apps.cytoscape.org/apps/mcds
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remaining genes, the five genes IHF, CRP, FNR, ArcA and
NarL are among the nine top genes in Table S1 and the
sixth gene OmpR is found a bit further below in the list.
Table S2 lists enriched KEGG and GO terms for the 34
genes in the MCDS of the E. coli gene regulatory network.
As expected, the strongest enrichment is found for pro-
cesses related to transcriptional regulation. The second
most enriched term is related to two-component systems
which enables E. coli to respond to changes arising from
different environmental conditions [36].

Cell-cycle specific S. cerevisiae GRN
Next, we retrieved regulatory interactions in S. cerevisiae
involving 122 TFs from the Yeast Promoter Atlas (YPA)
[30]. From this set of regulatory interactions, we extracted
a cell-cycle specific subnetwork of 302 genes that are
differentially expressed along the cell cycle of yeast as
described in [37]. The 302 genes already form the LCC
of this subnetwork. This set of genes is controlled by a
MDS including 12 TFs and a heuristic MCDS including
14 TFs and 3 target genes. The MDS and MCDS elements
are listed in Tables S3 and S4, respectively. Most of the
TFs identified to belong to theMDS andMCDS have been
identified before by experimental methods to be associ-
ated with the cell cycle [38]. Figure 3 shows the GRN of
the cell cycle activity of S. cerevisiae controlled by these 14
TFs. Table S5 lists enriched KEGG and GO terms for the
17 genes in this MCDS. As expected and similar to what

Fig. 3 Tightly interwoven network of 17 TFs and target genes that
organize the cell cycle of S. cerevisiae. Shown on the circumference of
the outer circle are 164 target genes that are differentially expressed
during the cell cycle. The inner circle consists of the 14 TFs from the
heuristic MCDS and of 123 other target genes that are regulated by at
least two of these TFs

we found for the E. coli network, the strongest enrich-
ment was found for processes related to transcriptional
regulation. 9 of the 17 genes (PMA2, YOX1, ACE2, SWI5,
SWI4, ORC1, STB1, FKH1, TID3) are annotated to cell-
cycle related GO terms, namely GO:0051329∼ interphase
of mitotic cell cycle and GO:0000278 ∼ mitotic cell cycle
and to the KEGG pathway sce04111:Cell cycle.

Pluripotency network in mouse
Next, we applied the MDS and MCDS methods to a
manually curated GRN of mouse ESCs that consists of
274 mouse genes/proteins and 574 molecular interac-
tions, stimulations and inhibitions [31]. We found that the
heuristic MCDS of the LSCC (80 genes) of this network
contains 29 TFs. The connectivity among these 29 TFs
is displayed in Fig. 4. The MCDS elements are listed in
Table S6, respectively. Among the set of regulators, 7 TFs
including Pou5f1, Nanog, Sox2, Stat3, Esrrb, Tcf3, Sall4
are in common with an experimentally validated regula-
tory network controlling pluripotency that consists of 15
experimentally validated TFs [39]. Such a result is unlikely
to be obtained by chance (hypergeometric test p-value =
0.004 ) in a network with 176 TFs.
Next, we evaluated the ability of the MCDS method

to detect a cooperative biologically functional backbone
within the entire network. For this, we examined the func-
tional similarity according to the Wang measure in the
GoSemSim R package [40], among the pairs of MCDS
nodes and compared this to the functional similarity of
gene pairs from the mouse network, see Additional file
5: Figure S2. This figure shows the cumulative distri-
bution of the functional similarity scores between pairs
of MCDS nodes of the mouse pluripotency network
(in red) compared to the similarity scores of all possi-
ble pairs between genes of this network (in black). The
Kolmogorov-Smirnov test revealed that the MCDS genes
were functionally significantly more homogeneous than
the randomly selected gene pairs of the whole network
with p-value of 6.41e-05. This hints at the ability of the
MCDS method to extract a functionally homogeneous
network backbone that is expected to have an impor-
tant role in maintaining the pluripotency state in early
developmental stages. Table S7 lists enriched KEGG and
GO terms for the 29 genes in the MCDS of the mouse
ESC pluripotency network. In this case, GO terms related
to developmental processes are stronger enriched than
GO terms related to transcriptional regulation. The set
of genes (Nanog, Cdx2, Esrrb, Pou5f1, Sox2 and TCl1)
annotated with GO:0019827 are responsible for stem cell
maintenance. The genes annotated with other GO terms
are mainly related to embryonic development and other
tissue-specific development.
To check the centrality significance of the MCDS genes

in the LSCC, we selected the same number of genes
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Fig. 4 Connectivity among TFs in the heuristic MCDS of the largest strongly connected component of a GRN for mouse ESCs. The red circle borders
mark the 7 TFs belonging to the set of master regulatory genes identified experimentally in [39]

as the size of MCDS with respect to degree, between-
ness and closeness centrality. The centralities were mea-
sured using the igraph package [41]. We considered only
outdegree nodes in the directed network. The results
show that most of the genes contained in the heuris-
tic MCDS are among the top nodes according to at
least one centrality (degree, betweenness, closeness), see
Fig. 5. Among them, the top nodes of the MCDS have
the highest overlap with the top nodes of the degree
centrality and the betweenness centrality. Six out of 10
connector nodes in MCDS belong to the top 29 nodes

with highest betweenness centrality according to Jaccard’s
index.

Human disease network
Finally, we applied the MCDS method to the LCC of ten
breast cancer network modules where each LCC covers
the whole module [9], see “Methods” section.
Table 1 lists the identified MDS and MCDS sets for the

nine out of ten modules. One module (grey) could not be
solved in appropriate time using ILP. In total, the MDS
and MCDS sets of the nine modules contain 68 and 70
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Fig. 5 Percentage overlap of the genes of the MDS and MCDS with the list of top genes (same size as MCDS) according to 3 centrality measures.
Shown is the percentage of genes in the MDS or MCDS that also belong to the list of top genes with respect to degree, betweenness and closeness
centrality
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Table 1 Identified genes in the MDS and MCDS (ILP) for 10 modules of the breast cancer network

Method Module Network size Result size Key driver genes

MCDS Black 41 5 ZNF254, KIAA1632, ZNF681, SEC24B, ZNF615

MDS 5 ZNF254, KIAA1632, ZNF681, SEC24B, ZNF615

MCDS Blue 247 3 FAM54A,ACAN, GLDC

MDS 2 ACAN, FAM54A

MCDS Brown 195 1 AATK

MDS 1 AATK

MCDS Green 110 18 ADPRHL2, AKT1, LTBR, MAN2C1, SH3GLB2, UTP14A, WDR55, MADD, B4GALT7, OS9,
MYO1C, CDC34, CDC37, RBM19,MARS, CCDC22, MAP2K2, DAP

MDS 17 ADPRHL2, LTBR, HMG20B, HK1, SH3GLB2, UTP14A, ELK1, MED6, B4GALT7, OS9,
MYO1C, CDC34, CLN3, INPPL1, DAP, PLXNB1, TIMM44

MCDS Magenta 26 4 ILF2, BGLAP, POGK, ATF6

MDS 4 ILF2, BGLAP, ATF6, VPS72

MCDS Pink 30 5 TCEB1, RAB2A, ZNF706, TMEM70, ATP6V1C1

MDS 5 TCEB1, RAB2A, TMEM70, TCEA1, ATP6V1C1

MCDS Red 93 13 SIX4, SP1, ATP1B1, PCGF1, SUMF2, EPN3, GTF3A, RAP1B, FHL3, RPS3A, ABCB8, GFAP,
ANXA5

MDS 13 LSM11, SIX4, PCGF1, SUMF2, EPN3, ZNRF2, GTF3A, RAP1B, FHL3, RPS3A, ABCB8, GFAP,
NAGA

MCDS Tur quoise 295 1 ABHD10

MDS 1 ABHD10

MCDS Yellow 132 20 CASP10, TSPAN2, ACSL6, HDAC11, SLC7A7, TRAF3IP3, GZMK, PAG1, LAP3 , HTRA4,
CD79B, SPI1, GCET2, WAS, DFNA5, LRRC33, FCRL2, LCP2, TCTEX1D1, FUT4

MDS 20 CASP10, TSPAN2, ACSL6, HDAC11, TLR9, SLC7A7, FAM129C, TRAF3IP3, HTRA4,SPI1,
CPXM2, GCET2, FASN, SLFN11, DFNA5, ETS1, PLS3, LCP2, TCTEX1D1, FUT4

The genes, whose protein products are known to be targeted by drugs, are marked in bold

genes, respectively. Then, we looked up the known anti-
cancer drugs that target any of the 70 proteins coded for
by these genes based on experimentally validated drug-
target databases as described in [9]. In the network with
1169 genes including 228 drug target genes, we found that
20 of the 70 drug target genes belong to the genes identi-
fied using the MCDS. This is statistically significant with
a p-value of 0.03 obtained from the hypergeometric test.
Sixteen out of the 68 proteins belonging to theMDS genes
are binding targets of at least one anti-breast cancer drug,
see Table 1.
Next, we compared the set size of the optimal and

heuristic solutions of MCDS and MDS for 9 out of the
10 modules. One module (grey) could not be solved in
appropriate time using ILP. Table S8 displays the density
and running time for the ILP solutions for the mentioned
modules implemented in Sage. The running time was
not correlated with the size or density of the networks.
Figure 6 shows that the optimal solutions of MCDS and
MDS contain almost the same number of genes for all
modules. In comparison, the heuristic MCDS solutions
(see, Table S9) contain 10–50 % more genes than the solu-
tions of the other two approaches. We also compared
the heuristic approach with the optimal solution in terms

of overlapped identified genes. Table 2 indicates that
according to Jaccard’s index the solutions overlap approx-
imately by about 60 % in a range from 40 to 75 %. Table
S9 shows the results obtained by the heuristic approach
of MCDS. Table S10 lists enriched GO BP terms and
KEGG pathways in the MCDS genes obtained by heuris-
tic approach. 12 genes (AKT1, RASSF5, WNT5B, ETS1,
PDGFA, TP53, SPI1, NFKB1, TCEB1, MYC, TGFB1,
DAPK1) belong to a known cancer pathway (p-value =
0.004). We hypothesize that the products of some of
the remaining identified MCDS protein coding genes may
open up new avenues for novel therapeutic drugs.

Directed random networks
To characterize the size of problems which can be solved
using the MCDS ILP formulation, multiple Erdos-Renyi
random digraphs were generated using the Java code
DigraphGenerator available in [42] with different sizes
and densities. We discarded the networks whose run-
ning times exceeded 2 days. Table S11 shows that the size
of MCDS reduces when the network density increases.
A low density for networks of size more than 110
nodes leads to a dramatic increase in the computation
time.
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Conclusions
Experimental identification of a set of key regulatory
genes among large sets of genes is very time-consuming
and costly. Therefore, computational methods such as
the ones presented here are helpful to condense and
shape a list of candidate genes to more promising can-
didates before planning and starting expensive experi-
mental work. Such follow-up works could e.g. validate
the regulatory roles of these genes by siRNA knockdown
experiments, by over-expressing genes e.g. under the con-
trol of the highly inducible GAL1 promoter in yeast, or
by CRISPR-type genome editing of promoter sequences
containing TF binding sites. We presented three novel
approaches (ILP formulation for the directed form of
MDS, ILP formulation for the directed form ofMCDS and
heuristic algorithm for the directed form of MCDS) to
identify driver genes and master regulatory genes respon-
sible for a particular cellular identity. In the notion of
network controllability, MDSs and MCDSs of biologicals
networks are likely enriched in key regulatory genes. The

Table 2 Overlapping genes between the heuristic and optimal
solutions of MCDS for modules of the breast cancer network. The
names of the modules were introduced in the original ref. [9]

Module Shared genes Count

black SEC24B, ZNF254, ZNF681 3

green UTP14A, LTBR, SH3GLB2,
OS9, CDC34, CDC37, AKT1 7

magenta BGLAP, ATF6, ILF2 3

pink ZNF706, TCEB1, TMEM70 3

red FHL3, SUMF2, RPS3A, PCGF1,
EPN3, GTF3A, ATP1B1 7

yellow FUT4, SPI1, DFNA5, CASP10, PAG1,
HDAC11, LCP2, TRAF3IP3, HTRA4, TSPAN2, GZMK 9

blue ACAN, FAM54A 2

The modules brown and turquoise have only 1 mcds gene and give 100 % overlap

results of these optimization problems can thus aid in
pruning the network to the potentially more important
nodes. We applied our method to the established GRNs
of E. coli and S. cerevisiae and also to a pluripotency net-
work of mouse ESC. The characteristics of these methods
appear to be well suited, on the one hand, to the topol-
ogy of approximately scale-free biological networks that
contain a small number of high degree hub nodes and,
on the other hand, to the observed tendency of these
hubs to interact with each other. We showed that the
networks can be controlled by a fairly small set of domi-
nating TFs. A notable number of knownmaster regulatory
genes are detected in the connected dominating set of the
components.
The number of driver genes obtained by the directed

form of MDS and MCDS depends on the connectivity
of the network. Networks with low connectivity yield a
higher number of driver genes compared to networks with
higher connectivity. The application of theMCDSmethod
to modules of a regulatory network for a breast cancer
network identified 70 key driver genes that could pos-
sibly drive the tumorigenesis process. Twenty of them
are already known targets of available cancer drugs. The
remaining dominating genesmay be suitable candidates as
news drug targets that may warrant further experimental
validation.

Additional files

Additional file 1: MDS. This file includes the implementation of ILP
formulation for MDS problem using glpk solver. (SAGE 1 kb)

Additional file 2: MCDS. This file includes the implementation of ILP
formulation for MCDS problem using glpk solver. (SAGE 4 kb)

Additional file 3: User guide. This guide contains instructions for users to
use the MDS and MCDS programs to find the optimal solution in a directed
network. It also includes two GRNs from breast cancer network modules
which can be used as input networks for ILP programs. (PDF 45 kb)
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