
Game On, Science - How Video Game Technology May
Help Biologists Tackle Visualization Challenges
Zhihan Lv1,2., Alex Tek1,4., Franck Da Silva1, Charly Empereur-mot1, Matthieu Chavent3*, Marc Baaden1*

1 Laboratoire de Biochimie Théorique, CNRS, UPR9080, Univ Paris Diderot Sorbonne Paris Cité, Paris, France, 2Ocean University of China, QingDao, People’s Republic of

China, 3CEA, DAM, DIF, Arpajon, France, 4Université Pierre et Marie Curie, UPMC-Sorbonne Universités, Paris, France

Abstract

The video games industry develops ever more advanced technologies to improve rendering, image quality, ergonomics and
user experience of their creations providing very simple to use tools to design new games. In the molecular sciences, only
a small number of experts with specialized know-how are able to design interactive visualization applications, typically static
computer programs that cannot easily be modified. Are there lessons to be learned from video games? Could their
technology help us explore new molecular graphics ideas and render graphics developments accessible to non-specialists?
This approach points to an extension of open computer programs, not only providing access to the source code, but also
delivering an easily modifiable and extensible scientific research tool. In this work, we will explore these questions using the
Unity3D game engine to develop and prototype a biological network and molecular visualization application for
subsequent use in research or education. We have compared several routines to represent spheres and links between them,
using either built-in Unity3D features or our own implementation. These developments resulted in a stand-alone viewer
capable of displaying molecular structures, surfaces, animated electrostatic field lines and biological networks with
powerful, artistic and illustrative rendering methods. We consider this work as a proof of principle demonstrating that the
functionalities of classical viewers and more advanced novel features could be implemented in substantially less time and
with less development effort. Our prototype is easily modifiable and extensible and may serve others as starting point and
platform for their developments. A webserver example, standalone versions for MacOS X, Linux and Windows, source code,
screen shots, videos and documentation are available at the address: http://unitymol.sourceforge.net/.

Citation: Lv Z, Tek A, Da Silva F, Empereur-mot C, Chavent M, et al. (2013) Game On, Science - How Video Game Technology May Help Biologists Tackle
Visualization Challenges. PLoS ONE 8(3): e57990. doi:10.1371/journal.pone.0057990

Editor: Paul Taylor, University of Edinburgh, United Kingdom

Received October 30, 2012; Accepted January 31, 2013; Published March 6, 2013

Copyright: � 2013 Lv et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the French Agency for Research (grants ANR-07-CIS7-003 and ANR-11-MONU-003) and the China Scholarship Council
(scholarship 2010633093). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: baaden@smplinux.de (MB); chavent@ibpc.fr (MC)

. These authors contributed equally to this work.

Introduction

Biology currently undergoes a rapid expansion, calling for tools

to visualize huge and complex systems, such as macromolecular

structures, -omics networks or even organs and organisms [1–3]. It

is a particular challenge for academic researchers to develop

software solutions meeting these demands. At the same time, the

video game and movie industries face similar needs in terms of

complexity and efficiency to release products (i.e. respectively

games and movies) for an increasingly wider audience. These

industries benefit from more and more advanced tools enabling

a quick development cycle, making the most of latest hardware

and software. Can the scientific community use these tools to

overcome complexity and efficiency issues related to software

development by using solutions already provided by the

entertainment industry? During recent years, this question was

partially answered with respect to the movie industry as several

research groups around the world have begun to use dedicated

tools such as Maya (http://usa.autodesk.com/maya/), Cinema 4D

(http://www.maxon.net/products/cinema-4d-studio.html) or

Blender (http://www.blender.org/). Scientific projects associated

to these programs include ePMV [4], Molecular Maya [5] and

BioBlender [6]. Using such tools for animation is particularly

beneficial for teaching as well as for communicating with a broad

public, even leading to new discoveries [7] and valuable insight by

combining experimental data and modelling [8]. Unlike the

emerging spread of tools from the movie industry, the use of

software to develop games remains largely unexplored in

molecular graphics and modelling, despite its enormous potential.

For many years, game developers have gathered routines and

frameworks that can be reused for a wide range of games. These

code blocks have been aggregated to provide toolkits, called game

engines, embedding all the components required to create a game

in one package [9]. The core functionality typically includes

a rendering engine for 2D or 3D graphics, a physics engine, sound,

scripting, animation, artificial intelligence, networking, memory

management, multi-threading, etc.… There are many game

engines that are designed to generate executables for video game

consoles, personal computers and even mobile devices: Unity3D

(http://unity3d.com/), Unreal Engine (http://www.unrealengine.

com/), CryEngine (http://mycryengine.com/), Blender Game

Engine (http://www.blender.org/education-help/tutorials/game-

engine/). These engines are free for non-commercial use and very

appealing for developing scientific applications.

PLOS ONE | www.plosone.org 1 March 2013 | Volume 8 | Issue 3 | e57990

Here, we focus on molecular and network visualization using

surfaces, spheres and links between them. With this test case we

assess whether by using a game engine the functionality of classical

viewers could be reproduced and extended in substantially less

time and with less development effort than with common tools.

Current needs include the ability to display hundreds of thousands

of distinguishable elements in interactive time, using classical

representation schemes. To provide a realistic scenario, inspired

by current research, we have implemented our own visualization

algorithm based on latest hardware capabilities such as pro-

grammable Graphics Processing Units (GPUs) [10]. The aim was

to identify eventual restrictions imposed by the game engine

programming environment. A user-friendly interface is required to

facilitate navigation and interaction with virtual objects. In order

to touch a wide audience, multiple platforms should be supported

without the need to develop specific ports – ideally computers on

Windows, MacOS and Linux operating systems, web pages,

handheld devices such as smartphones and tablets. Most of the

available game engines provide such features as well, but at

different levels of development easiness.

We have chosen to test the Unity3D game engine (http://

unity3d.com/) for its ability to deploy multi-platform applications

with minimal programming effort. Furthermore, Unity3D pro-

vides an easy-to-use interface to develop 3D graphics applications

using JavaScript, Boo – a python derived language - or C# code.

Unity3D includes advanced functionalities to fully use the

capacities of recent programmable graphics cards. This is possible

employing optimized Cg functions [11], dedicated for Nvidia

graphics cards, or GLSL (OpenGL Shading Language) code,

a more universal language, which can be used on all recent

graphics cards as well as on mobile devices [12]. The developer

community is very active and helpful in providing example code

and expert answers when technical problems are encountered.

In this article, we implement and compare several approaches

for ball-and-stick representations using built-in Unity3D features.

We also implemented the HyperBalls representation [13] and

molecular surfaces. The advantages and limitations of each

approach are discussed. Typical molecular properties such as the

shape of molecules (surface) or their electrostatic potential can be

visualized with original representation schemes. To demonstrate

the flexibility of the development tool, we programmed a biological

network viewer with interactive features. Using Lit Sphere shading

[14], it is possible to achieve an artistic and illustrative rendering

for any type of these representations. The outcome is a usable

multi-platform stand-alone viewer that produces unique publica-

tion-quality figures and may serve as prototype for other

developments.

Methods

UnityMol can be deployed in two versions: a stand-alone

application and a web applet running on top of the Unity3D web-

plugin. We have tested several approaches to achieve the most

efficient and appealing visualization of spheres, links and surfaces

in order to balance graphical quality and display efficiency. We

created a user interface to load and manipulate molecular

structures, field lines, surface objects or biological network

topologies.

Accessing Data Files
For structural data we use the Protein Data Bank [15] format.

Coordinate files can be imported from local storage or can be

downloaded directly from the PDB server by entering their

molecule ID. Due to security restrictions in the Unity3D web

plugin, files have to be loaded through an intermediate server

rather than from the local disk. After fetching files from the PDB

or the server, they can be used by the web application. This

restriction does not apply to the standalone viewer. PDB files are

parsed to extract atom information such as atom type, residue

name, residue id and coordinates. The molecule topology is built

by using typical interatomic distances to detect bonds. Surfaces are

generated either externally as meshes in the Wavefront OBJ

format (these files contain vertex and face information used to

reconstruct a 3D mesh), or internally using a density grid

isosurface approach. Electrostatic potential grids computed by

APBS [16] (or other tools) and stored in OpenDX format can be

read for iso-surface visualization or be pre-treated using the

BioBlender pipeline to generate Json files representing field lines.

These files describe point coordinates for each field line to be

animated. Network topologies are represented using extensible

Graph Markup and Modelling Language (XGMML) format that

can be obtained from Cytoscape (http://www.cs.rpi.edu/

research/groups/pb/punin/public_html/XGMML/) [17].

XGMML files are parsed to extract id, name, position, size,

colour and topology of nodes.

Graphical Methods Used
We have tested graphical methods available in Unity3D as well

as our HyperBalls representation based on ray casting [13]. The

purpose of implementing HyperBalls was to evaluate how difficult

it is to port previously developed code to Unity3D and whether

this approach facilitates and speeds up the creation of a molecular

graphics application. By implementing a molecular surface

generation routine based on the classical marching cubes

algorithm, we provide an additional proof of the generality of

the game-engine approach for visualization applications.

Built-in graphical primitives. Unity3D provides an opti-

mized set of graphical primitives for rendering. We use tri-

angulated spheres, triangulated cubes and lines. Spheres and cubes

display atoms (for molecular structures) or nodes (for networks);

links between them are rendered using lines (see Fig. 1-B,D).

Optimized rendering with a point-sprite particle

system. Tessellated graphical primitives require a large number

of triangles to represent smooth spheres and are not appropriate to

represent molecules within a game engine. Instead, a single square

(composed of two triangles only) always oriented perpendicular to

the screen plane can be used to represent a single atom. An image

of the atom sphere called sprite is pasted onto the square. This

point-sprite method is very efficient to display many similar images

and can be extended to a so-called particle system (see Fig. S1 in
File S1). In games, this visual method is commonly used to depict

effects involving many small particles such as fire, smoke, clouds,

snow, dust, etc. … For UnityMol, we have adapted Unity3D’s

built-in particle system routine to paste spheres representing atoms

on each square (see Fig. 1-A). In Unity3D, a single particle system

is limited to 16 000 particles. For systems with more components,

we implemented a mechanism to create and manage several

particle systems transparently. This domain decomposition may

lead to minor graphical artefacts as illustrated in Fig. S2 in File
S1.

Using GPU shaders with the hyperBalls approach. We

have developed a molecular representation called HyperBalls [13].

This representation takes advantage of the programmability of

graphics cards using high quality ray casting with good display

performance. The representation is composed of spheres depicting

atoms linked by hyperboloid primitives rather than simple

cylinders. Using such hyperboloids, the representation can be

Game On, Science

PLOS ONE | www.plosone.org 2 March 2013 | Volume 8 | Issue 3 | e57990

adapted to illustrate continuous bond evolution, passing from

a one- to a two-sheeted hyperboloid (see Fig. 1-C).

The Unity3D framework enabled us to implement such

a graphical method by integrating GPU code – so called shaders

– to be run on the graphics card (as Cg or GLSL instructions). We

implemented HyperBalls using built-in Cg functions. To create the

representation, it is necessary to generate envelopes using cubes

and parallelepipeds to define atom and bond primitives, re-

spectively. Then, we represent spheres and hyperboloids within

these envelopes using ray casting.

Starting from this previously published implementation, we

were able to quickly add improvements to it, such as the lit spheres

shading described below.

Visualization of electrostatic potential. Electrostatic po-

tential visualization was implemented in UnityMol either as

isosurfaces or as animated particles following field lines. The latter

representation is similar to the rendering described in a recent

publication by Andrei et al [18]. The lines are computed from

particle advection inside a gradient vector field derived from an

electrostatic potential grid computed by APBS [16]. Currently we

use pre-computed field lines from BioBlender [18] stored in a text

file. How to generate such files (using APBS or other software) is

briefly described in Text S1 in File S1. We consider

implementing the whole process in a future version of UnityMol,

including interactive line selection filters. For now, only some

representative lines are selected according to the electrostatic

potential value on the molecule surface.

Once the line coordinates are loaded into memory, we

reconstruct field lines using the line renderer of Unity3D. A

dash-line effect depicting moving particles with a trail is achieved

using a shader that animates a sinusoidal function along the field

line according to a timer. The user can change the colour, the

width, the length and the speed of the particles via the GUI (see

discussion and examples of such lines in the results section).

Visualization of molecular surfaces. Molecular surfaces

can be imported in Wavefront OBJ format from various molecular

modelling programs such as MSMS [19], PyMol [20], Chimera

[21], VMD [22] or PMV [23]. The 3D triangulated mesh is easily

reconstructed using Unity3D routines and positioned to fit the

atomic representation if one is loaded. Different methods can be

used to render the surface using shader programs. By default,

a simple lighting and a uniform colour are used.

Alternatively, UnityMol is able to generate a Gaussian molec-

ular surface. An atomic density grid is computed by adding

Gaussian distributions originating at the atom positions as

discussed in [24]. This technique has subsequently been used in

the Yasara software [25] and more recently also in the VMD

program [26]. Then, the Marching Cubes algorithm [27] is

applied to the density grid in order to generate an isosurface. The

user can control the coarseness of the surface by changing the

surface threshold. While the process is fairly fast for molecules up

to 20 000 atoms, more optimizations are to follow for larger

systems.

All types of surfaces can be cut according to fixed or moving

planes. The interior of the molecule is filled by a uniform colour to

enhance the user’s impression of cutting a solid object. The

implementation uses a shader hiding the pixels of the mesh located

above the plane defined by the user. The colour, orientation and

position of the cut plane can be changed interactively (see

examples in the results section).

Figure 1. Different molecular representations implemented in UnityMol. A- Particle system depicting atom spheres. B- Unity3D triangulated
spheres for atoms and lines for bonds. C- HyperBalls spheres and bonds. D- HyperBalls spheres for atoms and Unity3D cubes for bonds.
doi:10.1371/journal.pone.0057990.g001

Game On, Science

PLOS ONE | www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e57990

For the moment, rendering of molecular surfaces is achieved by

triangulation. The quality of such a surface is still limited because

of memory restrictions. To improve this issue, it may be possible to

build on recent works using the full capacity of modern graphical

hardware to depict molecular surfaces combining a high quality of

visualization and very good display performances [28–30]. It

should be feasible to include such approaches in UnityMol in the

near future, as the HyperBalls representation uses similar

technology.

Lit sphere shading. On a virtual 3D object, the orientation

of one pixel relative to the camera is determined by its normal. All

the visible normals for one viewport can be retrieved on

a theoretical half-sphere located at the centre of the screen. Thus

a lighted sphere, or lit sphere, depicted in 2D contains all the

information required to construct a lighting model. Sloan et al.

[14] used this principle to light 3D meshes by mapping pixel

normals with a 2D texture representing a sphere. In UnityMol, we

implemented this approach for triangulated meshes and Hyper-

Balls using shader programs to compute the normal for a pixel and

retrieve the colour value at the corresponding coordinates on the

texture. This value can be used as is or blended with other colours

or textures to combine different rendering effects.

A few lit spheres are included as UnityMol program resources.

The user can choose a texture for surfaces and HyperBalls

representations using the GUI. In the standalone version, it is

possible to import custom textures directly from the hard-drive.

Hardware and Software Implementation
Development, benchmarking and testing were carried out on

a Mac Pro computer with a quad-core Intel Xeon 3 GHz

processor, 8 GB of memory, an NVIDIA GTX 285 graphics card,

running 64bit Mac OS X 10.6. Results presented in this article are

mostly based on the 3.5 version of Unity3D. All source code is

implemented using C# and Cg languages built into Unity3D and

is available on the sourceforge project website http://unitymol.

sourceforge.net.

Results

Performance of Different Graphical Methods
In this section, we evaluate several Unity3D features on a simple

test case and go on to determine the efficiency of the most

promising features on a wider range of molecular structures. We

then compare these features to our HyperBalls implementation.

Comparison for a simple test case: ferrocytochrome

C. We used the molecule ferrocytochrome C [31], PDB ID:

1KX2, as a test case to compare the rendering approaches

implemented in Unity3D. This protein is composed of 1 249

atoms and 1 113 bonds, a common size in the PDB.

We evaluated four methods to render atoms (see Fig. 1):
a particle system, triangulated spheres, triangulated cubes and

HyperBalls spheres. We also tested three methods to display

bonds: cubes, lines and HyperBalls hyperboloids. The use of cubes

is not of interest for representing atoms but it provides reference

data for benchmarks allowing us to compare against the creation

of simple graphical primitives with Unity3D. Fig. 2-A provides

a benchmark showing that 3D point-sprites (particles) are the most

efficient method to represent spheres in Unity3D. Triangulated

cubes are eight times slower to render, closely followed by our

implementation of spheres using HyperBalls and Unity’s built-in

spheres. Rendering bonds in addition to atoms does not change

this ranking, but we observe a marked decrease of display

performance for the particle system, the display refresh rate being

divided by more than a factor three. The impact is less important

for the other methods, about a factor 1/3, using cubes for links.

This value is divided by more than ten for the particle system

when using hyperboloids or lines to render bonds. For the

HyperBalls and Unity spheres representations, adding lines or

hyperboloids divides the display rate by three. Concerning the

particle system, these results can be explained by its high intrinsic

efficiency to render spheres. The combination with other graphical

methods puts a limit to this efficiency. In the other cases, the

decrease in performance can be explained by the fact that the

number of graphical primitives is nearly doubled when bonds are

added.

For entirely fluid and interactive display manipulation, it is

mandatory to achieve a rendering rate above 30 Frames Per

Second (FPS). Fig. 2-A shows that the display performance with

added bonds is acceptable for all primitives. Depending on the

chosen method, the number of triangles and vertices for the

graphical primitives may change considerably, directly affecting

the display efficiency. The number of function calls to draw these

elements is another important bottleneck with less calls leading to

better efficiency (see Table S1 in File S1). Globally, these results

depend on the size of the rendering window, and in particular

concerning the HyperBalls representation, intrinsic graphics

hardware performance is another key element that governs

rendering performance.

Testing rendering efficiency limits and interactivity. We

selected the particle system, Unity3D sphere and HyperBalls

sphere methodologies to evaluate their respective efficiency limits

using a set of molecules with sizes ranging from about 1 200 to 100

000 atoms (see Table 1). We focus on spherical atom

representations of large macromolecular structures with the aim

to render the maximum number of atoms in order to evaluate the

brute performance of our own and of Unity3D built-in

implementations. We assess the display rate for static molecules

(see Fig. 2-B). As expected, the performance of the particle system

exceeds the other two methodologies. Even for molecules as large

as ATP synthase (PDB-id 3OAA), comprising 100 000 atoms, the

frame rate remains high. The results for HyperBalls spheres are

acceptable for molecules up to a few thousand atoms. Beyond 10

000 atoms, the number of frames per second (FPS) is near ten, the

lowest rate at which rendering can be considered useable. We also

analysed the impact of user interaction on display performance as

described in supplementary material (see Fig. S3 and Text S2 in
File S1). This lead us to improve the reactivity of UnityMol by

implementing an on the fly optimization as described in the

following paragraph.

On the fly performance optimization using a level of

details approach. To improve the overall reactivity of Uni-

ty3D, in particular for slower rendering modes such as HyperBalls

spheres and bonds, we have implemented a so-called Level of

Details (LoD) method. This functionality automatically switches

from a specific representation that is assumed to render slowly to

the fast particle system representation while the user is moving the

molecule. This option is called ‘‘LoD Mode’’ in the UnityMol

Graphical User Interface. LoD is commonly used in other generic

data visualization packages such as Paraview (http://www.

paraview.org/) to manipulate systems with many particles in-

teractively.

Molecular Features Visualization and Artistic Rendering
Electrostatic field lines visualization. Recently, Andrei

et al. have developed an animated representation to depict

electrostatic field lines using the Blender program [18]. This

visualization is particularly appealing and useful to represent the

pathways that a charged molecule may follow guided by otherwise

Game On, Science

PLOS ONE | www.plosone.org 4 March 2013 | Volume 8 | Issue 3 | e57990

invisible electrostatic interactions. Unfortunately, the previous

implementation is specific to the Blender package, which has

a steep learning curve. Furthermore, it can only be run in an

Internet browser window. We have reused this type of animation

in the UnityMol viewer so that field lines can be visualized in the

standalone version as well as in Internet browsers (see Fig. 3).
Interactive features enable the user to change the graphical aspect

of the field line animation.

In addition to dynamic field lines, classical static isosurface

representations of electrostatic potentials can be rendered. The

perception of the isosurface shapes may be enhanced using artistic

rendering described below (see Fig. 3E).
Molecular surface cut planes. Molecular surface rendering

is a fairly standard feature in molecular viewers. The addition of

cut planes enables the user to easily visualize hidden elements in

the interior of a molecule. This feature is particularly useful for

proteins with internal cavities or channels (see Fig. 3-B,C) and

when combined with the electrostatic field lines visualization. Very

few molecular viewers implement this feature, which has been

rendered particularly efficient and convenient to use in UnityMol.

Figure 2. Benchmark of graphical methods. A – Rendering efficiency for ferrocytochrome C (PDB-id 1KX2) shown as atoms and bonds
measured in Frames Per Second (FPS) for a 134461008 viewport. B - FPS values for molecules of increasing size rendered by a particle system,
HyperBalls or Unity spheres. The red dashed line divides the graph in two parts: above this line the FPS step is 50, below this line the FPS step is 5.
doi:10.1371/journal.pone.0057990.g002

Game On, Science

PLOS ONE | www.plosone.org 5 March 2013 | Volume 8 | Issue 3 | e57990

Artistic rendering by lit sphere shading. Lit sphere

shading [14] is a rendering technique inspired from artistic

methods to depict light and shadows on a three-dimensional object

drawn on a two-dimensional surface. Based on the fact that a 2D

depiction of a sphere encodes all the possible light values for a 3D

object, we can use a 2D texture representing a sphere and its

lighting, a so-called lit sphere, as a basis to light any 3D object.

This process ensures a shading consistency and transfers all the

artistic value put into the lit sphere onto the 3D object. For

example, near photorealistic rendering is possible using spheres

extracted from a photograph of a material such as metal, stone,

glass etc… (see Fig. 4). As shown on Fig. 4-C, using a drawn

sphere as reference texture produces an illustrative rendering

close to visualizations generated by Weber [32] with a more

demanding technique restricted to secondary structures. Bruckner

et al [33] applied this technique to create style transfer functions

that map different styles to different parts of a 3D object in a single

rendering. This approach could be very useful to generate intuitive

visualizations of molecular properties such as hydrophobic patches

or to highlight specific binding sites within a molecule.

Lit sphere shading is a non-demanding method to render

complex lighting effects in real time, using simple square textures.

No performance loss has been observed while applying lit spheres

onto a mesh or HyperBalls. As the light orientation is encoded in

the lit sphere, the lighting effect is view-dependent which is

desirable to achieve a consistent rendering when rotating the

camera. An intrinsic inconvenience may be encountered when

adding external light sources originating from a different direction

than the one in the lit sphere.

Game and Interaction Oriented Features
As a game engine, Unity3D provides pre-configured built-in

features such as visual effects, a physics engine and access to

peripherals (such as joypads). These functionalities can be reused

for molecular visualization and interaction.

Visual effects. There are two kinds of special effects in Unity:

image based methods working in 2D screen space and methods

working in 3D space. Using screen space effects, it is possible to

deform an image, add black lines to outline contours or add glow

and blur effects simulating persistence of vision (see Fig. 5-C,D).

As an example of 3D space effects, we have added ambient

occlusion to highlight protein shape (only available with tri-

angulated primitives). Access to these advanced effects requires

a Unity3D professional license for development.

A virtual environment may be created by adding a so-called

Skybox surrounding the molecule and decorating it with landscape

images (see Fig. 5-A,E).
Adding physical behaviour with a physics engine. In

Unity3D, a physics engine is used to model physical and

mechanical behaviour of rigid 3D objects such as collision,

dynamics, elastic joints, etc. … To illustrate the potential of such

an engine, we have implemented an interaction with the molecule

based on a very simple spring network. The user can grab atoms to

deform the molecule while the structure is kept coherent

(‘‘Interactive Mode’’ in the UnityMol GUI; see Movie S1
described in File S1). A visual feedback is provided by

changing atom colours from white to black to represent the

potential energy of each part of the elastic system.
Improving the user interaction experience through

peripherals and GUI. Unity3D provides routines to use game

peripherals such as joypads and joysticks. These game controllers

can assist the user in navigating the scene as illustrated in Movie
S1 described in File S1. UnityMol supports the joystick for

control functions such as navigation via the integrated manipula-

tor, selection of atoms and bond visualization modes, globally

changing atomic radii and more. In the future, we plan to extend

these functionalities using the Nintendo Wiimote, the Leap

Motion and the Microsoft Kinect devices.

In Unity3D, it is straightforward to create a GUI without using

a dedicated and potentially complex toolkit. We used built-in

mouse picking functions to highlight selected atoms and access

information (such as atom type, residue, etc.) or calculate distances

between atoms. The UnityMol GUI, main program features and

general usage of the software are described in Fig. S4 in File S1.

Reusing Components for Speedy Development of
a Systems Biology Application
A particular benefit of a game engine is its modularity and the

reusability of the generated routines and scripts. The use of an

integrated intuitive editor facilitates the development of applica-

tions without writing numerous lines of code. It is possible to

position 3D objects in the scene and apply scripts and graphical

functions directly via the Unity editor. To illustrate this feature, we

have adapted our molecular viewer to represent generic biological

networks in 3D. To implement this network viewer (embedded in

the demo), we have adapted the file parser to read XGMML

(extensible Graph Markup and Modelling Language) format

obtained as output of the CytoScape program [17]. The graphical

primitives to represent atoms were used to depict network nodes

Table 1. Set of molecules used to evaluate the rendering performance of UnityMol.

Molecule Name PDB ID Nb. of atoms Reference

Ferrocytochrome C 1KX2 1 249 Bartalesi, et al. [31]

Glutathione S-transferase 1GLQ 3 516 Garcia-Saez, et al. [47]

Adhesin 3SYJ 7 968 Meng, et al. [48]

Alpha-galactosidase 2XN2 12 627 Fredslund, et al. [49]

Acetylcholine binding protein 2XNT 16 550 Akdemir, et al. [50]

DARPin bound to AcrB 3NOC 25 558 Monroe, et al. [51]

Beta-galactosidase 3MUY 36 360 Dugdale, et al. [52]

RNA polymerase 2Y0S 52 472 Wojtas, et al. [53]

Hydrolase 2B9V 80 710 Barends, et al. [54]

ATP synthase 3OAA 99 573 Cingolani and Duncan [55]

doi:10.1371/journal.pone.0057990.t001

Game On, Science

PLOS ONE | www.plosone.org 6 March 2013 | Volume 8 | Issue 3 | e57990

while primitives displaying interatomic bonds are reused to model

network edges. Colours and labels were adjusted to mimic

conventions from Cytoscape (see Fig. 6). We vary the size of

the nodes as a function of the radius provided by Cytoscape

(depending on connectivity). We noticed that the default flat

network view may create graphical artefacts as bigger nodes may

hide adjacent smaller ones. To reduce this effect, we have

implemented a function distributing nodes along the z-axis

according to their radius (see Fig. 6-B). Hence, bigger nodes

are positioned in the background or in the foreground (using the

depth factor scroll bar in the GUI) to improve the visibility of the

remaining nodes. We have reused the picking functionality to

obtain specific network information when the user clicks on a node.

The interactive mode presented previously can be used to

manipulate the nodes and position them in a user-defined location

(for convenient manipulation, choose a drag value of ,5 and

a spring value of ,0).

Figure 3. Visualization of animated electrostatic field lines and static iso-surfaces. A – Depiction of the electrostatic potential of the GLIC
ion channel (PDB-id 3EAM) by animated trails moving along the field lines. B – Use of a cut plane to reveal the buried channel. C - The built-in Unity3D
editor was used to remove some field lines and focus on the ones lining the channel pore. D – Time series showing 3 snapshots of a moving trail. E –
Electrostatic potential of ferrocytochrome C shown as iso-surfaces (red : contoured at22, blue : contoured at +2) with a toon shading to enhance the
volume perception.
doi:10.1371/journal.pone.0057990.g003

Game On, Science

PLOS ONE | www.plosone.org 7 March 2013 | Volume 8 | Issue 3 | e57990

Figure 4. Lit spheres concept. A - All possible lighting and shading components of an arbitrary object (right) can be represented on a 2D image
of a sphere (left). Colored arrows depict locations of equivalent surface orientation. B - Different lit-spheres applied to a molecular surface creating
different effects : hand drawing (left), green glass (center), cartoon shading (right). C – Illustrative rendering using lit spheres and Hyperballs. Van der
Waals (left) and backbone (right) representation of the BLT2 GPCR receptor with hand drawn lit spheres.
doi:10.1371/journal.pone.0057990.g004

Game On, Science

PLOS ONE | www.plosone.org 8 March 2013 | Volume 8 | Issue 3 | e57990

Discussion

UnityMol a Graphical Application to Gather Molecular,
Network and Electrical Field Lines Visualization
We have gathered recently developed graphical tools in an easy

to use distributable software that provides a unique combination of

functionalities absent from other publicly available viewers. We

have implemented the recently developed HyperBalls representa-

tion [13]. In comparison to the original HyperBalls program, it is

now possible to dynamically adapt the visual aspect to the user’s

liking by continuously adjusting radius and shrink factor param-

eters via the graphical user interface. Furthermore, animation and

artistic rendering enabled us to enhance classical molecular

representations such as surfaces and electrostatic field lines.

Additional visual effects allow the user to intensify a scene and

create original images.

We compared our approach with common molecular viewers

such as VMD and PyMol (see Table 2). These programs have

better performances than our current version of UnityMol using

GPU representations. Currently, the UnityMol Ball & Stick

representation can interactively render molecules with few

thousands of atoms. Hence, this particular representation will be

more useful to create 3D graphical scenes for educational

demonstration purposes as, in this case, the focus is often on

molecules with a relatively small size. To visualize significantly

larger systems it is recommended to use particle system spheres

and switch on Hyperballs visualizations only when the user wants

to obtain a very high quality figure. We have implemented the

Level of Details method (see On the fly performance optimization

part) precisely for this purpose. We are working to improve this

part. The new version of the Unity3D game engine released a few

weeks ago has already improved the display performances (see

Table 2). We hope that future versions of Unity3D driven by the

Figure 5. Several visual effects available in Unity. A – Human hemoglobin (PDB id: 1HHO) rendered with a stylized blood effect. B – Binding of
a DNA molecule on the DNA-binding domain of Myb (PDB id: 1MSE). The secondary structure object was imported from PyMol. C - Contour outlining
combined with glow. D – Green fluorescent protein shown as glowing carbon alpha spline (PDB id: 1KYS). E - Artistic molecule rendering : leucotoxin
S component from Staphylococcus Aureus (PDB id: 1T5R) with a gold material. A,E – Background creation using a skybox.
doi:10.1371/journal.pone.0057990.g005

Game On, Science

PLOS ONE | www.plosone.org 9 March 2013 | Volume 8 | Issue 3 | e57990

increasing need of video games for GPU power – to display new

visual effects and accelerate interactivity – will help to further

improve the visual performances of UnityMol. It should be

emphasized that we present here a first version of our approach

and we will continue work to develop more efficient algorithms –

especially representations using the HyperBalls approach. We

hope that our program may interest the community of computer

scientists and game designers who may provide valuable help to

overcome this type of limitations.

In addition to molecules, we have implemented a 3D visual-

ization of biological networks from Cytoscape [17] where the

depth can be adapted to avoid overlap between different nodes.

For the best of our knowledge, this is the first time that such

a representation is used to display networks. All these depictions

can be tuned using the simple graphical user interface to generate

high-quality publication-ready images.

An Easily Modifiable and Extensible Molecular Viewer
with Editable Content
UnityMol is different from classical pre-compiled molecular

viewer executables. In addition to the standalone and webserver

versions, it can be run directly within the freely available Unity3D

game engine. The game engine environment provides the user

with full control over any detail of UnityMol. Because the Unity

user interface is very intuitive, many simple things can be changed

by the click of a button. It is straightforward to extend the

application. If a GUI menu entry is missing, it can be added in

minutes with just a few lines, most often by copying existing

examples in the code. Moreover, when running UnityMol from

within Unity3D, one can switch from game to editor mode and

hand-edit the scene. Because the elements in the scene are

Unity3D primitives, they can be modified on-screen by the user.

For example, when visualizing field lines, the editor mode enables

the user to select and delete field lines that are unwanted and

hence fine-tune the scene (as in Fig. 3-C), despite the fact that we

never explicitly implemented such a functionality (see Fig. S5 in
File S1). This feature can be particularly useful to prototype new

3D molecular representations. Furthermore, instead of the need to

recompile programs such as VMD or PyMol to see the results of

modifications, using the Unity3D engine helps developers to

modify, test and debug their code interactively using the editor

window, on-the-fly compilation and the runtime debugger of

MonoDevelop, the integrated development environment furnished

with Unity3D. These features clearly help to simplify the

visualization development due to a rapid and interactive trial-

and-error test cycle. Furthermore, Unity3D provides simplified

access to low-level graphics hardware functionalities that are

Figure 6. Biological network visualization. A – Original cytoscape visualization used as test case. B - UnityMol visualization with improved
visibility by adding depth and contours using a lit sphere.
doi:10.1371/journal.pone.0057990.g006

Game On, Science

PLOS ONE | www.plosone.org 10 March 2013 | Volume 8 | Issue 3 | e57990

usually not exposed in the APIs of existing programs such as VMD

or PyMol.

Thus, such a wide range of control by the user could be seen as

a new paradigm for scientific software development and presents

a clear rupture with current approaches used for molecular

visualization tools. At best, common packages provide scripting

access to selected functionality to the user, otherwise programming

know-how is required to delve directly into the application source

code – if it is available. In the context of open computer programs

[34], this approach provides users and developers not only with

access to the source code but also with a very accessible interface

(i.e. the editor) to examine the underlying science and implemen-

tation of the program.

UnityMol as a Platform for Prototyping Scientific Tools
We have described how to use a game engine such as Unity3D

to create a viewer for molecular structures as well as for biological

networks. During the development of these tools, it became

obvious that a game engine facilitates the development of scientific

applications: the editor window provides an interface to position

3D objects and assist with the attribution of functionalities, e.g.

implemented by a script, by dragging an icon onto the target

object. Thus, the amount of lines of code to be written is rather

limited and can in large parts be hidden for non-experts.

Development is further facilitated by support from a very active

Unity3D user community (see http://unity3d.com/support/

community.html), which provides assistance to novice developers

(this is also true for many other game engines). In particular the

existing internet forums and answer sites are a good source of

information with many pieces of code almost ready-to-use. For

example, the original lit sphere shader was adapted from the

official Unity3D forum. Several screen-space visual effects and the

file browser are user contents as well. For non-expert programmers

the availability of such resources speeds-up the development cycle

and softens the learning curve of the programming environment.

Many common visualization techniques are already implemented

and provided with Unity3D such as triangulated spheres, lines,

cubes and more, as well as a physics engine and built-in functions

to manage different types of controllers. While the development

tools are only available on Mac and Windows, stand-alone

applications can be deployed for the Linux platform as well. There

are some specific limitations in the free version of the Unity3D

program (such as less visual effects). Buying a professional license

provides access to special features or dedicated functions for

systems such as game consoles or smartphones. Work is in progress

in our group to explore these additional features and deploy

UnityMol on new platforms such as mobile devices.

We only scratched the surface of many features that can be

further extended to develop efficient programs. For example, the

physics engine could be exploited to create spring networks,

molecular dynamics and flexibility. Using this physics engine

combined with joystick or Wiimote controllers, it would be

straightforward to develop simple tools for interactive docking.

Our immediate plans are to extend UnityMol with practically

important aspects for the biophysical community such as

molecular dynamics trajectory loading and analysis. We started

to experiment with the MDDriver library [35] to be able to

connect to running or recorded MD simulations. Concerning

analysis facilities (including atom selection and scripting) we intend

to link UnityMol to existing frameworks such as for example

MDAnalysis [36].

And Designing Software for Edutainment
The video game industry is now booming and outperforms the

movie industry with revenues reaching $18.6 billion in the U.S. in

2010. Interactivity is a key advantage that can be achieved with

this medium. Direct interaction with the game itself as well as the

creation of common virtual worlds where players can interact with

each other contribute to this success. Such games can be a platform

for education [37] as well as a place of study for academic fields

such as social, behavioural and economic sciences [38]. Further-

more, scientific projects start to involve the general public in their

investigations [39]. The structure of games is well adapted to

involve a community to fulfil a particular task and may be used to

resolve scientific issues. This approach has recently been employed

to predict protein folding [40] and lead to impressive results [41].

There may be an enormous potential in such scientific ‘‘games’’.

Using adequate tools such as game engines may facilitate the

creation of such games by scientists. Starting from the code base

that we provide, it would be easy for a game designer working with

Unity3D to create simple games for education or beyond.

Furthermore, using dedicated game controllers such as the

Wiimote and Kinect, will allow users to interact with molecules

in a more natural manner. This may be a good solution to further

Table 2. Performance comparison between UnityMol using HyperBalls (with Unity 3D Engine Version 3.5 and 4), VMD and PyMol
to display molecules with Ball & Stick representation on two different configurations.

MacOSX 10.6 - 2.93 Ghz GTX 285 Windows 7 - 3.0 Ghz GTX 480

PdB id Nb Atoms UnityMol V3.5 UnityMol V4 VMD 1.9 glsl Pymol 1.5 UnityMol V4 VMD 1.9 glsl Pymol 1.5

1KX2 1 249 44 52 198 135 35 272 330

1GLQ 3 516 14 16 83 111 12 108 328

3SYJ 7 968 7 8 37 109 5 51 325

2XN2 12 627 4 4 24 70 3 32 321

2XNT 16 550 3 3 18 68 3 24 314

3NOC 25 558 3 3 11 51 3 16 299

3MUY 36 360 3 3 8 44 3 11 278

ZY0S 52 472 3 3 5 34 3 7 239

2B9V 80 710 3 3 4 26 3 4 197

3OAA 99 573 3 3 3 19 3 3 135

doi:10.1371/journal.pone.0057990.t002

Game On, Science

PLOS ONE | www.plosone.org 11 March 2013 | Volume 8 | Issue 3 | e57990

implicate young people in classroom demo presentations or

museum exhibitions. Interactivity is equally important for

researchers to evaluate their hypotheses or develop new ones on

live computer models by being able to ‘‘play’’ with them.

Currently, interacting with models using tools dedicated for the

movie industry is a difficult task given that making an animation

may require several weeks, months or more [7].

Concluding Remarks: Developing New Visual Paradigms
to Deal with Big Data Challenges and Citizen Science
In the context of big data challenges, the development of citizen

science – sometimes referred to as crowdsourcing - has been

particularly welcomed and has proven its usefulness [39,42,43].

This approach is particularly promising in combining games with

research applications in the biology and computer science fields

and hence has already lead to major successes [41,44,45]. In this

article we have shown that software usually dedicated to game

development, so called game engines, can be used for 3D

molecular visualization. This approach raises huge potentialities

for quick developments which are particularly useful for the

creation of small educational programs or simple serious games

with a scientific purpose. The possibility to easily develop

programs to automatically target major platforms (Linux, MacOS

X and Windows) as well as media such as internet or video game

consoles and nomad hardware (smartphones and tablets) re-

inforces the impact of this approach to touch a broad audience.

The easiness of developing new visual methodologies – such as lit

spheres presented in this paper – using the editor window can help

developers designing new visual paradigms which are nowadays

a priority to deal with challenges of data visualization [46]. These

new developments can then be more easily included in well known

molecular viewers such as VMD, PyMol, etc … Even if this first

version is not as powerful as such molecular viewers, it opens a new

way for developing visualizations and may pave the first step

towards a convergence between game design and molecular

visualization research.

Supporting Information

File S1 Describing 5 supporting figures, 3 supporting
texts, 1 supporting table and 1 supporting movie.
(PDF)

Acknowledgments

We are indebted to Prof. Ge Chen for his kind assistance. M.C. would like

to thank Dr J.P. Nominé for fruitful discussions.

Author Contributions

Conceived and designed the experiments: MC MB. Performed the

experiments: ZL AT FDS CE MC MB. Analyzed the data: ZL AT FDS

CE MC MB. Contributed reagents/materials/analysis tools: ZL AT FDS

CE MC MB. Wrote the paper: ZL AT MC MB.

References

1. O’Donoghue SI, Goodsell DS, Frangakis AS, Jossinet F, Laskowski RA, et al.

(2010) Visualization of macromolecular structures. Nat Methods 7: S42–S55.

doi:10.1038/nmeth.1427.

2. Gehlenborg N, O’Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, et al.

(2010) Visualization of omics data for systems biology. Nat Methods 7: S56–S68.

doi:10.1038/nmeth.1436.

3. Walter T, Shattuck DW, Baldock R, Bastin ME, Carpenter AE, et al. (2010)

Visualization of image data from cells to organisms. Nat Methods 7: S26–S41.

doi:10.1038/nmeth.1431.

4. Johnson GT, Autin L, Goodsell DS, Sanner MF, Olson AJ (2011) ePMV embeds

molecular modeling into professional animation software environments.

Structure 19: 293–303. doi:10.1016/j.str.2010.12.023.

5. McGill G (2008) Molecular movies… coming to a lecture near you. Cell 133:

1127–1132. doi:10.1016/j.cell.2008.06.013.

6. Zoppè M, Andrei R, Cianchetta S, Zini M, Loni T, et al. (2009) Blender for

Biology: The making of Protein Expressions - Study N2 Amsterdam. Proceeding

of the Blender Conference, Amsterdam 2009. Available: www.scivis.ifc.cnr.it/

images/stories/blenderconf09paper.pdf.

7. Iwasa JH (2010) Animating the model figure. Trends Cell Biol 20: 699–704.

doi:10.1016/j.tcb.2010.08.005.

8. Wong H, Victor J-M, Mozziconacci J (2007) An all-atom model of the

chromatin fiber containing linker histones reveals a versatile structure tuned by

the nucleosomal repeat length. PLoS ONE 2: e877. doi:10.1371/journal.-

pone.0000877.

9. Lewis M, Jacobson J (2002) Game Engines in Scientific Research. Commu-

nications of the ACM 45: 27–31.

10. Chavent M, Lévy B, Krone M, Bidmon K, Nominé J-P, et al. (2011) GPU-

powered tools boost molecular visualization. Brief Bioinformatics 12: 689–701.

doi:10.1093/bib/bbq089.

11. Fernando R, Kilgard M (2003) The Cg Tutorial: The definitive Guide to

Programmable Real-Time Graphics. Addison-Wesley Longman Publishing.

12. Rost R (2006) OpenGL(R) Shading Language (2nd edition). Addison-Wesley

Professional.

13. Chavent M, Vanel A, Tek A, Lévy B, Robert S, et al. (2011) GPU-accelerated

atom and dynamic bond visualization using hyperballs: a unified algorithm for

balls, sticks, and hyperboloids. J Comput Chem 32: 2924–2935. doi:10.1002/

jcc.21861.

14. Sloan P, Martin W, Gooch A (2001) The lit sphere: A model for capturing npr

shading from art. Graphics interface.

15. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The

Protein Data Bank. Nucleic Acids Res 28: 235–242.

16. Baker NA (2001) Electrostatics of nanosystems: Application to microtubules and

the ribosome. Proceedings of the National Academy of Sciences 98: 10037–

10041. doi:10.1073/pnas.181342398.

17. Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T (2011) Cytoscape 2.8:

new features for data integration and network visualization. Bioinformatics 27:

431–432. doi:10.1093/bioinformatics/btq675.

18. Andrei RM, Callieri M, Zini MF, Loni T, Maraziti G, et al. (2012) Intuitive

representation of surface properties of biomolecules using BioBlender. BMC

Bioinformatics 13 Suppl 4: S16. doi:10.1186/1471-2105-13-S4-S16.

19. Sanner MF, Olson AJ, Spehner J-C (1996) AID-BIP4.3.0.CO;2-Y.

20. DeLano W (2002) The PyMOL molecular graphics system. San Carlos, CA:

DeLano Scientific LLC; 2002.

21. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al.

(2004) UCSF Chimera–a visualization system for exploratory research and

analysis. J Comput Chem 25: 1605–1612. doi:10.1002/jcc.20084.

22. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics.

J Mol Graph 14: 33–38, 27–28.

23. Sanner MF (1999) Python: a programming language for software integration

and development. J Mol Graph Model 17: 57–61.

24. Santavy M, Labute P (n.d.) Electrostatic Fields and Surfaces in MOE. Journal of

the Chemical Computing Group. Available: http://wwwchemcompcom/

journal/gridhtm. Accessed 2012 Aug 23.

25. Krieger E (2003) YASARA. Available: www.yasara.org. Accessed 2012 Jan 13.

26. Krone M, Stone JE, Ertl T, Schulten K (2012) Fast visualization of Gaussian

density surfaces for molecular dynamics and particle system trajectories.

EuroVis-Short Papers: 67–71.

27. Lorensen WE, Cline HE (1987) Marching cubes: A high resolution 3D surface

construction algorithm. ACM Siggraph Computer Graphics 21: 163–169.

doi:10.1145/37402.37422.

28. Chavent M, Levy B, Maigret M (2008) MetaMol: High-quality visualization of

molecular skin surface. J Mol Graph Model: 209–216.

29. Krone M, Bidmon K, Ertl T (2009) Interactive visualization of molecular surface

dynamics. IEEE Trans Vis Comput Graph 15: 1391–1398. doi:10.1109/

TVCG.2009.157.

30. Lindow N, Baum D, Prohaska S, Hege HC (2010) Accelerated visualization of

dynamic molecular surfaces. 29: 943–952. doi:10.1111/j.1467-

8659.2009.01693.x.

31. Bartalesi I, Bertini I, Hajieva P, Rosato A, Vasos PR (2002) Solution structure of

a monoheme ferrocytochrome c from Shewanella putrefaciens and structural

analysis of sequence-similar proteins: functional implications. Biochemistry 41:

5112–5119.

32. Weber JR (2009) ProteinShader: illustrative rendering of macromolecules. BMC

Struct Biol 9: 19. doi:10.1186/1472-6807-9-19.

33. Bruckner S, Gröller ME (2007) Style Transfer Functions for Illustrative Volume

Rendering. Computer Graphics Forum 26: 715–724. doi:10.1111/j.1467-

8659.2007.01095.x.

34. Ince DC, Hatton L, Graham-Cumming J (2012) The case for open computer

programs. Nature 482: 485–488. doi:10.1038/nature10836.

Game On, Science

PLOS ONE | www.plosone.org 12 March 2013 | Volume 8 | Issue 3 | e57990

35. Delalande O, Férey N, Grasseau G, Baaden M (2009) Complex molecular

assemblies at hand via interactive simulations. J Comput Chem 30: 2375–2387.

doi:10.1002/jcc.21235.

36. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis:

A toolkit for the analysis of molecular dynamics simulations. J Comput Chem.

doi:10.1002/jcc.21787.

37. Mayo MJ (2009) Video games: a route to large-scale STEM education? Science

323: 79–82. doi:10.1126/science.1166900.

38. Bainbridge WS (2007) The scientific research potential of virtual worlds. Science

317: 472–476. doi:10.1126/science.1146930.

39. Bonetta L (2009) New citizens for the life sciences. Cell 138: 1043–1045.

doi:10.1016/j.cell.2009.09.007.

40. Cooper S, Khatib F, Treuille A, Barbero J, Lee J, et al. (2010) Predicting protein

structures with a multiplayer online game. Nature 466: 756–760. doi:10.1038/

nature09304.

41. Khatib F, DiMaio F, Foldit Contenders Group, Foldit Void Crushers Group,

Cooper S, et al. (2011) Crystal structure of a monomeric retroviral protease

solved by protein folding game players. Nat Struct Mol Biol 18: 1175–1177.

doi:10.1038/nsmb.2119.

42. Lintott C, Schawinski K, Bamford S, Slosar A, Land K, et al. (2010) Galaxy Zoo

1: data release of morphological classifications for nearly 900 000 galaxiesw.

Monthly Notices of the Royal Astronomical Society.

43. Sansom C (2011) The power of many. Nat Biotechnol 29: 201–203.

doi:10.1038/nbt.1792.

44. Kawrykow A, Roumanis G, Kam A, Kwak D, Leung C, et al. (2012) Phylo:

a citizen science approach for improving multiple sequence alignment. PLoS

ONE 7: e31362. doi:10.1371/journal.pone.0031362.

45. Eiben CB, Siegel JB, Bale JB, Cooper S, Khatib F, et al. (2012) Increased Diels-

Alderase activity through backbone remodeling guided by Foldit players. Nat

Biotechnol 30: 190–192. doi:10.1038/nbt.2109.

46. Rinaldi A (2012) More than meets the eye. Modern experimental techniques

require increasingly sophisticated approaches to data visualization. EMBO Rep

13: 895–899. doi:10.1038/embor.2012.135.

47. Garcia-Saez I, P rraga A, Phillips MF, Mantle TJ, Coll M (1994) Molecular

Structure at 1.8 A of Mouse Liver Class Pi Glutathione S-transferase Complexed
with S-(p-Nitrobenzyl)glutathione and Other Inhibitors. J Mol Biol 237: 298–

314.

48. Meng G, Spahich N, Kenjale R, Waksman G, St Geme JW (2011) Crystal
structure of the Haemophilus influenzae Hap adhesin reveals an intercellular

oligomerization mechanism for bacterial aggregation. EMBO J 30: 3864–3874.
doi:10.1038/emboj.2011.279.

49. Fredslund F, Hachem MA, Larsen RJ, Sørensen PG, Coutinho PM, et al. (2011)

Crystal structure of a-galactosidase from Lactobacillus acidophilus NCFM:
insight into tetramer formation and substrate binding. J Mol Biol 412: 466–480.

doi:10.1016/j.jmb.2011.07.057.
50. Akdemir A, Rucktooa P, Jongejan A, Elk RV, Bertrand S, et al. (2011)

Acetylcholine binding protein (AChBP) as template for hierarchical in silico
screening procedures to identify structurally novel ligands for the nicotinic

receptors. Bioorg Med Chem 19: 6107–6119. doi:10.1016/j.bmc.2011.08.028.

51. Monroe N, Sennhauser G, Seeger MA, Briand C, Grütter MG (2011) Designed
ankyrin repeat protein binders for the crystallization of AcrB: plasticity of the

dominant interface. J Struct Biol 174: 269–281. doi:10.1016/j.jsb.2011.01.014.
52. Dugdale ML, Vance ML, Wheatley RW, Driedger MR, Nibber A, et al. (2010)

Importance of Arg-599 of beta-galactosidase (Escherichia coli) as an anchor for

the open conformations of Phe-601 and the active-site loop. Biochem Cell Biol
88: 969–979. doi:10.1139/O10-144.

53. Wojtas M, Peralta B, Ondiviela M, Mogni M, Bell SD, et al. (2011) Archaeal
RNA polymerase: the influence of the protruding stalk in crystal packing and

preliminary biophysical analysis of the Rpo13 subunit. Biochem Soc Trans 39:
25–30. doi:10.1042/BST0390025.

54. Barends TRM, Polderman-Tijmes JJ, Jekel PA, Williams C, Wybenga G, et al.

(2006) Acetobacter turbidans alpha-amino acid ester hydrolase: how a single
mutation improves an antibiotic-producing enzyme. J Biol Chem 281: 5804–

5810. doi:10.1074/jbc.M511187200.
55. Cingolani G, Duncan TM (2011) Structure of the ATP synthase catalytic

complex (F1) from Escherichia coli in an autoinhibited conformation. Nat Struct

Mol Biol 18: 701–707. doi:10.1038/nsmb.2058.

Game On, Science

PLOS ONE | www.plosone.org 13 March 2013 | Volume 8 | Issue 3 | e57990

