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ABSTRACT The Food Safety Modernization Act (FSMA) includes a time-to-harvest inter-
val following the application of noncompliant water to preharvest produce to allow for
microbial die-off. However, additional scientific evidence is needed to support this rule.
This study aimed to determine the impact of weather on the die-off rate of Escherichia
coli and Salmonella on spinach and lettuce under field conditions. Standardized, repli-
cated field trials were conducted in California, New York, and Spain over 2 years. Baby
spinach and lettuce were grown and inoculated with an �104-CFU/ml cocktail of E. coli
and attenuated Salmonella. Leaf samples were collected at 7 time points (0 to 96 h) fol-
lowing inoculation; E. coli and Salmonella were enumerated. The associations of die-off
with study design factors (location, produce type, and bacteria) and weather were as-
sessed using log-linear and biphasic segmented log-linear regression. A segmented log-
linear model best fit die-off on inoculated leaves in most cases, with a greater variation
in the segment 1 die-off rate across trials (�0.46 [95% confidence interval {95% CI},
�0.52, �0.41] to �6.99 [95% CI, �7.38, �6.59] log10 die-off/day) than in the segment
2 die-off rate (0.28 [95% CI, �0.20, 0.77] to �1.00 [95% CI, �1.16, �0.85] log10 die-off/
day). A lower relative humidity was associated with a faster segment 1 die-off and an
earlier breakpoint (the time when segment 1 die-off rate switches to the segment 2
rate). Relative humidity was also found to be associated with whether die-off would
comply with FSMA’s specified die-off rate of �0.5 log10 die-off/day.

IMPORTANCE The log-linear die-off rate proposed by FSMA is not always appropri-
ate, as the die-off rates of foodborne bacterial pathogens and specified agricultural
water quality indicator organisms appear to commonly follow a biphasic pattern
with an initial rapid decline followed by a period of tailing. While we observed sub-
stantial variation in the net culturable population levels of Salmonella and E. coli at
each time point, die-off rate and FSMA compliance (i.e., at least a 2 log10 die-off
over 4 days) appear to be impacted by produce type, bacteria, and weather; die-off
on lettuce tended to be faster than that on spinach, die-off of E. coli tended to be
faster than that of attenuated Salmonella, and die-off tended to become faster as
relative humidity decreased. Thus, the use of a single die-off rate for estimating
time-to-harvest intervals across different weather conditions, produce types, and
bacteria should be revised.
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As consumers increase consumption of fresh produce and as detection of illness
cases and contaminated products improve, there has been an increase in the

number of foodborne illnesses and recalls linked to produce (1). In particular, 51.7%
(n � 571) of produce-related outbreaks in developed countries have been linked to
leafy greens (2). In the United States, there have been 6 multistate Escherichia coli
O157:H7 outbreaks linked to leafy greens between 2017 and 2019, which have caused
a total of 497 illnesses and 6 deaths (3–8). There have also been 3 recalls in 2019 caused
by Salmonella contamination of leafy greens (9). Thus, there is a shared pressure among
industry, academia, and public health agencies to develop better risk management
strategies for contamination of leafy greens by foodborne pathogens, including E. coli
and Salmonella. Equally, there is a need to challenge the underlying assumptions of
existing one-size-fits-all interventions and standards for well-known hazards, such as
contaminated agricultural water.

A common route for transfer of pathogenic E. coli and Salmonella in the preharvest
produce environment is surface water (10–18); surface water has also been identified as
a potential cause of several outbreaks (4, 5, 19). Surface water can be applied to
preharvest produce as irrigation water, through agrichemical applications, and for frost
protection, among others. Therefore, as part of the Food Safety Modernization Act
(FSMA), the FDA proposed an agricultural water standard to define the microbial quality
required for any source of surface water applied to the harvestable potion of produce
(20). The standard states that 20 water samples must be collected from each water
source over a 2- to 4-year period prior to water application and tested for generic E. coli
level. The geometric mean E. coli level must be �126 CFU/100 ml, and the statistical
threshold value (i.e., the 90th percentile) must be �410 CFU/100 ml for those samples
(21). If the water does not meet this standard, growers can choose to (i) not use the
water source, (ii) treat the water prior to use, or (iii) wait up to 4 days from water
application to harvest to achieve microbial die-off at a level compliant with the
agricultural water standard. This assumes a �0.5 log10 die-off per day (22) (a negative
die-off rate indicates a reduction in bacterial counts, and a positive die-off rate indicates
an increase in bacterial counts). However, the die-off rate within the agricultural water
standard has been challenged due to lack of agreement in the literature (23).

Several studies have investigated the survival and die-off of attenuated enterohe-
morrhagic E. coli (EHEC) and nonpathogenic E. coli (24–41) and Salmonella (32, 35, 42)
on in-field leafy greens. For instance, Moyne et al. (37) irrigated in-field lettuce with
water contaminated with attenuated E. coli O157:H7 in 3 replicated trials in Salinas, CA,
and observed a 2- to 3-log10 reduction within 2 h of inoculation. In comparison, Chase
et al. (27), inoculated in-field lettuce with the same strains of attenuated E. coli O157:H7
in 2 replicated trials in Salinas, CA, and observed a net reduction of 2.6 and 3.2 log10

over 10 days. This indicates substantial variation in observed die-off between studies.
Thus, additional research is needed to better understand the drivers (e.g., weather) of
this variability in foodborne pathogen population dynamics on produce under field
conditions. Additionally, only a small number of studies have investigated die-off in
multiple climatic regions using a standardized protocol (25, 30). Without multiple
climatic regions, there is insufficient variability in weather conditions, making it difficult
to identify associations between weather and die-off. Furthermore, several studies
indicate that the log-linear die-off pattern included in the FSMA agricultural water rule
may not be appropriate to model in-field pathogen die-off (36, 40). The use of an
inappropriate die-off pattern can lead to an over- or underestimation of the actual net
die-off, which can lead to an underestimation of the bacterial counts on produce at the
time of harvest. Alternatively, it can require produce growers to extend the time
between water application and harvest more than is actually required. Lastly, more
information is needed on the difference between die-off of foodborne pathogens,
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indicator organisms, and surrogate organisms used to conduct such field studies, as the
majority of studies were conducted on E. coli die-off on lettuce; additional information
on die-off variability on different leafy green varieties is also needed.

Therefore, the current study aimed to help fill these knowledge gaps and develop
a better understanding of the population dynamics of surrogate organisms across three
climatic regions to investigate the impact of weather on net recovery of viable bacteria
over the proposed die-off interval. In particular, the objectives of this study were to (i)
quantify and compare the die-off rates and die-off patterns of E. coli and attenuated
Salmonella on in-field baby spinach and lettuce in replicated controlled trials in
California, New York, and Spain and (ii) identify weather factors associated with the
die-off rate and die-off pattern.

RESULTS
Descriptions of samples and weather. In total, 5,252 sample-level data points

were collected. However, only 4,900 of these sample-level data points were used in
statistical analyses due to crop loss in some trials (Table 1). Of those 4,900 data points
used in analyses, 1,260 were E. coli on lettuce, 1,260 were Salmonella on lettuce, 1,190
were E. coli on spinach, and 1,190 were Salmonella on spinach. Of the 4,900 data points,
1,680, 1,680, and 1,540 data points were from the California, New York, and Spain trials,
respectively. Summary statistics of the weather variables across all locations can be
found in Tables S1 to S3 in the supplemental material.

Descriptions of microbial counts from field data. The levels of Salmonella and E.
coli in the inoculum ranged from 3.68 to 5.84 log10 CFU/ml and 3.77 to 5.84 log10

CFU/ml in all trials, respectively. Due to the variations in inoculum microbial population
levels across trials, the association between 0-h population levels on the produce and
die-off rate was assessed, as the 0-h population level described the effectively applied

TABLE 1 Description of the experimental setup for each trial

Location Trial
Produce
type

Produce
varietya

No. of
plotsb

Date of
inoculation
(mo/day/yr)

Time from
planting to
inoculation (days)

Sample collection
times (h)c

No. of samples
collected per plot
per time point

Data included
in analysisd

California CAp Lettuce Tamarindo 4 7/19/2018 44 0, 24, 96 3 No
Spinach Acadia F1 4 7/12/2018 37 0, 24, 96 3 No

CA1 Lettuce Tamarindo 4 11/12/2018 38 0, 4, 8, 24, 48, 72, 96 5 Yes
Spinach Acadia F1 4 11/12/2018 38 0, 4, 8, 24, 48, 72, 96 5 Yes

CA2 Lettuce Tamarindo 4 12/18/2018 57 0, 4, 8, 24, 48, 72, 96 5 Yes
Spinach Acadia F1 4 12/18/2018 57 0, 4, 8, 24, 48, 72, 96 5 Yes

CA3 Lettuce Tamarindo 4 7/1/2019 59 0, 4, 8, 24, 48, 72, 96 5 Yes
Spinach Acadia F1 4 7/1/2019 59 0, 4, 8, 24, 48, 72, 96 5 Yes

New York NY1 Lettuce Tamarindo 3 8/27/2018 28 0, 4, 8, 24, 48, 72, 96 5 Yes
Spinach Seaside F1 3 8/27/2018 48 0, 4, 8, 24, 48, 72, 96 5 Yes

NY2 Lettuce Tamarindo 3 10/1/2018 38 0, 4, 8, 24, 48, 72, 96 5 Yes
Spinach Seaside F1 3 10/1/2018 38 0, 4, 8, 24, 48, 72, 96 5 Yes

NY3 Spinach Acadia F1 2 7/16/2018 31 0, 4, 8, 24, 48, 72, 96 5 Yes
Spinach Seaside F1 2 7/16/2018 31 0, 4, 8, 24, 48, 72, 96 5 Yes

NY4 Lettuce Tamarindo 4 7/1/2019 40 0, 4, 8, 24, 48, 72, 96 5 Yes
Spinach Seaside F1 4 7/1/2019 40 0, 4, 8, 24, 48, 72, 96 5 Yes

Spain SP1 Lettuce Tamarindo 4 5/29/2018 47 0, 4, 8, 24, 48, 72, 96 5 Yes
Spinach Acadia F1 4 5/29/2018 47 0, 4, 8, 24, 48, 72, 96 5 Yes

SP2 Lettuce Tamarindo 4 1/8/2019 91 0, 4, 8, 24, 48, 72, 96 5 Yes
Spinach Acadia F1 4 1/8/2019 91 0, 4, 8, 24 5 No

SP3 Lettuce Tamarindo 4 4/29/2019 77 0, 4, 8, 24, 48, 72, 96 5 Yes
Spinach Acadia F1 4 4/29/2019 77 0, 4, 8, 24, 48, 72, 96 5 Yes

SP4 Lettuce Tamarindo 2 7/1/2019 26 0, 4, 8, 24, 48, 72, 96 3 Yes
Spinach Acadia F1 4 7/1/2019 26 0, 4, 8, 24 3 No

aTamarindo lettuce and Acadia F1 spinach were supplied by Enza Zaden (Enkhuizen, Netherlands). Tamarindo is red leaf lettuce. Tamarindo and Acadia F1 are ideal
for baby leaf. Seaside F1 spinach was supplied by Harris Seeds (Rochester, NY) and is ideal for baby leaf.

bThe number of plots planted per trial varied to balance available resources and the need for additional trials in each location.
cSample collection times are reported in hours past inoculation. For some trials, a lack of collection of samples at all seven time points was caused by crop loss.
dTrials or produce types in a trial where samples were not collected at all time points were excluded from data analysis. This was due to crop loss.
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inoculum concentration levels. The inoculum population levels were not used directly
due to the possibility of slight differences in inoculation rate achieved with the
backpack sprayer across locations or trials, even though a standard protocol was used.
To do so, each 0-h population level was categorized as low (i.e., �4.8 log10 CFU/100 g
produce) or high (i.e., �4.8 log10 CFU/100 g produce); the cutoff value was set so there
was an approximately equal number of data points in the low and high starting
population level categories. Salmonella and E. coli were modeled separately. There was
no significant difference in die-off rates between the starting population level groups
for Salmonella (P � 0.374) or E. coli (P � 0.678). The range in total E. coli reduction over
4 days was 3.48 to 4.40 log10 CFU/100 g produce in the California trials, 2.29 to 4.21
log10 CFU/100 g produce in the New York trials, and 2.63 to 4.97 log10 CFU/100 g
produce in the Spain trials (see Fig. S1 in the supplemental material).

In trial NY3, microbial die-offs on two varieties of spinach, Harris Seeds Seaside F1
(new variety) and Enza Zaden Acadia F1 (original variety), were compared; the original
variety, which was used in the California and Spain trials, showed poor stand germi-
nation under New York conditions. No significant differences in the E. coli and Salmo-
nella counts via a Wilcoxon rank sum test (P � 0.801) or in log-linear microbial die-off
(P � 0.988) were observed between the two spinach varieties. Thus, the new variety of
spinach was utilized in the remainder of the New York trials, and data for the new
variety of spinach were combined with those for the original spinach variety for all
analyses.

Several control samples (i.e., water used for irrigation, soil, or produce prior to
inoculation) were presumptively positive (i.e., blue colonies on ECC�R or mauve
colonies on SC�R [see Materials and Methods for medium compositions] for E. coli and
Salmonella, respectively) for the presence of naturally occurring rifampin-resistant E. coli
and Salmonella in the New York trials. In trial NY3, naturally occurring rifampin-resistant
E. coli and Salmonella were isolated from 1/1 irrigation water sample used in spinach
growth. However, no further testing was performed, as no colonies indicative of E. coli
or Salmonella were isolated from soil or produce samples. In trial NY1, naturally
occurring rifampin-resistant E. coli was identified in 3/6 soil samples, and naturally
occurring rifampin-resistant Salmonella was found in 2/6 soil samples and in 1/1
irrigation water sample. No further testing was performed, as Salmonella was not
isolated from the produce samples. However, 1/1 spinach sample was positive for
rifampin-resistant E. coli. To determine if the contamination of spinach samples altered
the population levels of E. coli on experimental spinach samples, the E. coli strain
identification PCR protocol, followed by PCR and subsequent sequencing of the clpX
gene, was performed on 24 randomly selected (i.e., using a random-number generator)
E. coli isolates from produce samples in this trial. PCR and subsequent sequencing on
the clpX gene were performed as previously described by Walk et al. (43) and Weller et
al. (40). If the E. coli strain identification PCR banding pattern and clpX allelic type of the
24 isolates did not match one of the inoculum strains, there was 95% confidence the
percentage of colonies of naturally occurring rifampin-resistant E. coli was below 12%.
This threshold was selected as there is indication that the uncertainty threshold of a
typical plate count is approximately 12% (44). Zero of the 24 isolates tested from
spinach samples in trial NY1 matched the E. coli strain identification PCR banding
pattern and clpX allelic type of the inoculum strains. This indicated that the presence of
naturally occurring rifampin-resistant E. coli on spinach did not impact the results of the
plate counts by more than would be expected in the typical uncertainty of the method
at a 95% confidence level. In trial NY2, naturally occurring rifampin-resistant E. coli and
Salmonella were isolated from the 1 irrigation water sample. Naturally occurring
rifampin-resistant Salmonella was also isolated from 6/6 soil samples. To account for the
presence of rifampin-resistant E. coli on the spinach sample collected in trial NY1,
enumeration of naturally occurring E. coli and Salmonella in 1 spinach sample and 1
lettuce sample was also performed in trials NY3 and NY4. Both produce samples were
negative for naturally occurring rifampin-resistant E. coli and Salmonella by enumera-
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tion, with a limit of detection of 0.04 CFU per gram of produce. No control samples
were positive for rifampin-resistant E. coli or Salmonella in trial NY4, California, or Spain.

Variation in microbial die-off across trials. While the FSMA die-off rate (i.e., �0.5
log10 die-off/day) assumes a log-linear die-off pattern of foodborne pathogens and
indicator organisms on in-field fresh produce, visual examination of the data and results
from previous studies (36, 40) indicated that a biphasic pattern may be more appro-
priate in most cases. As such, initially both segmented log-linear and log-linear models
were fit to the data from each trial (data for both produce types and bacteria were
combined in these trial-level models [Fig. 1 and 2]). The overall log-linear die-off rate
across all trials, produce types, and bacteria was �0.60 (95% confidence interval [CI],
�0.63, �0.58) log10/day. However, when comparing the log-linear die-off among trials,
there was substantial variation in the die-off rate, which ranged from �0.20 (95% CI,
�0.27, �0.13) log10/day in trial NY1 to �1.01 (95% CI, �1.06, �0.95) log10/day in trial
SP1 (Fig. 1). The overall segmented log-linear die-off rate across all trials was �4.41
(95% CI, �4.69, �4.12) log10/day for 0 to 10 h and �0.3 (95% CI, �0.33, �0.26)
log10/day for 10 to 96 h. When comparing die-off among trials, the segment 1 die-off
rate ranged from �0.46 (95% CI, �0.52, �0.41) log10/day in trial CA2 to �6.99 (95% CI,
�7.38, �6.59) log10/day in trial CA1. The breakpoints ranged from 2.5 h in trial NY1 to
3.48 days in trial NY2, with 9 out of 11 trials having a breakpoint at 12 h or earlier. The
segment 2 die-off rate was less variable than the segment 1 die-off rate, in that it
ranged from 0.28 (95% CI, �0.20, 0.77) log10/day in trial NY2 to �1.00 (95% CI, �1.16,
�0.85) log10/day in trial CA2 (Fig. 2). The die-off rates on the plot level followed the
same overall trend as those on the trial level; however, there was substantial variation
in die-off between plots from a single trial in some cases (Table 2). Therefore, the
remainder of the analyses were conducted on the plot level to account for this
variation; trial was included as a random affect.

Associations between the die-off pattern outcome, study design factors (pro-
duce type, bacteria, and location), and weather. Log-linear and segmented biphasic
log-linear regression models were fit to the data from each plot (e.g., Salmonella
population levels from the second lettuce plot in the first trial in Spain or E. coli

FIG 1 Log-linear die-off by trial, expressed as log10 CFU die-off/day. Black point indicates the mean die-off for data
across all trials, yellow points indicate die-off for New York trials, blue points indicate die-off for California trials, and
pink points indicate die-off for Spain trials. Error bars represent the 95% confidence interval for the mean die-off
rate for the corresponding trial(s). Calculation of the die-off rates at the trial level shown here was conducted on
all data from a trial (i.e., both produce types and bacteria and across all plots combined) to allow visual examination
of data; all further analyses were performed on the plot level to better represent variations in die-off rates within
trials.
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population levels from the fourth spinach plot in trial NY4). Model fits were compared
for each plot to determine superior fit. Based on the threshold of �10-larger BIC score
for a segmented model to be considered superior, there was log-linear die-off on 33
plots (24%) and a segmented log-linear die-off on 107 plots (76%). The results of 96-h

FIG 2 Segmented log-linear die-off by trial. (A) Segment 1 die-off rate in log10 CFU die-off/day; (B) segment 2 die-off rate in log10 CFU die-off/day; (C) breakpoint
between segment 1 and segment 2 die-off. In panels A and B, black points indicate the mean die-off rate for data across all trials, yellow points indicate die-off
for New York trials, blue points indicate die-off for California trials, and pink points indicate die-off for Spain trials. Error bars for segment 1 and segment 2 die-off
rates represent the 95% confidence intervals for the mean die-off rates from the corresponding trial(s). Calculation of the die-off rates at the trial level shown
here was conducted on all data from a trial (i.e., both produce types and bacteria and across all plots combined) to allow visual examination of data; all further
analyses were performed on the plot level to better represent variations in die-off rates within trials.
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univariable analysis and principal-component analysis (PCA) can be found in Table S4
in the supplemental material. For the 96-h multivariable regression, the only predictive
factors retained in the model were average dew point (°C) and relative humidity range
(%). A 1°C increase in average dew point was associated with a �0.35 (95% CI, �0.37,
�0.32) change in log odds of segmented versus log-linear (baseline) die-off pattern,
and a 1% increase in relative humidity range was associated with a 0.09 (95% CI, 0.08,
0.09) change in log odds of following a segmented die-off distribution. No study design
factors were retained in the model (Table 3). For the 96-h die-off pattern classification
tree, only the maximum change in dew point from one hour to the next (i.e., maximum
dew point change rate, °C/h) was retained (Fig. 3). Based on internal validation of this
classification tree, the sensitivity, specificity, positive predictive value, and negative
predictive value were 0.64, 0.97, 0.88, and 0.90, respectively.

Associations between outcomes describing segmented die-off, study design
factors, and weather. Associations between segmented model outcomes and predic-
tors describing study design and weather were assessed. We hypothesized that the
associations between study design factors, weather, and individual segmented die-off
outcomes would differ, so each of the following outcomes was modeled separately: (i)
segment 1 die-off rate (seg1), (ii) segment 1 die-off rate standard error (se1), (iii)
segment 2 die-off rate (seg2), (iv) segment 2 die-off rate standard error (se2), and (v)
breakpoint between segment 1 and segment 2 (bp) (Table 4). For each of these
statistics, we report the outcomes as interquartile ranges (IQR) (i.e., the middle 50% of
observations), because the interquartile ranges were less impacted by outliers than the

TABLE 2 Summary statistics for die-off outcome variables from the log-linear and segmented log-linear regression, separated by produce
type and bacterium

Bacterium and produce type Variablea Minimum Q1b Median Q3b Maximum Mean SDc

E. coli
Spinach Linear die-off �1.16 �0.93 �0.80 �0.62 �0.07 �0.72 0.29

Linear SE 0.04 0.06 0.09 0.12 0.14 0.09 0.03
seg1 �10.42 �7.32 �4.93 �3.45 �0.14 �5.07 2.80
se1 0.07 0.48 0.64 0.89 2.48 0.69 0.46
seg2 �0.75 �0.56 �0.44 �0.17 15.80 0.13 2.79
se2 0.03 0.06 0.09 0.12 3.45 0.21 0.58
Bp 0.17 0.38 0.45 0.54 3.92 0.77 0.95

Lettuce Linear die-off �1.04 �0.94 �0.79 �0.67 �0.33 �0.77 0.21
Linear SE 0.04 0.09 0.11 0.13 0.20 0.11 0.04
seg1 �16.52 �9.04 �6.66 �5.52 �0.47 �7.07 3.41
se1 0.06 0.48 0.66 1.57 4.12 1.07 0.94
seg2 �1.94 �0.55 �0.22 �0.13 3.04 �0.24 0.70
se2 0.03 0.06 0.09 0.13 0.95 0.14 0.18
Bp 0.11 0.25 0.38 0.48 3.71 0.68 0.98

Salmonella
Spinach Linear die-off �1.04 �0.72 �0.56 �0.15 0.40 �0.45 0.38

Linear SE 0.04 0.07 0.08 0.09 0.14 0.08 0.02
seg1 �7.52 �3.88 �2.77 �0.18 0.97 �2.37 2.10
se1 0.04 0.25 0.36 0.54 1.41 0.41 0.29
seg2 �1.16 �0.40 �0.28 �0.07 1.81 �0.20 0.55
se2 0.05 0.08 0.10 0.13 0.62 0.12 0.09
Bp 0.21 0.50 0.87 1.20 3.56 1.09 0.86

Lettuce Linear die-off �1.00 �0.70 �0.56 �0.42 0.07 �0.55 0.24
Linear SE 0.03 0.06 0.09 0.11 0.13 0.08 0.03
seg1 �9.70 �5.32 �4.63 �0.93 0.33 �3.71 2.62
se1 0.05 0.24 0.43 0.72 4.32 0.64 0.78
seg2 �7.30 �0.43 �0.25 �0.08 0.45 �0.48 1.21
seg2 0.04 0.06 0.08 0.11 2.56 0.16 0.42
Bp 0.11 0.45 0.52 1.00 3.89 0.86 0.84

aDie-off rates were calculated on the plot level. seg1, segment 1 die-off rate (log10 die-off/day); se1, segment 1 die-off rate standard error (log10 die-off/day);
seg2, segment 2 die-off rate (log10 die-off/day); se2, segment 2 die-off rate standard error (log10 die-off/day); bp, breakpoint between segment 1 and segment 2
(days). Linear die-off and linear SE denote the log-linear die-off rate (log10 die-off/day) and the log-linear die-off rate standard error (log10 die-off/day).

bQ1, first quartile, i.e., 25% of observations are below and 75% of observations are above this value; Q3, third quartile, i.e., 75% of observations are below and 25% of
observations are above this value.

cSD, standard deviation in the respective variable across all plots.
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standard deviation; the mean and standard deviation are reported in Table 2. Linear
die-off rate and linear die-off rate standard error are also reported in Table 2. Similarly,
we report all die-off rates per day rather than per hour to allow comparison of results
within the study and to available literature. However, for plots where a steep seg1
die-off occurred over a few hours before the bp (breakpoint) and leveling off in seg2,
the die-off rate represents the rate that would occur over a whole day. A die-off rate
expressed per day can easily be converted to a die-off per hour to further aid
interpretation. For instance, a seg1 of �10 log10/day is equivalent to �10 log10/24 h �

�0.41 log10/h. The results of 96-h, 24-h, and 8-h univariate analysis can be found in
Tables S4, S5, and S6 in the supplemental material, respectively.

The IQR of seg1 (log10 change/day) was from �7.32 to �3.45 for E. coli on spinach,
�9.04 to �5.52 for E. coli on lettuce, �3.88 to �0.18 for Salmonella on spinach, and

TABLE 3 Final mixed-effects multivariable logistic regression models displaying the
relationship of the categorical die-off outcomes with the study design factors and 96-h
weather factorsa

Outcomeb Factor Log odds 95% CI

Die-off Pattern Intercept 2.02 (1.63, 2.41)
Avg dew point (°C) �0.35 (�0.37, �0.32)
Relative humidity range (%) 0.09 (0.08, 0.09)

FSMA Compliance Intercept 17.88 (17.06, 18.70)
Produce type (spinach)c �1.63 (�1.74, �1.51)
Bacterium (Salmonella)c �3.02 (�3.14, �2.89)
Avg relative humidity (%/10) �1.88 (�1.98, �1.77)

aTrial was included in the models as a random effect. For the die-off pattern model, the variance and
standard deviation for the trial random effect were 1.291 and 1.136, respectively. For the FSMA compliance
model, the variance and standard deviation for the trial random effect were 2.343 and 1.531, respectively.

bDie-off pattern indicates if a biphasic segmented log-linear fit is superior to a log-linear fit for each plot and
bacterium combination. The superior model fit for each plot and bacterium subset was determined such
that for the segmented fit to be superior, its Bayesian information criterion (BIC) value must be 10 or more
than the BIC value of the log-linear model. FSMA compliance indicates if the observed segmented die-off in
each bacterium-plot combination is compliant with the Food Safety Modernization Act (FSMA) (i.e., �2
log10 overall die-off from 0 h to 96 h).

cThe baseline for produce type is lettuce, and the baseline for bacterium is E. coli.

FIG 3 Classification tree displaying the relationship between the die-off pattern outcome (i.e., “linear
die-off” versus “segmented die-off.” denoting the best fit of the log-linear versus segmented log-linear
model, respectively) and maximum dew point change rate (i.e., maximum change in dew point from one
hour to the next in °C/h) for the experimental plots (n � 140, representing both produce types and
bacteria). The superior model fit for each plot and bacterium subset was determined such that for the
segmented fit to be superior, its Bayesian information criterion (BIC) value must be 10 or more than the
BIC value of the log-linear model. The classification tree was fit using the rpart function in R; tree pruning
was performed to avoid overfitting. At the end of each terminal node, the superior die-off pattern is
designated. The first number below the designated die-off pattern indicates the probability that the
segmented log-linear model is superior, and the second number indicates the percentage of plots that
fall in that node.
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�5.32 to �0.93 for Salmonella on lettuce (Table 2). While there was seg1 die-off in the
majority of plots, there was seg1 growth in 7.9% (11/140) of plots. For 96-h multivari-
able regression of seg1, produce type, bacteria, and relative humidity range (%) were
retained in the model, such that Salmonella had slower seg1 die-off rates than E. coli,

TABLE 4 Definitions of die-off outcomes and predictor variables (study design and weather) considered in statistical analyses at the plot
levela

Variable
typeb Notation Definition Unit

O seg1 Segment 1 die-off rate Log10 die-off/day
se1 Segment 1 die-off rate standard error Log10 die-off/day
seg2 Segment 2 die-off rate Log10 die-off/day
se2 Segment 2 die-off rate standard error Log10 die-off/day
bp Breakpoint between segment 1 and segment 2 Days
Die-off pattern Indicates if a biphasic segmented log-linear fit is superior to a log-

linear fit for each plot and bacterium combination; the superior
model fit for each plot and bacterium subset was determined
such that for the segmented fit to be superior, its BIC value must
be 10 or more than the BIC value of the log-linear model

Log-linear (baseline)/
segmented

FSMA compliance Indicates if the observed segmented die-off in each bacterium-plot
combination is compliant with the FSMA (i.e., �2 log10 overall
die-off from 0 h to 96h)

Not compliant (baseline)/
compliant

S Produce type Designates spinach or lettuce; lettuce is the baseline in all regression
models

Lettuce (baseline)/
spinach

Bacterium Designates Salmonella or E. coli; E. coli is the baseline in all
regression models.

E. coli (baseline)/
Salmonella

Location Geographic location where the experiment was conducted California (baseline)/
New York/Spain

W Minimum temp Minimum temp during a time period of interest °C
Maximum temperature Maximum temp during a time period of interest °C
Avg temp Avg temp during a time period of interest °C
Temp range Maximum minus minimum temp during a time period of interest °C
Maximum temp change rate Maximum change in temp from one hour to the next during a time

period of interest
°C/h

Minimum relative humidity Minimum relative humidity during a time period of interest %
Maximum relative humidity Maximum relative humidity during a time period of interest %
Avg relative humidity Avg relative humidity during a time period of interest %
Relative humidity range Maximum minus minimum relative humidity during a time period of

interest
%

Maximum relative humidity
change rate

Maximum change in relative humidity from one hour to the next
during a time period of interest

%/h

Maximum solar radiationc Maximum solar radiation during a time period of interest kW/m2

Avg solar radiationc Avg solar radiation during a time period of interest kW/m2

Maximum solar radiation
change ratec

Indicates the maximum change in solar radiation from one hour to
the next during a time period of interest

kW/m2·h

Precipitation Designates if there was precipitation during a time period of interest Yes/no
Minimum wind speed Minimum wind speed during a time period of interest m/s
Maximum wind speed Maximum wind speed during a time period of interest m/s
Avg. wind speed Avg wind speed during a time period of interest m/s
Wind speed range Maximum minus minimum wind speed during a time period of

interest
m/s

Maximum wind speed
change rate

Maximum change in wind speed from one hour to the next during a
time period of interest

m/s · h

Minimum dew point Minimum dew point during a time period of interest °C
Maximum dew point Maximum dew point during a time period of interest °C
Avg. dew point Avg dew point during a time period of interest °C
Dew point range Maximum minus minimum dew point during a time period of

interest
°C

Maximum dew point
change rate

Maximum change in dew point from one hour to the next during a
time period of interest

°C/h

aWeather variable sets were created for three specified time periods of interest (i.e., 8 h, 24 h, and 96 h) following inoculation, and one set was used at a time in
analysis.

bO, outcome; S, study design; W, weather.
cSolar radiation variables were not created for the 8-h weather variables due to missing data.
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seg1 die-off on spinach was slower than on lettuce, and as the relative humidity range
increased, seg1 die-off was faster (Table 5; see Fig. S2 in the supplemental material). In
addition to 96-h regression models, 24-h and 8-h models were also fit (see Tables S7
and S8 in the supplemental material). In the 8-h and 24-h models, produce type and
bacteria were retained, similar to the 96-h model. However, minimum relative humidity
(%) and average relative humidity (%) were retained in the 24-h and 8-h models,
respectively, in place of relative humidity range. Relative humidity range, minimum
relative humidity, and average relative humidity are strongly correlated, indicating that
the 96-h, 24-h and 8-h models are similar and that humidity during the first 8 or 24 h
after irrigation may be able to predict die-off and the necessary irrigation-to-harvest
interval. Additionally, bacteria and minimum relative humidity were retained in the
96-h seg1 regression tree (Fig. 4). Therefore, a similar pattern was seen for the results
of multivariable regression and the regression tree for seg1 die-off rate.

The IQR of se1 (log10 change/day) was from 0.48 to 0.89 for E. coli on spinach, 0.48
to 1.57 for E. coli on lettuce, 0.25 to 0.54 for Salmonella on spinach, and 0.24 to 0.72 for
Salmonella on lettuce (Table 2). For 96-h multivariable regression of the se1, produce
type, bacteria, and maximum temperature (°C) were retained in the model (Table 5; see
Fig. S3 in the supplemental material). The model showed that there was a greater se1
for E. coli than for Salmonella, that there was a greater se1 for lettuce than for spinach,
and that as the maximum temperature increased, the se1 increased. The same variables
(i.e., produce type, bacteria, and maximum temperature) were retained in the 8-h and
24-h multivariable models (Tables S7 and S8). For the 96-h se1 regression tree,
maximum dew point (°C) and produce type were retained in the model (Fig. 5).
However, maximum dew point and maximum temperature were strongly correlated

TABLE 5 Final mixed-effects multivariable linear regression models displaying the
relationship of the continuous segmented die-off outcomes with the study design factors
and 96-h weather factorsa

Outcomeb Factorc Coefficientd 95% CI

seg1 Intercept �1.25 (�3.34, 0.87)
Produce type (spinach) 1.77 (1.09, 2.43)
Bacterium (Salmonella) 3.04 (2.40, 3.68)
Relative humidity range (%) �0.11 (�0.15, �0.07)

se1 Intercept �0.28 (�0.36, �0.19)
Produce type (spinach) �0.37 (�0.39, �0.36)
Bacterium (Salmonella) �0.35 (�0.37, �0.34)
Maximum temp (oC) 0.05 (0.05, 0.06)

seg2 Intercept 6.22 (5.88, 6.56)
Maximum relative humidity (%) �0.06 (�0.06, �0.05)
Maximum relative humidity change rate (%/h)e �0.06 (�0.06, �0.05)

se2 Intercept 0.43 (0.41, 0.45)
Relative humidity range (%) �0.01 (�0.01, 0.00)

bp Intercept 2.22 (2.16, 2.28)
Bacterium (Salmonella) 0.25 (0.23, 0.27)
Relative humidity range (%) �0.03 (�0.03, �0.03)

aTrial was included in the models as a random effect. For the segment 1 die-off rate model, the residual
variance and intercept for the random effects are 3.713 and 0.899, respectively. For the segment 1 die-off
rate standard error model, the residual variance and intercept for the random effects are 0.331 and 0.093,
respectively. For the segment 2 die-off rate model, the residual variance and intercept for the random
effects are 2.245 and 0.015, respectively. For the segment 2 die-off rate standard error model, the residual
variance and intercept for the random effects are 0.123 and 0.006, respectively. For the breakpoint model,
the residual variance and intercept for the random effects are 0.543 and 0.078, respectively.

bseg1, segment 1 die-off rate (log10 die-off/day); se1, segment 1 die-off rate standard error (log10 die-off/
day); seg2, segment 2 die-off rate (log10 die-off/day); se2, segment 2 die-off rate standard error (log10 die-
off/day); bp, breakpoint between segment 1 and segment 2 (days).

cThe baseline produce type is lettuce, and the baseline bacterium is E. coli.
dCoefficients were estimated using multivariable mixed-effects linear regression via the lmer function in R.
eMaximum change in relative humidity from one hour to the next.
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(Spearman’s rank coefficient � 0.80), again providing support for similarity between
results of the two modeling approaches. We hypothesized that the increase in variation
in die-off was due to more stressful conditions that occur at higher temperatures or
dew points. In light of such conditions, an increased variability among die-off rates
seems logical, assuming variable resistance across subpopulations of E. coli or Salmo-
nella present on the spinach or lettuce.

The IQR of seg2 (log10 change/day) was from �0.56 to �0.17 for E. coli on spinach,
�0.55 to �0.13 for E. coli on lettuce, �0.40 to �0.07 for Salmonella on spinach, and
�0.43 to �0.08 for Salmonella on lettuce (Table 2). While there was seg2 die-off in the
majority of plots, there was seg2 growth in 16.4% (23/140) of plots. For 96-h seg2
multivariable regression, maximum relative humidity (%) and maximum relative hu-
midity change rate (%/h) were retained in the model (Table 5). The 24-h and 8-h seg2
regression models do not match the 96-h regression model. For the 24-h seg2 model,
temperature range (°C) and maximum wind speed (m/s) were retained in the model
(Table S7). For the 8-h seg2 model, maximum relative humidity change rate (%/h) and

FIG 4 Regression tree displaying the relationship of the segment 1 die-off rate (seg1, log10 CFU/day)
outcome with bacteria and minimum relative humidity (%) for the experimental plots (n � 140, repre-
senting both produce types and bacteria). The regression tree was fit using the rpart function in R; tree
pruning was performed to avoid overfitting. The first number listed at each terminal node is the mean
segment 1 die-off rate (log10 CFU/day) for that node, the next number (i.e., N�) designates the number
of plots that fall in that node, and the final number designates the percentage of plots that fall in that
node.

FIG 5 Regression tree displaying the relationship of the segment 1 die-off rate standard error (se1, log10

CFU/day) outcome with maximum dew point (°C) and produce type for the experimental plots (n � 140,
representing both produce types and bacteria). The regression tree was fit using the rpart function in R;
tree pruning was performed to avoid overfitting. The first number listed at each terminal node is the
mean segment 1 die-off rate standard error (log10 CFU/day) for that node, the next number (i.e., N�)
designates the number of plots that fall in that node, and the final number designates the percentage
of plots that fall in that node.
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average wind speed (m/s) were retained in the model (Table S8). However, due to the
small variation in seg2 die-off rates across plots, the effect size of these variables was
small. Additionally, no variables were retained in the 96-h seg2 regression tree.

The IQR of se2 (log10 change/day) was from 0.06 to 0.12 for E. coli on spinach, 0.06
to 0.13 for E. coli on lettuce, 0.08 to 0.13 for Salmonella on spinach, and 0.06 to 0.11 for
Salmonella on lettuce (Table 2). For the 96-h multivariable se2 regression model,
relative humidity range (%) was retained (Table 5). For the 8-h and 24-h multivariable
se2 models, maximum relative humidity change rate (%/h) was retained (Tables S7 and
S8). However, the effect sizes of the weather variables on se2 were substantially smaller
than those on se1. Additionally, no variables were retained in the 96-h se2 regression
tree.

The IQR of bp (days) was from 0.38 to 0.54 day for E. coli on spinach, 0.25 to 0.48 day
for E. coli on lettuce, 0.50 to 1.20 day for Salmonella on spinach, and 0.45 to 1.00 day for
Salmonella on lettuce (Table 2). For the 96-h bp multivariable regression model,
bacteria and relative humidity range were retained in the model, such that Salmonella
was associated with a later bp than E. coli and an increase in relative humidity range
was associated with an earlier bp (Table 5; see Fig. S4 in the supplemental material).
Minimum relative humidity and average relative humidity were retained in the 24-h
(Table S7) and 8-h (Table S8) models instead of relative humidity range, respectively,
which were the same variables important for seg1 for each time frame (i.e., 8-h, 24-h,
and 96-h time frames). This may indicate that as conditions become more stressful, the
more sensitive subpopulation dies off more rapidly and the underlying slow die-off of
the more resistant subpopulation becomes apparent at an earlier time following
inoculation. However, the fit for the bp regression models was poor due to a nonlinear
relationship (i.e., at low relative humidity ranges the breakpoint appears to follow no
pattern, and at higher relative humidity ranges the breakpoint tends to occur earlier
[Fig. S3]). This indicates that there were likely additional variables impacting bp. For the
96-h bp regression tree, minimum relative humidity, average relative humidity, and
bacteria were retained (Fig. 6). The segment 1 and segment 2 coefficients of variation
were also calculated for each plot, and regression models and regression trees were fit.
However, they did not differ across plots, so the model results are not discussed here.

Additionally, the similarity in weather variables retained and the similar regression
coefficients in the 8-h, 24-h, and 96-h regression models for seg1, se1, and bp indicate
that 8-h or 24-h weather variables can be used instead of 96-h weather variables. This

FIG 6 Regression tree displaying the relationship of the outcome denoting the breakpoint (bp, days)
between segment 1 and segment 2 with minimum relative humidity (%), average relative humidity, and
bacteria for the experimental plots (n � 140, representing both produce types and bacteria). The
regression tree was fit using the rpart function in R; tree pruning was performed to avoid overfitting. The
first number listed at each terminal node is the mean breakpoint (days) for that node, the next number
(i.e., N�) designates the number of plots that fall in that node, and the final number designates the
percentage of plots that fall in that node.
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will allow produce growers to use weather data in real time to plan time-to-harvest
intervals.

Associations between the FSMA compliance outcome, study design factors, and
weather. FSMA compliance was designated if the segmented die-off rate calculated for
each plot would achieve at least a 2-log10 reduction in 4 days (i.e., assumes a 0.5-log10/
day reduction as specified in FSMA [Table 4]). In total, 75% (105/140) of plots were
compliant with FSMA. Additionally, 79% (27/34) of E. coli on spinach plots, 97% (35/36)
of E. coli on lettuce plots, 56% of Salmonella on spinach plots, and 67% of Salmonella
on lettuce plots were compliant with FSMA. According to 96-h multivariable logistic
regression, produce type, bacteria, and average relative humidity (%) were retained
(Table 3). Spinach was associated with a decrease in log odds of compliance compared
to lettuce (P � 0.001), Salmonella was associated with a decrease in log odds of
compliance compared to E. coli (P � 0.017), and a decrease in average relative humidity
was associated with an increase in log odds of compliance (P � 0.002). Minimum
relative humidity (%) and bacteria were retained in the 96-h FSMA compliance classi-
fication tree (Fig. 7). Internal validation indicated that the sensitivity, specificity, positive
predictive value, and negative predictive value for this classification tree were 0.69,
0.96, 0.86, and 0.90, respectively.

Comparison of the survival of E. coli and Salmonella inoculum strains. PCR of E.
coli isolates was performed in each study location to investigate differential strain
survival. For E. coli, n � 1,920 isolates from California, n � 4,700 isolates from New York,
and n � 1,313 isolates from Spain were tested. According to multinomial regression,
there were no obvious trends regarding the associations between time, produce type,
and the survival of the 3 inoculum strains across trials in the 3 study locations (see
Tables S9 to S11 in the supplemental material). For instance, in New York, there were
significantly higher odds of isolating TVS 354 compared to TVS 353 as time increased;
however, the effect size was small (odds ratio [OR] � 1.004 [95% CI, 1.002, 1.006]). There
were also significantly higher odds of isolating strain TVS 355 compared to TVS 353 in
trial NY2 (P � 0.001), with an OR of 1.858 (95% CI, 1.417, 2.435). There were no other
significant differences between strains. Produce type was not retained in the model
(Table S9). Similar inconsistencies were seen in California (Table S10) and Spain (Table
S11).

Identification of Salmonella strains was performed in each study location. For
Salmonella, n � 1,910 isolates from California, n � 640 isolates from New York, and

FIG 7 Classification tree displaying the relationship of the compliance with FSMA outcome with
minimum relative humidity (%) and bacteria for the experimental plots (n � 140, representing both
produce types and bacteria). Compliance was designated if the segmented die-off calculated for an
experimental plot would achieve at least a 2 log10 reduction in 4 days (i.e., assumes a 0.5 log10 die-off/day
as specified in FSMA). The classification tree was using the rpart function in R; tree pruning was
performed to avoid overfitting. At the end of each terminal node, whether the experimental die-off was
FSMA compliant is designated. The first number below the FSMA compliance designation is the
probability of being compliant, and the second number indicates the percentage of plots that fall in that
node.
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n � 640 isolates from Spain were tested. According to mixed-effects logistic regression
for New York, there was an interaction between produce type and time (P � 0.001);
therefore, separate models were fit for spinach and lettuce for interpretation of results.
For New York spinach, the odds of isolating attPTVS 355 compared to attPTVS 337
significantly decreased with time (OR � 0.973 [95% CI, 0.957, 0.987]; P � 0.001) (see
Table S12 in the supplemental material). For lettuce, the odds of isolating attPTVS 355
compared to attPTVS 337 appeared to be stable with time (Table S12). A similar trend
was seen in California (see Table S13 in the supplemental material). In comparison, in
Spain, there was no significant change in odds of isolating attPTVS 355 compared to
attPTVS 337 from spinach samples with time (see Table S14 in the supplemental
material). Additionally, on lettuce samples, there was a 17.664 (95% CI, 7.398, 54.225;
P � 0.001) times greater odds of isolating attPTVS 355 compared to attPTVS 337
regardless of time (Table S14). However, it should be noted that this difference in
Salmonella strain survival in Spain may be due to the bias from not accounting for
isolates coming from enumerated versus enriched samples in the analysis.

DISCUSSION

The current study quantified the die-off rates of E. coli and Salmonella on baby
spinach and lettuce under field conditions in three distinct climatic regions: California,
New York, and Spain. The differences in die-off between Salmonella and E. coli and
differences between die-off on spinach and lettuce were evaluated. The replication of
a standard protocol across the three locations also allowed for a more comprehensive
assessment of the associations between weather and microbial die-off. It was found
that, in most cases, a log-linear die-off pattern did not fit the data as well as a
segmented, biphasic die-off pattern, with a rapid initial decline followed by a period of
tailing. Additionally, the initial period of decline (seg1) is associated with relative
humidity, produce type, and bacteria, and the same factors also predict if experimental
die-off is compliant with the FSMA regulation. In comparison, the period of tailing
(seg2) is less affected by weather, produce type, and bacteria; however, the bacterial
population levels were still highly variable, indicating that caution should be taken
when implementing a wait period between noncompliant (according to FSMA) water
application and harvest until more data are available to explain the variability. These
results can be used by industry to inform food safety programs, by academia to develop
risk assessment models, and by government to update regulations.

The assumption of a log-linear die-off pattern is not appropriate in most cases.
The FDA FSMA agricultural water standard specifies the use of a wait period between
water application and harvest as a possible intervention if agricultural water applied to
the harvestable portion of a crop does not meet the standard. The allowed corrective
measure assumes a log-linear die-off (0.5 log10 die-off/day) of E. coli for a maximum of
4 days. However, the results of the current study showed that a biphasic, segmented
log-linear die-off pattern was more appropriate than a log-linear die-off pattern in 76%
(107/140) of plots. Additionally, the produce plots in 6 out of the 11 trials did not follow
the same die-off pattern (i.e., some of the plots followed a segmented log-linear
pattern, and some of the plots followed a log-linear die-off pattern). Previous studies
have also indicated that a log-linear die-off pattern is not appropriate for foodborne
pathogens, indicator organisms, and surrogates on in-field produce (25–28, 31, 36–38,
40, 45, 46). For instance, a study conducted by McKellar et al. (36), which fit log-linear,
Cerf, and Weibull regression models to E. coli O157:H7 die-off data from several
different experimental trials, found that the biphasic models (i.e., Cerf and Weibull) best
fit the data in most cases, with an initial period of rapid decline followed by a period
of tailing. Similar patterns were also seen in several other studies (25, 28, 31, 37, 38, 40,
46, 47). Brouwer et al. (48), summarized possible mechanisms of this biphasic pattern,
which include heterogeneity in the hardiness of the inoculum population, hardening
off (i.e., differential gene expression following exposure to harsh environmental con-
ditions), cells entering the viable but not culturable state, and the effect of cell density.
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However, additional information is needed to better understand the underlying mech-
anism which caused the biphasic die-off pattern observed in the current study.

In the current study, there were also some plots with periods of growth (7.9% for
segment 1, 16.4% for segment 2; n � 140). Chase et al. (26, 27) also saw periods of
growth in their studies, which investigated the population of E. coli O157:H7 on lettuce;
they hypothesized that this growth was caused by an increase in moisture on the
plants. If the possibility of growth is not accounted for when using time-to-harvest
intervals as an intervention, food safety incidents may occur. This growth can be
accounted for using predictive models that are able to identify periods of growth based
on weather conditions, rather than a one-size-fits-all strategy that accounts only for net
microbial death.

The effect of weather on die-off distribution was also assessed. According to
96-h regression analysis, a decrease in average dew point and an increase in relative
humidity range were associated with occurrence of a segmented compared to a
log-linear pattern. Furthermore, according to the 96-h classification tree, at higher
maximum dew point change rates (i.e., describing a rapid change in dew point over an
hour and thus presumably more stressful conditions for bacteria), there is an increased
probability that die-off will follow a segmented pattern. The difference in identified risk
factors in the two modeling approaches is likely to be due to the different strengths
and weaknesses the two methods have. Regardless, both sets of risk factors are
plausible, particularly as dew point was found to play a role in both modeling strategies
and the two methods may be identifying different mechanisms of the effect of dew
point on die-off. Thus, these results support the need to revise the die-off pattern
proposed in the FSMA agricultural water standard to account for biphasic decay, the
possibility of growth rather than decay following water application, and the effect of
weather.

Weather, produce type, and bacteria are differentially associated with segment
1 and 2 die-off. Based on examination of the interquartile ranges of seg1 and seg2 on
the plot level, there is substantially greater variability in seg1 (Table 4). This indicates
that seg1 has a greater impact on the plot-to-plot variability in overall die-off than seg2.
In addition, the substantially smaller degree of variation in the seg2 from plot to plot
indicates that it is less impacted by weather and environmental conditions than seg1.

According to regression analyses and the 96-h regression tree, relative humidity was
associated with seg1. Several previous studies have also shown that an increase in
relative humidity was associated with a decrease in microbial die-off (34, 40, 49–51).
Additionally, Wood et al. (41) and Moyne et al. (38), saw slower initial die-off after
inoculation of spinach and lettuce, respectively, with E. coli O157:H7 when inoculation
was performed at night compared to in the morning. It was suggested that this
phenomenon was caused by the higher moisture/relative humidity typically experi-
enced at night compared to in the morning. The mechanism by which relative humidity
is related to die-off in this study and in previous studies has been referred to as
desiccation; the lack of moisture in the air causes a drying effect that is associated with
a reduction in the number of bacteria.

Produce variety and bacteria were also retained in the seg1 model, such that the
die-off of Salmonella and die-off on spinach were slower than those of E. coli and on
lettuce, respectively. While no studies looked at the difference in die-off or survival of
these two microorganisms or produce types during the initial decay period (i.e.,
segment 1), several have assessed the overall survival of these organisms on these
produce varieties. For instance, Erikson et al. (46) showed that Salmonella had better
survival than E. coli O157:H7 under growth chamber and field conditions. Lopez-Velasco
et al. (35), also saw better survival of Salmonella than of E. coli on a variety of lettuce
cultivars. Additionally, Hutchison et al. (32) saw better survival of Salmonella than of E.
coli O157:H7 on lettuce and spinach (i.e., a greater number of positive samples at
2 weeks following inoculation); survival of Salmonella on spinach was better than
survival of Salmonella on lettuce in this study. Stine et al. (52) saw greater inactivation
rates for E. coli and E. coli O157:H7 than for Salmonella enterica when sprayed on the
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surface of lettuce under both dry and humid conditions. However, when investigating
this relationship between E. coli and Salmonella on other produce varieties (i.e.,
cantaloupe and bell pepper), the results were inconsistent. This indicates that there
may be interactions between the effects of bacteria and produce type on die-off. Thus,
additional studies are needed to further understand these relationships. Regardless, the
improved survival or slower die-off of Salmonella compared to E. coli reported in this
study and previous studies demonstrates that while E. coli is used as an indicator of
fecal contamination, it likely cannot be used as a surrogate for in-field pathogen die-off.
However, it is possible to use E. coli as a surrogate if the findings are appropriately
adjusted for the expected reduction in die-off of Salmonella from the data collected in
this and in other studies.

While seg2 regression analysis included weather in the final model, no weather was
retained in the final regression tree. Additionally, the small effect sizes of weather in
seg2 regression analysis indicate that it is not a strong risk factor. The lack of variation
in seg2 from plot to plot further supports this point. Thus, it appears that after seg1 is
complete, the bacteria behave similarly regardless of weather or other environmental
conditions not explored in the current study (e.g., native microflora). Some potential
explanations for this include that a phenotypic switch occurs in the bacteria after
exposure to the stressors of the farm environment or that a more sensitive subpopu-
lation has died off during the first segment and the remaining resistant subpopulation
is less impacted by the stressors of the environment (45, 48, 53). This indicates that
regulations should focus on die-off that occurs during the first segment. However, it
should also be noted that while seg2 was relatively consistent from plot to plot, the
microbial counts at each time point within a plot or trial were still highly variable (see
Fig. S1 in the supplemental material). This may be because the variation in seg1 leads
to a highly variable microbial concentration at the start of segment 2. Additionally, it is
possible that some of this variation is because the majority of the data imputations fell
in segment 2. Therefore, if the use of wait time as an intervention strategy is imple-
mented, it should be noted that it is not reliable under all conditions.

Thus, due to the associations between weather variables and segmented die-off
outcomes, it is likely not appropriate to use a single die-off rate across different
locations and seasons (characterized by different weather conditions). Rather, it may be
more appropriate to develop predictive models for identifying the optimal wait period
between water application and harvest for specific weather conditions to reduce
produce contamination at harvest to an acceptable level. Furthermore, these predictive
models need to account for both the variability in count data and the variability of
die-off rates to capture the true risk associated with pathogen die-off.

The FSMA die-off rate should be updated to account for weather. In the majority
of cases (75%, n � 140), experimental die-off appeared to be compliant with the FSMA
die-off rate. According to 96-h regression analysis, the log odds that Salmonella and E.
coli die off by at least 0.5 log10/day for 4 days (i.e., complying with FSMA) increased as
the average relative humidity decreased. Additionally, Salmonella and spinach were
associated with lower log odds of complying with FSMA than E. coli and lettuce,
respectively. The variables retained in the FSMA compliance classification tree followed
a similar trend. Thus, it appears that FSMA compliance is related to segment 1 die-off,
which aligns with our result that suggests that most die-off variation occurs during this
segment. This information suggests that if a wait period is to be used as an effective
intervention strategy for irrigation with contaminated water, weather (i.e., relative
humidity), bacteria, and produce type must be accounted for. This can be done using
predictive modeling. However, further research is needed to confirm these predictions,
as the methods used to model this relationship required extrapolation of die-off to a
lower starting inoculum concentration. Additionally, it should be noted that this
analysis does not consider the scenario where the rate is too conservative and can lead
to decreases in profit for produce growers due to product loss.

Differential survival of the inoculum strains used in this study supports the use
of multiple inoculum strains in future preharvest studies. According to the results
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observed in the current study, it appears there were no consistent trends in survival
among the E. coli strains across trials and locations. Previous studies have also inves-
tigated the survival of these strains in the preharvest environment, such that Gutierrez-
Rodriguez et al. (30) found the greatest survival by TVS 355 and Tomas-Callejas et al.
(54) found the greatest survival by TVS 353. The lack of consistency in survival of these
strains across and within studies could indicate random variation or that each of the
inoculum strains is better equipped for survival under different environmental condi-
tions. Alternatively, these differences could be due to chance (i.e., related to which
colonies are picked). However, due to the large number of isolates characterized in the
current study, the second hypothesis is less likely. In particular, this indicates that all
three E. coli inoculum strains (TVS 353, TVS 354, and TVS 355) and even other or
additional strains should continue to be used in tandem in future preharvest produce
studies to better capture the diversity in survival abilities among the strains under
various environmental conditions.

The survival of the Salmonella inoculum strains appeared to be different on each of
the produce types. This suggests that each of these strains is likely more equipped to
survive under different conditions. It is likely that the difference in survival was due to
genetic differences between the wild-type parent strains of each attenuated mutant.
Additionally, the effect of the interaction between time and produce type on the
probability of survival of each of the Salmonella inoculum strains could be due to
differences in the microbiota present on each of the produce varieties, as was indicated
by Lopez-Galvez et al. (50). As with E. coli, the observed differential survival of these
Salmonella inoculum strains supports their use in tandem in future preharvest produce
studies.

Limitations. The current study investigated the impact of bacteria, produce type,
location, and weather on in-field microbial die-off. However, these statistical models are
not able to completely explain microbial die-off. Previous studies have indicated that
epiphyte populations (55, 56), soil composition (57), and composition of irrigation
medium (58–60), among others, could represent unmeasured risk factors and lead to
confounding bias. While this study assessed the impact of the widest range of weather
conditions to date, only 11 weather patterns were included in the analysis to assess the
effects of weather on die-off rate (i.e., each trial experienced only 1 set of weather
conditions). Therefore, assessment of the generalizability of the associations identified
in this study is needed. In addition, it was decided to use a lower starting inoculum
concentration to be more representative of real-world conditions. However, as a result,
some samples were below the limit of quantification, and the true bacterial concen-
tration on the plants was not determined. While some degree of measurement error
was possible in appraising microbial counts and weather variables, if true, the resulting
information bias would have been nondifferential, meaning it would have underesti-
mated the measures of association. The differences in Salmonella concentrations
detected on paired spread and filter plates indicate that the Salmonella counts for
samples within the countable range may be of poor accuracy. However, this systematic
error was detected and corrected by calculating the percent difference between
samples with paired spread and filter plates and using the percent difference to adjust
the spread plate counts down to where they would be if filter plating was used. There
are also several advantages and disadvantages associated with the regression and
classification and regression trees used to model the die-off data, which are reviewed
by Ivanek et al. (61). Regardless, while each method has several limitations associated
with their parametric and nonparametric natures, their limitations are complementary
to one another and make them a good pair to use in tandem.

Conclusion. The current study indicates that die-off of Salmonella and E. coli on
baby spinach and lettuce follows a segmented log-linear pattern. The die-off rate in the
first segment is variable and appears to be associated with relative humidity, produce
type, and bacteria. After the breakpoint, the die-off rate is less variable; however, there
is still a large variation in the microbial counts at each time point in this segment across
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experimental plots and trials. Additionally, this study provides evidence that relative
humidity can be used to estimate when experimental die-off is compliant with FSMA.
As such, the use of a single die-off rate, as proposed by FSMA, is likely not appropriate,
and instead the regulation should consider the effect of weather, bacteria, and produce
type on microbial die-off. Furthermore, additional information is needed to evaluate the
effectiveness of the wait period intervention in reducing the risk of recalls or illness.

MATERIALS AND METHODS
Field setup. Replicated controlled field trials were conducted in 2017 and 2018 in three locations:

Davis, CA (University of California, Plant Sciences Field Research Facility); Freeville, NY (Homer C.
Thompson Research Farm); and Murcia, Spain (La Matanza Research Farm). In each trial, 6 rows of lettuce
or spinach seed were sown into plots approximately 1.5 m wide by 4 m long; the seeding rate was
between 1.25 cm and 4 cm. Seeding in California was performed by creating multirow seed line slots with
tractor-mounted shallow shanks and hand-distributing precalibrated seed masses blended with sterile
horticultural sand to assist in uniform placement. Seeding in New York was performed using a Jang
seeder, model JPH (Mechanical Transplanter Company, Holland, MI). Seeding in Spain was performed by
hand, using foam trays with evenly spaced holes to push the seeds through and into the soil. Due to
uncontrollable factors (e.g., animal intrusion, poor stand germination, and adverse weather), the number
of plots, spinach and lettuce varieties, and time between planting and harvest varied between trials
(Table 1). For instance, in trial NY3, two varieties of spinach were compared: the variety used in the other
two locations and a variety well suited for New York conditions. The new variety was used in the
remaining New York trials (i.e., NY1, NY2, and NY4) due to the poor stand germination of the variety used
in California and Spain. Fertilization, pesticide application, and overhead irrigation during produce
growing were applied as deemed necessary for the conditions experienced in each location and
according to industry standards.

Testing for naturally occurring rifampin-resistant E. coli and attenuated Salmonella. The
following control samples were collected prior to each trial to test for naturally occurring rifampin-
resistant E. coli and Salmonella: soil samples from each experimental plot, one spinach sample, one
lettuce sample, and 1 liter of water used for irrigation. The samples were stored on ice, transferred to the
lab, and processed within 24 h of collection. For produce and soil samples, 25 g was weighed out in
separate sterile bags (Nasco, Fort Atkinson, WI). The samples were then diluted 1:10 with tryptic soy broth
(Becton Dickson, Franklin Lakes, NJ) supplemented with 0.1 g/liter rifampin (TSB�R) (MilliporeSigma,
Burlington, MA). The 1-liter water sample was run through a 0.45-�m Neo-Grid filter (Neogen Corp.,
Lansing, MI). If the water contained large amounts of sediment, multiple filters were used. The filters were
then transferred to a sterile bag, and 90 ml of TSB�R was added. All control samples were incubated at
37°C for 18 to 24 h. After incubation, 50 �l of each enriched sample was streaked onto an E. coli
ChromAgar (DRG International, Springfield, NJ) plate supplemented with 0.1 g/liter rifampin (ECC�R) and
onto a Salmonella ChromAgar (DRG International) plate supplemented with 0.1 g/liter rifampin (SC�R).
The plates were incubated at 37°C for 18 to 24 h. The presence of blue colonies on ECC�R plates
indicates a positive result for rifampin-resistant E. coli, and the presence of mauve colonies on SC�R
plates indicates a positive result for rifampin-resistant Salmonella.

Inoculum preparation and inoculation. Three strains of rifampin-resistant E. coli (TVS 353, TVS 354,
and TVS 355), provided by the Suslow lab at the University of California, Davis (54), and two strains of
rifampin-resistant attenuated Salmonella (Salmonella enterica serovar Typhimurium strain MHM112 [62]
and Salmonella enterica serovar Typhimurium UK-�3985 [63]) were used to inoculate the lettuce and
spinach plots. The rifampin resistance in the two Salmonella strains was developed by the Suslow lab
using the procedure described by Lopez-Velasco et al. (64); the rifampin-resistant strains derived from
MHM112 and UK-�3985 were named attPTVS 355 and attPTVS 337, respectively. Each strain was streaked
onto separate tryptic soy agar plates (Becton Dickson) supplemented with 0.1 g/liter rifampin to form a
confluent lawn. The plates were incubated at 37°C for 18 to 24 h. After incubation, each plate was
flooded with 5 ml of phosphate-buffered saline (PBS), and the cells were suspended using a sterile loop
or L-spreader. Each strain’s suspension was then transferred to a separate sterile bottle. If there were
visible cell masses remaining on the plates, the washing step was repeated. Enough PBS was then added
to each sterile bottle containing the cell suspensions to reach final volumes of 100 ml. Each bottle was
vortexed, and 10 ml was transferred to a separate sterile 15-ml tube. The cell suspensions for each strain
were spun down at 2,000 � g for 10 min in New York and at 2,500 � g for 5 min in Spain and California;
the differences in centrifugation conditions were due to differences in the equipment available in each
lab. Following centrifugation, the supernatant was pipetted off and the cells were washed twice in PBS
using the same centrifuge conditions listed above. The cells were then resuspended in 6 ml of PBS, and
the optical density at 600 nm was measured to confirm that the suspensions were at approximately 9
log10 CFU/ml. The cell suspensions were stored at 4°C overnight; since die-off was calculated relative to
the 0-h time point, the 12-h hold at 4°C should not bias the results. After approximately 12 h, 4 ml of each
E. coli strain’s suspension was mixed into a sterile 15-ml tube and 6 ml of each Salmonella strain’s
suspension was mixed into a second sterile 15-ml tube. Serial dilutions were then performed on each
bacterial cocktail (i.e., E. coli and Salmonella) to reach approximately 6 log10 CFU/ml. Four sanitized 2-liter
bottles were then obtained, and 1.8 liters of PBS, 100 ml of the E. coli cocktail, and 100 ml of the
Salmonella cocktail were added to each bottle to reach a final concentration of approximately 5 log10

CFU/ml for each bacterium (i.e., Salmonella and E. coli). A 5-ml aliquot from each bottle was transferred
to separate sterile 15-ml tubes and stored at 4°C to be used to confirm the inoculum concentration.

Belias et al. Applied and Environmental Microbiology

September 2020 Volume 86 Issue 17 e00899-20 aem.asm.org 18

https://aem.asm.org


Confirmation of the inoculum concentration was performed within 24 h of inoculum preparation. The
aliquot from each bottle was diluted by 10�1 and 10�2, and 100 �l of each dilution was plated on ECC�R.
The plates were incubated at 37°C for 18 to 24 h. After incubation, the numbers of blue colonies (E. coli)
and white colonies (Salmonella) were counted and recorded.

Inoculation was targeted to be performed when the lettuce plants developed 6 true leaves, or 30 to
40 days following seeding. At this time, the spinach plants were expected to have 10 to 12 true leaves.
However, due to weather conditions, some trials could not be conducted at this targeted time (Table 1).
In all three experimental locations, inoculation was performed using the same make of a CO2-powered
backpack sprayer with the pressure between 27 and 30 lb/in2 and 2 Turbo TeeJet (tip number 8) nozzles
spaced 38 in. apart (R&D Sprayers, Opelousas, LA). The inoculum was applied to the plots at 2 liters per
approximately 45 m2.

Sample collection. Following inoculation, samples were collected at the following time points: 0, 4,
8, 24, 48, 72, and 96 h. For trials CAp (preliminary trial in California), SP2 spinach, and SP4 spinach,
samples were collected at a reduced number of time points due to crop loss and were excluded from all
data analyses (Table 1). At each time point, 5 samples were collected per plot, with the exceptions of
trials CAp and SP4 (Table 1). Each sample consisted of 6 adjacent plants from a single row. The locations
of these samples were randomly selected. No samples were harvested from the outer plot rows. The
samples were harvested by cutting each plant in the identified sample approximately 2 cm above the soil
line with scissors and transferring them to a sterile bag. The scissors were wiped with a 20% bleach wipe,
followed by a 70% ethanol wipe between each sample. Gloves were changed and sprayed with 70%
ethanol between each sample. The samples were stored on ice and transferred back to the lab for
microbial testing. All microbial testing was performed within 24 h of sample collection. Die-off of
Salmonella and E. coli in the soil of spinach and lettuce plots in trials CA1 and CA2 was also assessed;
details are provided in Appendix A in the supplemental material.

Microbial testing. The weight of each sample was measured and recorded. Samples collected at 0,
4, or 8 h after inoculation were diluted 1:5 with PBS. Samples collected at 24, 48, 72, or 96 h after
inoculation were diluted 1:10 with PBS. Larger dilution factors were used at the later time points to
ensure that enough washate was available to plate larger volumes (e.g., 100 ml). All samples were
massaged by hand for 1 min.

All samples were enumerated for rifampin-resistant E. coli and Salmonella. Based on discretion at each
location, between 10 �l and 100 ml was plated for each bacterium per sample to increase the likelihood
of observing the countable range. For plating volumes less than or equal to 250 �l, the samples were
spread plated on ECC�R and incubated at 37°C for 18 to 24 h. The blue and white colonies were counted
and recorded as E. coli and Salmonella, respectively. For plating volumes of 1 ml or greater, the samples
were filtered through 0.45-�m-pore-size Neo-Grid units. When using the filters, Salmonella can no longer
be reliably counted on ECC�R plates, so filtering of each sample was performed in duplicate; the first
filter was aseptically transferred to an ECC�R plate, and the second filter was aseptically transferred to
an SC�R plate. The ECC�R plates were incubated at 37°C for 18 to 24 h, and the blue colonies were
counted and recorded as E. coli. The SC�R plates were incubated at 37°C for 42 to 48 h, and the mauve
colonies were counted and recorded as Salmonella. Following plating, the samples were stored at 4°C.
The number of colonies per plate was converted to CFU/100 g of produce, which is referred to as the
“population level” of Salmonella or E. coli present on the sample; all counts were reported in log10

CFU/100 g of produce to avoid negative log10 counts.
Enrichment. Enrichment was performed on any sample that was negative by enumeration. To do so,

the sample was diluted 1:2 with 2� TSB supplemented with 200 g/liter of rifampin (2� TSB�R), based
on the volume of PBS remaining in the sample (the sample refers to the plant material and the PBS
remaining in the sample). For example, if there was 50 ml of PBS remaining in the sample bag, 50 ml of
2� TSB�R was added. The enrichments were then incubated at 37°C for 18 to 24 h. Following
incubation, 50 �l of the enrichment was streaked onto an ECC�R plate to test for the presence of E. coli
and/or onto an SC�R plate to test for the presence of Salmonella. All plates were incubated at 37°C for
18 to 24 h. The presence of blue colonies on ECC�R was recorded as E. coli positive and the presence
of mauve colonies on SC�R was recorded as Salmonella positive.

Strain identification. A PCR protocol was developed to differentiate the E. coli inoculum strains to
determine if there was a difference in strain survival. The protocol utilized 4 primer sets: 1 specific for
each strain and 1 that amplified all 3 strains (Table 6). Dirty lysates were prepared for each isolate by
transferring a portion of a colony into 100 �l of distilled water (dH2O) in a 0.2-ml tube. These suspensions
were placed in the thermocycler and heated to 95°C for 15 min. Reactions were performed with 50-�l

TABLE 6 Primer sequences used to differentiate between the 3 E. coli inoculum strains

Primer name Target strain(s) Sequence

353F TVS353 TGACGGACAGGGACTCTATCTG
353R TVS353 CAGCGTTCGCTCACTGAGAG
354F TVS354 TAGGTTTGTTCACATTAGGTGATGTCG
354R TVS354 AAATGTGGGTATGGCATATGGCAG
355F TVS355 GTGACACCAATGACATCTGATGTTATCC
355R TVS355 CGTCCTTATCCTGTTGGCTTGTG
35XF All 3 strains TTCGACAACGGTATTATTCTCTGCC
35XR All 3 strains TATCAATGACCCGAATCTGATCCTCG
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mixtures with the reagents at the following final concentrations: 1� Green GoTaq Flexi reaction buffer
(Promega, Madison, WI); 1.5 mM MgCl2 (Promega); 0.2 mM each deoxynucleoside triphosphate (dNTP)
(Thermo Scientific, Waltham, MA); 0.2 �M 353F, 0.2 �M 353R, 0.2 �M 354F, 0.2 �M 354R, 0.2 �M 355F,
0.2 �M 355R, 0.2 �M 35XF, and 0.2 �M 35XR (Integrate DNA Technologies, Coralville, IA); 1.25 U GoTaq
polymerase (Promega); and �0.5 �g/50 ml DNA template. The thermocycler conditions were as follows:
94°C for 2 min; 30 cycles of 94°C for 30 s, 57°C for 1 min, 72°C for 1.5 min; 72°C for 7 min; and a 4°C hold.
Gel electrophoresis was performed using a 1.5% agarose gel at 120 V. The primers amplified a 240-bp
fragment from TVS 353, a 521-bp fragment from TVS 354, a 960-bp fragment from TVS 355, and an
1,835-bp fragment with the universal primers. In California, PCR was performed as follows for E.
coli-positive samples: up to 6 isolates per sample in CAp; 1 to 29 isolates per 24-, 72-, and 96-h sample
in CA1; 2 to 18 isolates per 24- and 96-h sample in CA2; and 1 to 89 isolates per 24-, 72-, and 96-h sample
in CA3. Strain characterization of E. coli in the soil samples collected in trials CA1 and CA2 was also
performed; details can be found in Appendix A in the supplemental material. In New York, PCR was
performed on up to 6 isolates for each E. coli-positive sample (by either enumeration or enrichment) for
each trial. In Spain, PCR was performed as follows on E. coli-positive samples: up to 1 isolate per 48-, 72-,
and 96-h sample in SP1; up to 6 isolates per 24- and 48-h lettuce sample in SP2; up to 6 isolates per 8-,
24-, and 48-h sample in SP3; and up to 6 isolates per 8- and 24-h spinach sample and up to 6 isolates
per 8-, 24-, and 48-h lettuce sample in SP4.

To evaluate differential survival of the 2 attenuated Salmonella inoculum strains, Salmonella colonies
were streaked on xylose-lysine-deoxycholate agar supplemented with 0.1 g/liter rifampin (XLD�R). The
XLD�R plates were incubated at 35°C for 18 to 24 h, and the resulting color of the colonies was recorded.
attPTVS 337 does not produce H2S and forms pink colonies on XLD�R, while attPTVS 355 does produce
H2S and produces black colonies on XLD�R. In CA1, CA2, and CA3, 1 to 121 colonies per plot were tested
from two time points (24 and 96 h). In NY4, 40 characteristic Salmonella colonies per plot were tested
from two time points (24 and 96 h). In SP2 and SP3, 25 characteristic Salmonella colonies per plot were
tested from two time points (24 and 96 h).

Monitoring environmental conditions. The following weather conditions were recorded in all
locations: temperature (°C), relative humidity (%), solar radiation (kW/m2), precipitation (mm), and wind
speed (m/s). The geographic coordinates (WGS 84 Web Mercator) of the weather stations were as follows:
latitude of 38.53 and longitude of �121.79 (elevation, 18.3 m) in California; latitude of 42.52 and
longitude of �76.33 (elevation, 335.3 m) in New York; and latitude of 38.11 and longitude of �1.03
(elevation, 135 m) in Spain. All weather data were cleaned in R version 3.5.3 (R Core Team, Vienna,
Austria). Hourly dew point was also calculated using the humidity.to.dewpoint function in the weath-
ermetrics package (65). Leaf wetness data (in minutes) was collected in New York and Spain; however,
no associations between leaf wetness and die-off were identified (and so no data are shown). The
weather variables derived from recorded weather data are listed in Table 4. All weather variables were
calculated over the 96, 24, and 8 h following inoculation. The summary variables for the three time
periods were developed to serve as three practical ways a grower could use the study findings (at the
end of a 4-day wait period, 24 h, or 8 h after irrigation) to plan harvest. No solar radiation variables were
calculated for the 8 h following inoculation because the weather station malfunctioned during this time
in trial NY3. The weather station during trial SP4 also malfunctioned at 55 h following inoculation, so 96-h
weather variables for this trial were calculated only with available data. However, the weather appears
to be relatively stable from day to day, so we did not expect this to affect the results. A standard
operating procedure (SOP) document was developed to provide the basis for the above-described
standardized field and microbial testing components of study design across the three experimental
locations. The SOP is provided in Appendix B in the supplemental material.

Statistical analyses. (i) Data processing. All data cleaning and analyses were performed in R version
3.5.3. Due to the microbial testing strategy, samples could be positive with microbial counts but above
the countable range (i.e., too numerous to count) (n � 7) (category A), positive with counts within the
countable range (i.e., positive by enumeration) (n � 4,237) (category B), negative by enumeration and
positive by enrichment (n � 452) (category C), or negative by enumeration and enrichment (n � 185)
(category D). There were also positive samples with an unknown population level due to sample loss
after enumeration (i.e., enumeration was performed, but no enrichment was performed) (n � 12)
(category E) or inability to read plates because of excessive mud on the sample (n � 7) (category F). To
account for unknown population levels on positive samples, previous studies have imputed a single
value (e.g., the lower detection limit, the midpoint between the lower and upper detection limits, or the
upper detection limit). However, this strategy is not optimal, as it can lead to biased results (66). As such,
in the current study, multiple imputations were performed for the samples with unknown population
levels (in categories A, C, D, E, and F), as this has been shown to limit bias (66). To do so, the lower and
upper limits of detection were calculated for each of these samples (based on the sample dilution), and
a population level between those two limits of detection was randomly selected (i.e., imputed) using a
uniform distribution to reflect uncertainty; 10 imputation rounds were performed per sample. For
samples that were lost after enumeration (category E), the concentration was imputed such that the
lower bound for imputation was 0 and the upper bound for imputation was the limit of quantification
for enumeration. For samples with unreadable plates (category F), it was known if the bacterium of
interest was present, but the exact concentration was unknown. As such, the lower bound of imputation
was set at the lower limit of quantification by enumeration, and the upper bound was set at 107 CFU/100
g (i.e., �1 log10 above the highest counted population level with filter plating). For samples above the
countable range (category A), the upper limit was set at 107 CFU/100 g of produce. The microbial counts
recorded for samples in category B were used as is in the analysis except for a correction due to the filter
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versus spread plating methodology explained below. Samples in category D were imputed with a value
between 0 and the limit of detection for enrichment, as each sample was used for testing E. coli and
Salmonella. This means that the entire sample could not be tested for each respective bacterium, and it
is unknown if the samples negative by enrichment were truly negative; the consequence is a possible
overestimation by imputation in these samples. However, considering that only 185 samples required
this treatment, we do not expect a measurable effect on the findings. The raw and imputed microbial
counts data were compiled into a “raw imputed” data set.

Through data visualization, it was determined that there were systematically higher population levels
of Salmonella on the spinach and lettuce when samples were tested using spread plating compared to
filtering. We hypothesized 2 potential reasons for this difference: (i) there were false-positive Salmonella
colonies on ECC�R plates used for spread plating, since different plating media were used for enumer-
ating Salmonella by spread plating (i.e., ECC�R) and filter plating (SC�R), and (ii) the Neo-Grid filters
restricted the diffusion of nutrients from the SC�R plates to allow for Salmonella colony growth. To
assess the potential for false-positive Salmonella colony growth on ECC�R, 3,588 colonies were streaked
from ECC�R plates onto SC�R plates and incubated at 37°C for 18 to 24 h; the development of mauve
colonies indicates a Salmonella-positive sample. After incubation, 99.6% (3,572/3,588) of colonies were
mauve, indicating that the difference between spread and filter plates was not due to false positives on
ECC�R. Therefore, we concluded that the difference was due to the reduced ability of nutrients to pass
from SC�R medium through the Neo-Grid filter to allow for Salmonella colony growth. To correct for this,
the percent difference between spread and filter plates was calculated separately for spinach and lettuce
using samples for which we had available counts from both spread and filter plates (n � 368 for spinach,
n � 300 for lettuce). The percent differences in spinach and lettuce were used to adjust the population
levels of spread plate samples down to the expected concentration if filter plating had been used,
because the difference in concentrations between spread and filter plates was thought to be caused by
the underestimation of the number of colonies by filter plates. This methodology was chosen because
there were fewer spread-plated samples than filtered samples over the whole length of the experiment,
therefore requiring correcting the concentration of fewer samples. Also, the main interest was in correctly
capturing the difference in counts from time point to time point to allow estimation of the microbial
die-off rate. An acceptable side effect of this approach was that the true microbial concentration at each
time point was likely slightly underestimated.

After the above correction for the enumeration method (filter versus plate spreading) was applied,
the “raw imputed” microbial count data were divided into subsets by each combination of plot and
bacteria (Fig. 8), resulting in a total of 70 plot-level subsets across all trials for E. coli and an equal number
for Salmonella (since each plot was inoculated with a mixture of strains of both bacteria). For instance,
an individual subset of data was created for E. coli on the first spinach plot in trial NY3, comprising “raw
imputed” counts at each of the 7 time points of sample collection. A log-linear regression model and a

FIG 8 Overview of the statistical analysis plan.
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biphasic, segmented log-linear regression model were fit using the lm function for each of the 10
imputed data sets for each subset (i.e., for each plot-commodity-bacterium combination). These are
referred to as plots. The breakpoint in each of the segmented models was identified by selecting the
breakpoint that minimized the deviance of the model. Additional biphasic models (e.g., Weibull) were
not evaluated due to the difficulty with practical interpretation. The 10 models for a given plot were then
combined using the pool function (based on the principles explained by Rubin [67]) in the “mice”
package (68) into a single model. For each of the plot models, Table 4 and Fig. 8 show the statistics that
were recorded and subsequently used as outcome variables in the plot-level analysis of predictors: (i)
segment 1 die-off rate coefficient (seg1), (ii) segment 1 die-off rate standard error (se1), (iii) segment 2
die-off rate coefficient (seg2), (iv) segment 2 die-off rate standard error (se2), (v) breakpoint between
segment 1 and segment 2 (bp), (vi) if a segmented log-linear or log-linear model had a superior fit for
the subset (die-off pattern), and (vii) if the observed die-off in the subset is faster than the FSMA die-off
rate with FSMA (FSMA compliance). The 7 outcomes and predictors (i.e., study design factors [i.e.,
bacteria, produce type, and location] and weather factors) from individual plots were compiled into a
“processed” data set for further plot-level analyses of microbial die-off (Table 4). This approach was taken
because we hypothesized that there were different associations between weather factors and die-off for
each of the segments. Additionally, it is more practical for produce growers, public health agencies, and
academia to utilize the relationship between weather, study design factors, and die-off rates than the
relationship with microbial concentration on individual samples. This analysis method also readily takes
data from multiple imputations in the “raw imputer” data set into the “processed” data set. For the
“die-off pattern” outcome (Table 4), to assess if a segmented log-linear or log-linear model had a superior
fit for each plot, the Bayesian information criterion (BIC) was estimated for each model type. For the
segmented fit to be considered preferred, its BIC value must be 10 or more than the BIC value of the
log-linear model. A cutoff value of 10 was selected according to the findings of Kass and Wasserman (69).
For the “FSMA compliance” outcome (Table 4), to assess if the observed die-off in a plot is compliant with
FSMA (i.e., at least a 0.5-log10 reduction/day), it was determined if the segmented die-off calculated for
each plot would achieve at least a 2-log10 reduction in 4 days. This assumes that, starting at a population
level of 4 log10 CFU/100 g of produce and with 100 ml applied to each 100 g of produce, at least a 2-log10

reduction would need to be achieved in 4 days for the produce to be considered compliant (i.e., �126
CFU/100 ml) with the FSMA agricultural water standard.

(ii) Univariable analyses. Mixed-effects linear regression was performed on the “processed” data set
using the lmer function in the lme4 package (70) to determine univariable associations between each of
the 7 continuous outcomes ([i] seg1, [ii] se1, [iii] cov1, [iv] seg2, [v] se2, [vi] cov2, and [vii] bp) and
explanatory variables (study design factors and weather factors). Trial was included in the models as a
random effect. Each study design factor and weather factor was tested separately as a fixed effect. An
F-test was used to compare the model fit with the fixed predictor to the model fit with only random
effects. Similarly, mixed-effects logistic regression was performed on the “processed” data set using the
glmer function in the lme4 package (70) to determine the univariable associations between each of the
binary outcomes ([i] die-off pattern and [ii] FSMA compliance) and explanatory variables (study design
factors and weather factors). Trial was included in the models as a random effect. Each study design
factor and weather factor was tested separately as a fixed effect.

(iii) Multivariable analyses. Following both the linear and logistic regression analyses, weather
factors with a P value of less than 0.1 in univariable analysis were included in principal-component
analysis (PCA) for variable reduction. PCA was performed using the prcomp function, such that the
number of components retained must explain �90% of the variation in the data and each retained
variable can have a major loading on only 1 principal component. PCA was performed separately for
each outcome in Table 4 (because each outcome is associated with different predictors in univari-
able analysis). If an outcome had 4 or fewer weather predictors with a P value of �0.1, PCA was not
performed. One representative variable at a time for each principal component was included in
multivariable analysis.

Mixed-effects linear regression was performed using the lmer function in the lme4 package (70)
for multivariable analysis for each of the 5 continuous outcomes: seg1, se1, seg2, se2, and bp (Table
4). Trial was included in the models as a random effect. All study design factors significant at a 10%
level in univariable analysis were first included in the multivariable models. Backwards selection was
performed by removing the variable with the lowest t value. The final base model was selected as
the simplest model that was significantly different (P � 0.05) from the next simplest nested model
using an F-test. Once the base model was developed, representative weather variables for each
principal component were included in the base model and backwards selection was performed as
described above to determine the final model. Separate models were fit with 96-h, 24-h, and 8-h
weather variables due to the strong correlation between weather variables across the time points.
The corresponding regression models are referred to as the 96-h regression model, the 24-h
regression model, and the 8-h regression model to distinguish the time frames over which the
weather variables were calculated. Model fit was also assessed using the protocol described by
Beauvais et al. (71) to check for normality of the residuals, heteroskedasticity, and a linear relation-
ship between the exposure and outcome.

Similarly, mixed effects logistic regression was performed using the glmer function in the “lme4”
package (70) for multivariable analysis of each of the following binary outcomes: (i) die-off pattern and
(ii) FSMA compliance (Table 4). Trial was included in the models as a random effect. All study design
factors significant at a 10% level in univariable analysis were first included in the multivariable models.
Backwards selection was performed by removing variables with the highest P value. The final base model
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was selected as the simplest model significantly different (P � 0.05) from the next simplest nested model
using a likelihood ratio test. Once the base model was developed, representative weather predictors for
each principle component were included in the base model and backwards selection was performed as
described above to determine the final model. Model fit was also assessed using the protocol described
by Beauvais et al. (71) to determine if the assumption of linearity between the exposure and log odds
of the outcome was met.

Classification and regression trees were fit for each of the seven outcomes (Table 4) using the rpart
function in the rpart package (72) to visualize possible interactions and aid interpretation of regression
analysis. Tree pruning was performed such that the complexity parameter was set to minimize the
cross-validation relative error to prevent overfitting in the trees; a 10-fold cross-validation was used.
Classification and regression trees cannot control for clustering of plots within a trial; however, division
into subsets as part of the performed 10-fold cross-validation is expected to have reduced the effect of
pseudoreplication at the trial level. As an internal validation step, the predictions from the classification
trees are described in terms of sensitivity, specificity, and negative and positive predictive values. Only
96-h weather variables and study factors important by univariable regression analysis (see Table S4 in the
supplemental material) were tested for inclusion in the classification and regression trees. These are
referred to as the 96-h classification trees and the 96-h regression trees.

(iv) Identification of inoculation strains. To assess differential survival of inoculation strains over
the 4-day experiment, the following analyses were conducted at the sample level. To determine the
effect of trial, time, and produce type on the survival of the 3 E. coli inoculum strains, multinomial
regression was performed using the multinom function in the nnet package (73). To determine the
effect of trial, time, and produce type on the survival of the 2 Salmonella inoculum strains,
mixed-effects logistic regression was performed using the glmer function (70); sample id (i.e., the
sample the isolate was taken from) was included in the model as a random effect. Plot id was
included as a random effect instead of sample id in the Spain Salmonella model, as the sample from
which each isolate came was not recorded. For both the E. coli and Salmonella strain identification
protocols, isolates were taken from both enumerated samples and enriched samples. However, all
isolates from an enriched sample are likely to have propagated from the same cell or same couple
of cells. To account for this, all models were weighted such that all isolates from nonenriched
samples were given a weight of 1 and all isolates from enriched samples were given a weight of 1
divided by the number of isolates tested from that sample. Weighting was not performed in Spain
Salmonella models because it was unknown which isolates came from enumerated versus enriched
plates; as such, these results may be biased. Additionally, all strain identification analyses were
performed separately for each location to account for differences in sample sizes and sampling
times. For E. coli, n � 1,920 isolates from California, n � 4,700 isolates from New York, and n � 1,313
isolates from Spain were tested. For Salmonella, n � 1,910 isolates from California, n � 640 isolates
from New York, and n � 640 isolates from Spain were tested.

Unless otherwise stated, statistical significance was evaluated at the 5% level. Correction for multiple
testing was not applied due to the foundational nature of the study.

Data availability. All data used in this study can be found at https://github.com/abelias/die_off.
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