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Abstract

and also let the template size vary.

Background: Annotating protein function with both high accuracy and sensitivity remains a major challenge in
structural genomics. One proven computational strategy has been to group a few key functional amino acids into
templates and search for these templates in other protein structures, so as to transfer function when a match is
found. To this end, we previously developed Evolutionary Trace Annotation (ETA) and showed that diffusing known
annotations over a network of template matches on a structural genomic scale improved predictions of function.
In order to further increase sensitivity, we now let each protein contribute multiple templates rather than just one,

Results: Retrospective benchmarks in 605 Structural Genomics enzymes showed that multiple templates increased
sensitivity by up to 14% when combined with single template predictions even as they maintained the accuracy
over 91%. Diffusing function globally on networks of single and multiple template matches marginally increased
the area under the ROC curve over 0.97, but in a subset of proteins that could not be annotated by ETA, the
network approach recovered annotations for the most confident 20-23 of 91 cases with 100% accuracy.

Conclusions: We improve the accuracy and sensitivity of predictions by using multiple templates per protein
structure when constructing networks of ETA matches and diffusing annotations.

Introduction
Predicting function for the ever-increasing number of
sequences and structures produced by Genomics Centers
remains a major problem [1,2]. Fewer than 0.5% of cur-
rent UniProt database protein annotations come from
experiments [3], showing that despite recent advances in
high-throughput functional screening experiments, these
are far from being sufficiently scalable to characterize
protein function on a massive scale. In the foreseeable
future therefore computational annotation of protein
function will remain essential.

The computational tools for this purpose [4] are based
on sequence or structure [5]. Here, we focus on the latter,
with the rationale that structure is more conserved than
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sequence during evolutionary divergence [6]. As a result,
any global (described by CATH [7] or SCOP [8] codes)
similarities that exist between structures may indicate
functional similarities that are not recognizable from
sequence comparisons alone [9]. One pitfall, however, is
that proteins with the same fold can often perform unre-
lated functions, for example TIM Barrels [10]. Thus, fold-
based prediction may not be specific for a majority of
functions [11]. Another pitfall is that some functions can
be carried out by different folds. For example, subtilisin
and trypsin are both are serine proteases with different
structure. However, both share an identical catalytic triad
of His-Ser-Asp [12], suggesting that functional similarity
may be detected from local similarity of just a few key cat-
alytic residues [13-16].

This observation spurred template approaches on the
hypothesis that if relatively few residues determine binding
or catalytic activity, then the presence of these identical
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residues in identical geometries may suggest an identical
function even if the structure is different [13-16]. This
raises a series of challenges: to detect those key functional
residues, to locate them in other structures, and to make
sure that these matches are not random. The Evolutionary
Trace Annotation (ETA) pipeline was developed to
address each of these problems [17]. ETA generates tem-
plates using Evolutionary Trace (ET) to identify putative
functional sites, and their key residues, in a protein struc-
ture [18-20]. This use of ET obviates the need for any
prior information on functional mechanisms in order to
build templates. These ET-based templates are then
matched to other structures and matched pairs of struc-
tures are accepted when the matched sites have sufficient
evolutionary and geometric similarities. The requirement
for evolutionary similarity specifically ensures that these
matches are at sites that are functionally important in
both proteins, which decreases the likelihood that the
match is due to random chance [21]. Finally, ETA trans-
fers function between the matched proteins, from an
annotated structure to an unannotated structure. A public
ETA webserver is available for that purpose [22].

We systematically tested this protocol for enzymes
[17,23,24] and non-enzymes [24] using Enzyme Commis-
sion (EC) numbers [25] and Gene Ontology terms [26] as
functional classifications. The accuracy was 92% and 94%
for enzymes and non-enzymes respectively, with sensitivity
near 50% in both [23,24]. To raise sensitivity, we then
pooled together all ETA matches into a network of protein
structures [27] and let functional information diffuse glob-
ally within it from proteins of known function to unanno-
tated ones. The accuracy improved to 96% at 65%
coverage in a test set of 1217 Structural Genomics
enzymes. Similarly, others have also used network analyses
to link functional information to unknown proteins in
three diverse enzyme superfamilies [28].

In this work, we aim to raise sensitivity further by
allowing more than one template for each protein. A
single template may on occasion fail to capture a true
functional site [24], and if a structure has multiple func-
tional sites, secondary functional annotations would be
missed. To further relax our requirements, we also test
smaller templates with just five residues instead of
exactly six residues. In a test set of 605 Structural Geno-
mics enzymes, the combination of these innovations
increased sensitivity by 14% with a modest decrease in
accuracy (5%) over the default ETA. Moreover, when we
applied network diffusion, performance rose further to
yield an area-under-the-curve of 0.97 regardless of the
ETA variant.

Results and discussion
ETA follows an annotation strategy that consists of five
steps, illustrated in both single and multiple templates
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ETA modes in Figure 1A, for the case of a mevalonate
pyrophosphate decarboxylase from Mus musculus (PDB
3fOn; chain A; EC 4.1.1.33) (see Methods for details). First,
ET ranks the evolutionary importance of the residues
from the query protein, 3fOnA, for which the function is
sought. These top-ranked ET residues usually form surface
clusters, and ET identifies two significant clusters that may
be functional sites: the first is {26K, 156S, 158S, 161R and
215M} and the second is {123G, 125A, 126S, 127S, 305D,
306A, 307G, 309N}. In single template mode, ETA picks
template residues from the larger of the two ({305D,
307G, 123G, 126S and 127S} shown red in Figure 1A). But
in multiple template mode, ETA also picks an additional
five-residue template made of the entire first cluster
(brown template in Figure 1A). Next, a paired-distance
matching algorithm searches for geometric similarity
between templates and structures from a subset of the
Protein Data Bank (PDB) filtered for sequence identity
and annotated with one or more known functions. These
preliminary matches are filtered by a support vector
machine (SVM) that selects a refined set that combines
geometric similarity with ET rank similarity. To further
increase specificity, ETA repeats the same steps in reverse:
now templates are generated in the matched structures
and searched for in the original query. Accepting only
matches that fulfill such reciprocity reduces the likelihood
that they arose due to random chance. In the example,
ETA identifies mevalonate diphosphate decarboxylase
from Staphylococcus aureus [29](PDB 2hk3; chain B; EC
4.1.1.33) as a reciprocal match in the single template
mode, while human mevalonate diphosphate decarboxy-
lase [30] (PDB 3d4j; chain B; EC 4.1.1.33) is added to reci-
procal matches in multiple template mode. In the fifth
step, ETA selects the function seen in a plurality of the
target structures that matched reciprocally to the query. In
our example, EC 4.1.1.33 is selected with one and two
votes in single and multiple template modes, respectively.

We can extend this approach by organizing all matches
into a network [27]. In this network, each protein struc-
ture is a node; each ETA match is a symmetric edge; and
all known functions are treated as distinct node labels (see
Figure 1B). We calculate a weighted edge from the RMSD
and differences in ET scores in an ETA match [27]. Then,
for each function, we label nodes based on whether they
are known to have a given function, known not to have it,
or whether this is unknown. We can then set up a minimi-
zation problem to find a set of diffused labels that aim to
preserve the initial labeling while at the same time assign-
ing neighboring nodes similar labels (see Methods). This
process is repeated for all possible labels, i.e. functions, so
as to yield a normalized confidence score to every possible
pairing of nodes and labels, i.e. for every possible protein
function prediction. We then evaluate the accuracy of the
highest confidence prediction.
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Figure 1 (A) Graphical outline of Evolutionary Trace Annotation (ETA) pipeline in single template and multiple template modes.
The numbers 1,2,3,/4,56 denote the components of ETA pipeline; Evolutionary Trace, Template Picker, Paired-distance Matching, Support Vector
Machine and Reciprocity respectively. (B) Graphical outline of network diffusion method.
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We wish to benchmark ETA’s performance across four
possible modes: the first selects matches based on one
five-residue template per protein (5RT); the second relies
instead on one six-residue template per protein (6RT);
the third uses multiple five-residue templates per protein
(M5RT); and the last uses multiple six-residue templates
per protein (M6RT). In each mode, ETA was applied on
a set of 605 enzymes with full-EC annotations (see Meth-
ods). Performance of each template selection mode and
sequencebased strategy was measured in terms of accu-
racy, sensitivity and by the weighted mean of both with
the F-measure (see Methods). The results, depicted in

Figure 2A, showed that while single-templates were more
accurate, multiple templates were more sensitive. Overall,
it was the multiple six-residue templates that yielded the
highest F-measure performance, suggesting this is the
method of choice.

Next, we sought to assess performance in a subgroup of
especially difficult cases. To this end, we identified 73
query proteins that share no more than 30% sequence
identity with any annotated protein in the target set with
the same function. The results (Figure 2B) show that smal-
ler, multiple templates increased sensitivity with only a
slight, tolerable decrease in accuracy. The best overall
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Figure 2 Accuracy, sensitivity and F-measure of ETA with four template selection methods, six-residue (6R), five-residue (5R), multiple
six-residue (M6R), multiple five-residue (M5R), combination of four ETA template selecting modes (ALL) and a sequence-based
annotation based on sequence identity (SeqID) for (A) a test set of 605 Structural Genomics enzymes; and for (B) a non-trivial test set
of 73 Structural Genomics enzymes.
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performance in terms of F-measure, was from six-residue
templates followed by multiple six-residue template (See
Figure 2B).

In order to compare each template selection mode with
a sequence-based annotation strategy, we identified the
closest hits from target set to each protein in both query
sets based on sequence identity between the query and
the target. We label this strategy SeqID. Each template
selection mode outperformed SeqID in terms of accuracy
and F-measure in both test sets (see Figure 2). In case of
non-trivial proteins, four ETA template selection modes
yielded average 0.643 in terms of F-measure versus 0.017
by the SeqID. This result shows that our template-based
strategy is especially useful if the protein of interest does
not have close homologs.

To test whether different template modes yield similar
annotations, we evaluated the similarity of all pairs of
predictions. The performance of a given template selec-
tion category was represented as a vector of functions
and compared their normalized scalar product (see
Methods). Tables 1A and 1B reveal from these products
that each method has a number of uniquely accurate pre-
dictions, suggesting that their combination might achieve
perform even better. As expected, the methods with
higher accuracy have lower sensitivity (see Figure 2A).

This led us to an iterative annotation strategy that
applies first the template selection method with the best
accuracy, followed in further rounds by the next best, and
so on. The methods were ordered by their accuracies as
6R > 5R > M6R > M5R following Figure 2A. As a result,
sensitivity rose to 83.8% and accuracy to 91.4%. In
Figure 2B, the accuracy order is 6R > M6R > 5R > M5R.
This strategy achieved accuracy of 67.4% and sensitivity of
49.2% in this particularly challenging test set.

An example, in Figure 3, illustrates how ETA in multiple
templates per protein mode recovered annotations missed
by ETA with a single template per protein. ETA generated

Table 1 Prediction similarity of four ETA methods with
one another (A) in cases of 605 Structural Genomics
enzymes, and (B) in cases of 73 non-trivial Structural
Genomics enzymes.

A) 6R 5R M6R M5R
6R 1.00 093 092 0.83

5R 1.00 0.88 0.88

M6R 1.00 0.88

M5R 1.00

B) 6R 5R M6R M5R
6R 1.00 0.82 093 0.70

5R 1.00 0.81 0.82

M6R 1.00 0.74

M5R 1.00
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a six-residue template, {257N, 256H, 260H, 254R, 237E,
250E}, from the Phosphoribosylaminoimidazole carboxylase
ATPase subunit from Aquifex Aeolicus (PDB 2z04; chain A)
and matched it to a N5-carboxyaminoimidazole ribonu-
cleotide synthetase from Esherichia Coli with 30% sequence
identity (PDB 3etj; chain A) [31]. However, the reciprocal
six-residue template in 3etjA, which is {126Y, 127D, 128G,
245N, 244H]} generated from ET cluster {51E, 120K, 126Y,
127D, 128G, 226E, 237N, 238E, 242R, 244H, 245N, 305Y,
307K, 314K}, could not be matched significantly back to
the query 2z04A, and as a result there was no prediction in
a single template mode. In multiple template mode, how-
ever, ET identified two other subclusters in 3etjA {226, 237,
238, 242, 244, 245} (shown in brown) and 51, 120, 226, 237,
238, 242, 244, 245} (shown in purple) and ETA accordingly
generated an additional reciprocal six-residue template
{226E, 237N, 238E, 242R, 244H, 245N}, which did match to
2z04A and thereby led to the correct prediction.

In order to further assess performance, we constructed
networks of ETA matches from each of the modes of ETA
described above. Competitive diffusion was then carried
out as described previously [27] in order to draw annota-
tion from the global distribution of all matches among all
query proteins and all proteins with known functions. The
results suggest that the predictive power of the network
makes up for the disadvantages of each individual method
since all of the template methods perform nearly equally
well. In the 605 protein benchmark test set, the area under
the accuracy-sensitivity receiver operator curves were
essentially identical at 0.971, 0.968, 0.965, and 0.965 for
multiple six-residue templates, five-residue templ-
ates, six-residue templates, and multiple five residue tem-
plates, respectively (see Figure 4A). In more detail,
however, some slight differences emerge. At 95% accuracy,
the network built from multiple six-residue templates per
protein has 4% better sensitivity of (84 vs 80%) over six-
residue single template networks, accounting for 24 addi-
tional true positives. This improvement was also observed
in the benchmark of 73 proteins with less than 30%
sequence identity to any true annotated matching protein,
as shown in Figure 4B.

To evaluate the ability of our confidence score to
identify accurate predictions, we plotted cumulative
accuracy against confidence (z-score) (Additional file 1).
The predictions separate into three regions: over a con-
fidence value of 2.0, predictions are nearly 100% accu-
rate across all ETA modes. In the range between 2.0
and 0.5, accuracy begins to drop: In this range, predic-
tions are 96% accurate regardless of ETA variant.
Finally, below 0.5, accuracy declines steeply, with 39%,
22%, 20% and 12% accuracy for multiple five-residue,
multiple six-residue, five-residue and six-residue net-
works, respectively.
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Figure 3 Graph of ETA matches between 2z04A and 3drjA based on six-residue and multiple six-residue templates. Red clusters and
red templates are identified in single template mode, while brown and purple clusters, and brown templates are identified in multiple template
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Direct comparisons with default ETA (see the triangles
in Figure 4) illustrate that incorporating global information
extends the accuracy and sensitivity of predictions over
ETA alone. This can also be seen by focusing on the net-
work predictions for the 91 protein structures for which
ETA alone had none. As depicted in Figure 5, all of the
ETA networks were able to make predictions for these 91
proteins with those based on multiple templates yielding
the best performance with around 0.68 area-under-curve
(AUC). However, all of the ETA networks’ accuracy rose
up to 100% at around 21-29% sensitivity, which accounted
for 20-23 cases depending on the network (see Figure 5).

The gene ahd from the bacterium clostridium beijer-
inckii (PDB 2b83; chain A) [32]highlights the benefit of
ETA networks. ETA makes no prediction because of a
four apiece tie between matches to NAD-dependent alco-
hol dehydrogenase activity (EC 1.1.1.1) and to NADP-
dependent alcohol dehydrogenase activity (EC 1.1.1.2.).
But, when edge weights are taken into account by the
network, the stronger connectivity to nodes labelled with

EC 1.1.1.2 break the tie and give the edge, correctly, to this
annotation. The confidence score is moderate (0.5),
reflecting the difficulty of disentangling this dense cluster
of matches (Figure 6).

Conclusion

This work aimed to increase the sensitivity of function
annotation in protein structures through alternative ET-
based template matching strategies. We found that using
more than one template per protein raised sensitivity by
6-9% at a cost of 1-5% in accuracy. Overall, the use of
multiple templates did yield a better annotation perfor-
mance as shown by the increase in F-measure. Further-
more, network diffusion based on multiple-template
matches outperformed single template-based network
diffusion with 3-8% increase in AUC in recovery of the
functional classification of cases where ETA completely
failed. Interestingly, the simultaneous use of multiple tem-
plates arising from all of the structures under consideration
was always best, and robust enough to be insensitive to the
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Figure 4 Accuracy versus sensitivity graph of network diffusion method for four different ETA network for (A) 605 Structural

Genomics enzymes; and for (B) 73 non-trivial Structural Genomics enzymes. The numbers inside the parentheses show the area under
curve (AUQ) for each curve. Dashed line indicates the performance of network diffusion method based on multiple six-residue templates.

size or number of templates per protein. Thus, when func-
tional labels are diffused over a network of ETA matches,
the result plateaus at a very high AUC value between 0.96
and 0.97. Most usefully, these experiments define

prediction confidence thresholds that distinguished reliable
prediction, from those less so, and those that likely to be
no better than chance. The results show that among pro-
teins with no ETA prediction, diffusion over a network can
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Figure 5 Accuracy versus sensitivity graph of network diffusion method for four different ETA networks based on six-residue (6R),
five-residue (5R), multiple six-residue (M6R) and multiple five-residue templates (M5R) for 91 Structural Genomics enzymes with no
ETA prediction with any template methods. The numbers inside the parentheses show the area-under-curve for each curve.

add novel predictions. More broadly, this strategy of com-
petitive annotation diffusion over ET A-networks should
help accurate large-scale annotation of the structural
proteome.

Methods

Data Sets: Our query test set contains 605 enzymes from
Structural Genomics centers that cover 348 distinct full-
EC numbers. Each pair of proteins in this set share less
than 90% sequence identity with one another. Non-trivial
test set constitute 73 proteins of the query set. These pro-
teins share at most 30% sequence identity with any protein
of the same function at the full-EC level in the target set.
Target proteins are selected from 17824 2008PDB90 [33]
proteins with the criteria that their truncation ratio greater
than 0.95. Truncation ratio is defined to be the ratio of the
number of amino acids in the structure to the actual
sequence length of the protein. Truncation ratio shows

how much of the protein is solved in the structure. 8537
proteins hold this criterion and 3082 of them carry full-EC
annotations that cover 1190 distinct catalytic function in
the databases of Uniprot/SwissProt/TrembL [3] and PDB
[33]. Additional file 2 shows the composition of these
three sets in terms of PFAM protein families [34]. In
doing so, only three and two proteins had unassigned
PFAM accessions from 605-query test set and 73-query
test set respectively, while 3082-protein target set had only
14 proteins with no PFAM accessions. The most repre-
sented protein families in 605-query test set and 3082-pro-
tein target set were Aminotran_1_2 (PFAM:PF00155) with
13 proteins and Adh_short (PFAM:PF00106) with 60 pro-
teins respectively. Non-trivial query set with 73 proteins
had three most represented protein families Hydrolase_3
(PFAM:PF08282), Pyr_redox_2 (PFAM:PF07992) and
DeoC(PFAM:PF01791), each were associated with three
proteins. Therefore, the portions of overrepresented
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Figure 6 View of a sub-network around 2b83A (center, dark border). Red links are direct matches based multiple six-residue ETA and grey
links are secondary connections. Proteins are represented by circles of different colors that denote the enzymatic function (red: EC 1.1.1.1, pink:
EC 1.1.1.2, orange: EC 1.1.1.95, brown: EC 1.1.1.47, yellow: EC 1.1.1.103, lavender: EC 1.1.1.90). The network diffusion model is able to make a
correct prediction in this case due to the weight of the edges and proximity of correct functional labels in the network to 2b83A.

protein families in 605-protein and 73-protein query test
sets and 3082-protein target set are 2%, 4% and 2%
respectively.

Evolutionary Trace: In this work, we used the real-valued
version of Evolutionary Trace (ET) algorithm whose
detailed description can be found elsewhere [19,35]. Briefly,
ET algorithm first identifies homologous sequences for a
query protein by performing BLAST [36] searches over
NCBI Entrez non-redundant protein sequence database.
The identified BLAST hits shared minimum 20% and max-
imum 95% sequence identity with the query sequence.
Next, ClustalW [37] generates multiple sequence align-
ment for the identified sequence hits for the query protein.
Further, a phylogenetic tree is obtained by using UPGMA
algorithm [38]. Finally, ET algorithm calculates the

evolutionary ranks by employing a combined method of
integer ET [18] and Shannon Entropy [39] that quantifies
correlation of variations in multiple sequence alignment
with branching in phylogenetic tree for each amino acid in
the query sequence.

Template selection: In this work, we used five and six-
residue templates relying on a previous study showing that
these sizes maximized accuracy and sensitivity [17]. Tem-
plate creation was described in details elsewhere [17].
Briefly, template picker algorithm performs the following
steps: ETA first applies real-valued version of ET algo-
rithm (see the above section) to assign evolutionarily
importance ranks to the amino acid residues in a protein
structure of interest and sorts clusters of important resi-
dues according to their evolutionarily importance rank
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from the lowest (the most important) to the highest (the
least important). The cluster size increases as the rank
increases. In case of single templates of five or six residues,
ETA first identifies the cluster of at least 11 important sur-
face residues whose surface accessible area is greater than
2A?, which is computed by DSSP [40]. Each residue is
represented by its C,’s coordinates. Template selection
algorithm further identifies the center of mass (CM) of the
chosen clusters and the closest best ranked-amino acid as
the first residue of the template. In order to identify the
other residues of the template, the algorithm iteratively
selects other most important residues that are closer to
the midpoint between the CM of cluster of selected resi-
dues in the previous iteration and the CM of the chosen
cluster. Residue positions in the templates are labeled by
both original residue types in the structure and any non-
gapped combination that is at least seen twice in the mul-
tiple sequence alignment. In order to generate multiple
templates, ETA first identifies a cluster containing at least
11 important surface residues as the first cluster. Next,
ETA identifies other clusters, if any, that do not comple-
tely overlap with the first cluster, and that contain surface
residues with better evolutionary importance ranks than
those in the first cluster. Additional templates from those
clusters were generated by following the same steps as in
case of single templates. Therefore, the number of tem-
plates for a given protein was dictated by the number of
identified distinct clusters of evolutionary important sur-
face residues for that protein. For example, if there is no
other distinct cluster than the cluster chosen for single
templates, the template selection algorithm yields only a
single template.

Template searching: ETA utilizes paired-distance match-
ing (PDM) algorithm to probe geometric similarities
between query templates and other structures. In doing
so, PDM first identifies all the residues that are identical
to the first residue types of the query template in the other
structure. In the next iteration, PDM identifies the resi-
dues that are identical to the type of second template resi-
due. PDM retains only the pair of residues whose paired-
distance is within 2.5A with the paired distance of first
and second template residues. Further, residues that are
identical to the type of third template residue are identi-
fied. PDM again applies distance constraint of 2.5 A upon
comparison of combination of all possible-paired distances
in order to select the third residue. In further iterations,
these steps are repeated to select other residues in the tar-
get structure. Each match is assigned with a value of root
mean square deviation (RMSD) to quantify the geometric
similarity.

Match filtering: In the next round, ETA eliminates self-
matches and matches with RMSD greater than 2 A. The
remaining matches are fed into the Support Vector
Machine (SVM) that is trained for enzymes [23]. Each
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match is represented by either six or seven dimensional
vectors depending on the template size. One dimension is
for geometric similarity whereas others quantify evolution-
ary similarity. The latter is computed as the absolute value
of percentile-rank differences of a query template residue
and matched residue in the target structure. We use the
same six-residue SVM for five-residue ETA by construct-
ing a virtual sixth residue as the average of the other five
positions. In the end, SVM filters the significant matches.

Reciprocal match: Geometric and evolutionary similar-
ity is probed by both template(s) from query protein onto
target structures and templates from target structures
onto the query protein. Reciprocal matches constitute
the intersection of significant matches selected by SVM
in both directions.

Function prediction: In the final round, ETA assigns
votes to the functions of unique reciprocal matches and
thereby suggests the function with the highest vote as a
predicted function. If a particular protein is identified as a
significant match several times for a query protein, its
function gets only one vote.

Performance measures: We used accuracy, sensitivity
and F-measure to assess ETA’s performance, which are
defined as follows: Accuracy = TP/(TP+FP) and Sensitiv-
ity=(TP)/(TP+EN), where TP is true positive, both known
and predicted function agree at the fourth EC level, FP is
false positive, predicted and known function does not
agree at the fourth EC level, and FN is false negative,
which represents the cases with no prediction. F-measure
= (1+B?). accuracy. sensitivity/(B* . accuracy + sensitivity),
where 3 equals 0.5 to put more emphasis on accuracy.

Sequence identity: In order to calculate the sequence
identity between two proteins, we first aligned their
sequences by ClustalW [37]. Sequence identity is defined
to be the ratio of the number of aligned identical residues
in both sequences to the total number of aligned
residues.

Prediction similarity: ETA’s performance at a given
template selection category was expressed in a vector
form of length N, where N is the size of query test set.
Each element of the vector represents a particular query
protein, which is labeled by either correct, incorrect or
no prediction tags. Similarity between performances of

do b N, Pl ep?
category 1 and 2 is assessed by S(1,2) = ; N
where P! denotes the type of tag attached to the i'™ pro-
tein in the query set based on category 1 annotation
scheme. Then, P! e P? = 1if P! = P/, else P} o P} = 0.
ETA networks: ETA networks are constructed in three
parts: query-query, query-target and target-target. In each
part, an ETA variant is used to identify significant recipro-
cal matches. For example, in the query-query part, ETA
identifies a reciprocal match for each protein in the query
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set from another non-self match protein of query set.
Query-target part is default ETA protocol. In the target-
target part, ETA assigned reciprocal matches for each pro-
tein in the target set from another non-self match protein
in the target set.

Once detected, weighted edges in the networks were
calculated from an ETA match with:

1/2[(rmsd - ,Uvrmsd)/armsd + (ETSCOW - ,UvETScore)/GETScore]

ETA provides the rmsd and ETScore which collectively
describe the quality of a template match. An ETScore
reflects the total difference between the evolutionary score
of matched residues. The rmsd is the geometric difference
between the template and the matching structure. p,sq is
the average rmsd for all matches in the network, 6,4 is
the standard deviation for all rmsds in the network, pgt.
score 1 the average ETScore for all matches in the network
and Gerscore 1S the standard deviation of all ETScores in
the network.

We store the resulting network in an adjacency
matrix, W. If there are n nodes, W is n by n and Wj; is
set to the weight calculated above if a match is detected
between protein i and j, or set to 0 if there is no such
match. We then create an n-dimensional label vector y
for a particular function present in our network by set-
ting yi, 0 < i < n to 1 if node i is known to have that
function, to -1 if it is known to not have that function,
or to 0 if the protein has unknown function (or is a
member of the test set). We use these elements to pose
an optimization problem:

H = Z (fi—1)* +a Zwij(fi —f) The n dimen-
sional véctor f will hold if)redicted functional scores after
diffusion. The first term penalizes nodes which deviate
highly from their initial label - encouraging the system to
keep the initial knowledge. The second term penalizes
neighbors that have different labels according to the
weight of their connection, encouraging functions to pro-
pagate through the network. The parameter a trades-off
these two conditions. This can be efficiently solved as fol-
lows: f = (I + aL)y where L = D - W is the Laplacian
matrix (D is the diagonal matrix, Dj;; = Z; wy) [41]. We
repeat this process for every function represented in the
network and compare the resulting values in f for each
node with unknown function. To do this we normalize the
values in f across all nodes with unknown function (those
entries in y initially set to 0) by taking z = (f; - f,)/f; where
f, is the average f; across all proteins with unknown func-
tion and f; is the standard deviation of f; across all pro-
teins with unknown function. This results in a z score,
which we use as a measure of confidence. The function
with the largest z score at for node i becomes our predic-
tion. The Cytocape plugin for ETA networks is available at
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http://mammoth.bcm.tmc.edu/networks/[42]. Multiple
template and five-residue template extension will be incor-
porated into http://mammoth.bcm.tmc.edu/eta/.

Additional material

Additional file 1: Graph of accuracy versus confidence for global
diffusion over a network of ETA's six-residue templates. The vertical
axis shows the cumulative accuracy of cases at a given confidence score
and above

Additional file 2: (A) Bar charts showing the number of PFAM
accession codes that are associated with the number of proteins in
605-protein query test set and 73-protein query test set (non-trivial
test set) in black and gray respectively. (B) Bar chart showing the
number of PFAM accession codes that are associated with the number
of proteins in 3082-protein target set.
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