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Epidemiological data about SARS-CoV-2 spread indicate that the virus is not
transmitted uniformly in the population. The transmission tends to be more
effective in select settings that involve exposure to relatively high viral dose,
such as in crowded indoor settings, assisted living facilities, prisons or food
processing plants. To explore the effect on infection dynamics, we describe a
new mathematical model where transmission can occur (i) in the community
at large, characterized by low-dose exposure and mostly mild disease, and
(ii) in so-called transmission hot zones, characterized by high-dose exposure
that can be associated with more severe disease. The model yields different
types of epidemiological dynamics, depending on the relative importance of
hot zone and community transmission. Interesting dynamics occur if the rate
of virus release/deposition from severely infected people is larger than that
of mildly infected individuals. Under this assumption, we find that success-
ful infection spread can hinge upon high-dose hot zone transmission, yet the
majority of infections are predicted to occur in the community at large with
mild disease. In this regime, residual hot zone transmission can account for
continued virus spread during community lockdowns, and the suppression
of hot zones after community interventions are relaxed can cause a pro-
longed lack of infection resurgence following the reopening of society.
This gives rise to the notion that targeted interventions specifically reducing
virus transmission in the hot zones have the potential to suppress overall
infection spread, including in the community at large. Epidemiological
trends in the USA and Europe are interpreted in light of this model.
1. Introduction
As the United States and other countries around the world have witnessed
waves of SARS-CoV-2 spread and the associated morbidity and mortality, it
is clear that a better understanding of SARS-CoV infection dynamics will
benefit the efforts to reduce infection burden, through non-pharmaceutical
interventions and vaccines. Mathematical models have been used to character-
ize the dynamics of SARS-CoV-2 and predict potential numbers of COVID-19
cases [1–7], which has resulted in the estimation of the basic reproduction
number [1,8], a better understanding of expected transmission dynamics in
the absence and presence of non-pharmaceutical interventions [9–16], and in
the critical effect of age structure on disease dynamics [11,17], among many
other contributions. Some of these models have been extremely useful for
predicting and quantifying the demands on healthcare resources.

At the same time, it is becoming clear that the spread of SARS-CoV-2 is
characterized by unique aspects that have so far not been fully captured by
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the epidemiological models and that might be crucial for pre-
dicting how the virus and the disease may spread depending
on the degree to which the society and economy is open.
Epidemiological data on infection spread indicate that the
virus does not spread uniformly in the population, but that
some settings contribute more to virus transmission than
others [18,19]. For example, it appears that outbreaks in
many locations may have been driven by infection spread
in select settings, such as food processing plants [20], prisons
[21], assisted living facilities [22] or hospitals [23], where a
group of people meets and interacts repeatedly. Infection is
further promoted by several other settings where larger
groups of people gather in the absence of sufficient venti-
lation or in close proximity without face protection, such as
restaurants, bars, gyms or large gatherings/parties. Some of
these settings have also been referred to as superspreading
events [24,25]. These observations indicate that overall virus
transmission appears to occur mostly in settings in which
people are exposed to relatively high doses of the virus,
and less so in the community at large, where viral doses
tend to be lower. Viral dose upon exposure can influence
the chances of developing a productive infection and
can impact the severity of the disease. The viral infectious
dose has drastic consequences for SARS and MERS infec-
tions [26,27] and for the pathogenesis of SARS-CoV-2
in animal models [28,29]. Recent evidence strongly
suggests that reducing viral infection load by using face-
masks has a pronounced effect on the outcome of human
infections [30,31].

We collectively refer to the settings in which infection
with SARS-CoV-2 is promoted through exposure to higher
viral doses as ‘transmission hot zones’, and contrast this
with the less effective virus transmission in the community
at large, characterized by exposure to a lower viral dose.
Understanding the effects of hot zone transmission on
infection dynamics requires the incorporation of these
assumptions into mathematical models.

Here, we create a mathematical model that is based on the
well-established SIR model, but it incorporates the notions of
(i) asymptomatic or mild versus severe disease, (ii) the effect
of exposure dose on disease severity and transmission risk
and (iii) community transmission versus hot zone trans-
mission. These concepts have already been introduced and
discussed in the literature. Here, we create a computational
and analytical tool which takes these notions beyond verbal
reasoning and finds the logical consequences of the assump-
tions. Under certain assumptions, the model can give rise to
several different outcomes, both during natural infection
growth and during non-pharmaceutical interventions,
which cannot be accounted for by simpler SIR models that
lack added complexity. Among the outcomes, we find that,
somewhat counterintuitively, successful infection spread can
hinge under certain assumptions upon hot zone trans-
missions that promote severe infections, yet at the same
time the majority of the SARS-CoV-2 infections are mild
and occur in the community at large. The model further pre-
dicts that in such cases, targeted interventions that limit virus
spread in hot zones can result in the long-term suppression of
infection levels in the community at large, even if non-
pharmaceutical interventions in the community are relaxed
to some extent. According to our mathematical model,
these dynamics are a direct consequence of the assumed
viral dose-dependency, which might thus warrant further
attention from a clinical and epidemiological perspective.
With this theory in mind, we interpret epidemiological data
that document SARS-CoV-2 dynamics in different states in
the USA and in European countries.
2. Results
2.1. The mathematical modelling framework
We consider a mathematical model that distinguishes between
patients with a mild or asymptomatic infection and those with
severe SARS-CoV-2 infection, including symptomatic but
ambulatory COVID-19 patients. We further assume that a
higher infectious dose promotes the development of more
severe outcomes, as has been documented with SARS, MERS
and even SARS-CoV-2 [26–28,32]. In particular, the model
couples viral load to the setting in which transmission takes
place. Hence, we distinguish between two basic types of trans-
mission varying in the viral load to which susceptible
individuals are exposed (figure 1). The first type of trans-
mission occurs in the ‘community-at-large’. A characteristic of
this environment is that people are exposed to relatively low
viral loads for short times, and that disease tends to be mild.
This can include streets and other outdoor areas, as well as
indoor locations where it is unlikely that several infected indi-
viduals converge periodically for long periods, and where
human density is low and contacts between individuals are
short and occasional. The second type of transmission is in
what we call ‘hot zones’. These are characterized by exposure
to high viral loads and by a higher chance of severe disease.
This can result from exposure to multiple infected individuals,
exposure to individuals shedding high viral levels in locations
with poor ventilation, or from an increase in viral load over
time through silent amplification rounds of infection [33]. The
model is based on the general SIR framework [34,35]. The cor-
responding ordinary differential equations are given as follows:

_x ¼ �x½ðb1H þ b2HÞH þ ðb1C þ b2CÞC�,
_y1 ¼ xðb1CCþ b1HHÞ � g1y1,
_y2 ¼ xðb2CCþ b2HHÞ � g2y2,
_z ¼ g1y1 þ g2y2,

_C ¼ bCy1 þ BCy2 � aCC

and _H ¼ bHy1 þ BHy2 � aHH,

where x denotes the population of susceptible individuals, y1
and y2 denote the populations of mildly and severely infected
individuals, respectively, and z represents the population of
removed infected (recovered and dead). Further, C and H rep-
resent environmental viral load in the community at large and
in the hot zones, respectively. The processes underlying the
model are further explained in figure 1, where all the par-
ameters are defined. The following sections discuss results
arising from this model, and further mathematical details are
provided in the electronic supplementary material.

2.2. The basic reproduction number and maintenance
of infection spread

We use this model to calculate the basic reproduction number
of the infection, R0, as well as the effective reproduction
number, R. We start by defining two matrices, a virus depo-
sition matrix, Qdep, and a virus acquisition matrix, Qacq. The



mildly infected
(SARS CoV-2 +)

Q
dep

 =

b
C

a
C

a
H

b
C

b
H

B
C

B
H

b
1C

b
1H

b
2C

b
2H

b
H

y
1

y
2

y
1

g
1

g
2

g
2

B
C

B
H

H

C

mildly infected
(SARS CoV-2 +)

severely infected
(COVID-19)

severely infected
(COVID-19)

virus
inactivation or

removal

recovery
(death)

virus
acquisition

recovery
or death

virus
inactivation or

removal

virus
deposition

1/a
C

1/a
H

0
0

Q
acq

 =
b

1C

b
2C

b
1H

b
2H

1/g
1

1/g
2

0
0( ( () ) ( ))

Figure 1. A schematic showing the model structure and its parameters. Infection deposition and acquisition matrices Qdep and Qacq are defined; see electronic
supplementary material for details. In the model, transmission can result in two types of infected populations: asymptomatic/mild SARS-CoV-2 infection (denoted
by y1) and severely SARS-CoV-2 infected, including ambulatory symptomatic COVID-19 patients (denoted by y2). It is assumed that severe COVID-19 is promoted by
exposure to a higher viral load. Hence, the exposure of susceptible individuals to virus in the community at large compartment (C) results mostly in mild infection
with a probability β1C, and less frequently in severe infection with a probability β2C, where β1C > β2C because local viral load is assumed to be relatively low in the
C compartment. Exposure in the hot zone compartment (H) results in mild infection with a probability β1H, and in more frequent severe COVID-19 with a rate β2H,
where β1H < β2H, because virus load is assumed to be higher in the hot zone. Mildly infected individuals are assumed to deposit virus in the C and H compartments
with rates bC and bH, respectively. Severely SARS-CoV-2 infected, including symptomatic but ambulatory, individuals are assumed to deposit virus in those compart-
ments at rates BC and BH, respectively. Finally, virus decays in the two locations at rates αC and αH, and mildly and severely infected individuals cease to be
infectious (because of recovery or death) with rates γ1 and γ2.
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former matrix is given by

Qdep ¼ 1=aC 0
0 1=aH

� �
bC BC
bH BH

� �
,

and depends on the rates at which mildly and severely
infected individuals deposit the virus both in hot zones and
the community, and also on the virus lifespan in each
environment. The latter matrix is defined as

Qacq ¼ 1=g1 0
0 1=g2

� �
b1C b1H
b2C b2H

� �
,

and depends on the infectivity coefficients for mildly and
severely infected individuals in both environments, as well
as the expected disease duration for mild and severely
infected patients. To determine the reproductive number
(including the basic reproductive number) of the infection,
we form a product of the acquisition and deposition matrices,

A ¼ A11 A12

A21 A22

� �
¼ QacqQdep: ð2:1Þ

The elements of this matrix, Aij, are combinations of all of
the rates (figure 1 and the electronic supplementary
material). These four quantities have a clear meaning, as
they express the intensity of infection spread via four
pathways: A11 is the probability to become mildly infected
as a result of another mildly infected individual depositing
virus in a C or an H location; A12 is the probability to
become mildly infected as a result of a severely infected
individual depositing virus in a C or an H location, etc.
Using the matrix A, the basic reproductive number of the
infection can be expressed concisely as

R0 ¼ x0r,

where x is the initial number of susceptible individuals and r
is the larger of the two eigenvalues of the matrix A. Similarly,
the effective reproductive number, R, is calculated as R = xr,
where x is the current number of susceptible individuals.
The quantity r depends on the model coefficients and will
be affected, for example, by social distancing measures.

Depending on the parameters, the virus may spread faster
through some pathways than others. For example, if A11 in
equation (2.1) is significantly larger than the other matrix
elements, then we simply have R ≈ xA11, that is, an infection
spread mostly occurs from mildly SARS-CoV-2 infected indi-
viduals to result in more mildly infected individuals, and the
kinetic parameters associated with mild infection define the R
value of the whole system:

R � x
1
g1

b1CbC
aC

þ b1HbH
aH

� �
:

On the other hand, if the element A22 is significantly
larger than the rest of the matrix elements, we have R≈
xA22, and it is COVID-19 severely infected individuals that
maintain the epidemic:

R � x
1
g2

b2CBC

aC
þ b2HBH

aH

� �
:
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The off-diagonal elements A12 and A21 define the contri-
bution of one group of infected to the expansion of the
other group. The relative size of these pathways influences
the population sizes of y1 and y2. For example, A12 >A21

tends to increase the population of the mildly infected. The
opposite inequality results in the boosting of the y2 popu-
lation; see electronic supplementary material for a more
precise statement.

Depending on the relative values of the matrix elements
Aij, this model can give rise to a variety of different dynamics
and outcomes. To understand this better, it is instructive to
first consider extreme cases that bracket all possible
outcomes.

— (Ia): Maintenance of the epidemic depends on the mildly
infected individuals, y1, transmitting the virus through
the C (or H) compartment and giving rise to mostly
more mildly infected individuals. Most infected individ-
uals have mild disease, whereas given subsets develop
serious COVID-19.

— (Ib): Maintenance of the epidemic again relies on trans-
mission by y1 individuals creating more y1-infected
people, but most infected individuals are y2 and have
severe disease.

— (IIa): Maintenance of the infection depends on severely
infected individuals, y2, transmitting the infection
(through C or H). The majority of the infected individ-
uals, however, are y1 and have mild disease, whereas
given subsets develop serious COVID-19.

— (IIb): Maintenance of the infection again depends on
severely infected individuals, y2, but most of the infected
individuals have severe disease.

While not all of these cases are realistic, an important and
novel point emerges from this analysis: under certain
assumptions, it is possible that the group of infected individ-
uals that is responsible for maintaining the epidemic (i.e. for
keeping R0 > 1) comprises only a small subset of the infected
people. For example, in case (IIa), severely infected individ-
uals that transmit the virus to generate new patients with
severe infection, including serious COVID-19 (via hot zone
transmission) is critical for keeping R0 > 1. At the same
time, however, the majority of the individuals is mildly
infected, y1, figure 2b. This gives rise to the possibility that
the targeting of a relatively small fraction of infected individ-
uals in hot zones through specific interventions could curb
overall SARS-CoV-2 prevalence in the community at large.

Regime (IIa) is observed if two inequalities hold involving
elements of the matrix A (see electronic supplementary
material):

A11 , A22, and g1(A11 þ A12 � 1) . g2(A22 þ A21 � 1):

These conditions are for example consistent with a larger
rate of virus deposition by individuals with severe symptoms
compared with individuals with mild symptoms (BC, BH≫
bC, bH).

2.3. Simulating non-pharmaceutical interventions and
reopenings

Some valuable insights can be gained by simulating the
implementation of non-pharmaceutical interventions and
their relaxation. At time t1, social distancing is initiated by
parameter changes that promote a reduction in the reproduc-
tion number, e.g. by reducing virus deposition rates (bC, bH,
BC, and BH) and infection rates (β1C, β2H, β1H and β2C), or
by increasing virus removal rates (αC,αH) and patient removal
rates through quarantining (γ1,γ2) (figure 1). At time t2, re-
opening is simulated by reverting most parameters back to
their original values, with the exception of select parameters
connected to either C or H transmission.

We focus on perhaps more realistic model parameter
regimes where mild infections predominate. For non-
pharmaceutical interventions, we simulate the stay home
orders that were implemented around March–April
2020, where it is assumed that virus transmission in the com-
munity at large is significantly suppressed, but that hot zone
transmission may or may not continue to operate. When
simulating the opening of society, different assumptions are
made about the extent to which virus transmission resumes
in the community at large and in the hot zones.

2.3.1. Community at large transmission alone maintains infection
spread

First, we assume thatmaintenance of the epidemic depends only
on community spread and that hot zone transmission contrib-
utes much less (case (Ia) above). This corresponds to a scenario
in many previously published COVID-19 models (e.g. [13]).
Under this assumption, we observe that the suppression of
virus transmission in the community at large leads to a marked
reduction in infection prevalence. Upon reopening, a pro-
nounced second wave of infection ensues until a vast majority
of individuals in the population have been affected (figure 2a).

2.3.2. Hot zone transmission alone maintains infection spread
Next, we assume that maintenance of the epidemic relies on
hot zone transmission and that community transmission con-
tributes less (case (IIa) above). We distinguish between two
scenarios. First, we assume that during stay home orders,
hot zone transmission continues to occur. We then assume
that hot zone transmission is also suppressed.

(i) Assume that high viral load hot zone transmission
remains elevated in certain pockets during the inter-
ventions, such that the overall reproduction number
is slightly larger than one. In this case, the infection
continues to spread slowly during social distancing,
and the majority of the infections are predicted to be
mild. Under this scenario, infection prevalence is pre-
dicted to not decline much during the lockdown, and
a renewed and accelerated spread is always predicted
to occur upon reopening. Because the reproduction
number continues to be larger than one during the
intervention period, it can only increase further
during the relaxation of the interventions (figure 2c).

(ii) If hot zone transmission is also suppressed during the
stay home interventions, virus prevalence markedly
declines during the intervention period (figure 2d ). If
reopening only leads to a resumption of virus trans-
mission in the community at large while hot zone
transmission remains suppressed, no second wave is
predicted to occur because the overall reproduction
number remains below one (figure 2d ). If, however,
hot zone transmission increases after reopening (due
to re-activation of previous hot zones or generation
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Figure 2. Simulated epidemic dynamics in different cases. Four populations are shown as functions of time: susceptible (green), mildly SARS-CoV-2 infected
(orange), severely COVID-19 infected (red) and recovered/dead (blue). Insets show detail in the dynamics of infected, and the matrix elements Aij. Intervention
is shown by dashed lines. It is assumed that during intervention, both H and C channels are suppressed, and afterwards channel C is restored to its full capacity.
(a) Case (Ia) (see text), where the spread of infection is mostly through mildly infected who comprise the majority; opening up leads to a second wave of infection.
(b–d) Case (IIa), where the spread of infection is mostly through severely infected although the majority are still mildly infected. In (b), no intervention is
implemented; the effects of social distancing are shown in (c) (insufficient H suppression, a second wave is predicted) and (d ) (significant H suppression, no
second wave). (e,f ) Both C and H channels contribute about equally to infection spread; opening up the C channel results in a second wave, but a higher
degree of H suppression leads to a smaller and more delayed second wave. In all simulations, R0 = 2.4. Other parameters are given in electronic supplementary
material, tables S1–S3. Time-series of the effective reproductive number, Reff, are shown in electronic supplementary material, figure S3.
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of new ones), the reproduction number can increase
beyond one, and a second wave happens in the
model (not shown).

2.3.3. Both hot zones and the community at large can maintain
virus spread

Here, we assume a more balanced contribution of hot zones
and the community at large: either pathway alone can lead
to sufficient transmission such that R > 1, but both trans-
mission pathways are needed for the virus to achieve its full
spread potential. Different outcomes are possible depending
on the particulars. For stay home interventions to lead to a
marked reduction of infection levels, transmission reduction
has to occur both in the community at large and in the hot
zones. If hot zone transmission is not significantly affected
by the intervention, infection spread will be slowed, but no
decline will occur (not shown). In any case, reopening is
likely to lead to a second wave, even if virus transmission
only resumes in the community at large. The magnitude and
timing of the second wave depend on social distancing and
reopening parameters. For example, if hot zone transmission
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is suppressed to a larger degree, the second wave will be
characterized by a slower growth rate and a lower size
(figure 2f compared to figure 2e; note the different range of
the horizontal axes and the lower final epidemic size).
16
2.4. Which parameters should be targeted?
Our methodology allows us to calculate the effective repro-
ductive number, Reff, which indicates whether the infection
(in a deterministic model) will increase or decrease at a
given point of the epidemic. The effective reproductive
number is given by Reff = xr (equation (22) of the electronic
supplementary material), where x is the number of suscep-
tible individuals and the full expression for r is given in
equation (21) of the electronic supplementary material.

We performed a sensitivity analysis of the parameter r
with respect to all the parameters in regime (IIa), since this
regime is characterized by interesting dynamics that go
beyond those observed in simpler SIR models. The results
are shown in electronic supplementary material, figure S4.
Although r depends in non-trivial ways on all 12 parameters
or rates in the model, there are four parameters that have
markedly higher influence on the effective reproductive
number. These parameters are (in regime (IIa)):

BH (virus deposit rate from severely infected individuals in
the hot zones)

αH (virus inactivation/removal rate in hot zones)
β2H (probability to become severely infected through a hot

zone transmission)
γ2 (recovery/removal rate of infected individual with severe

disease).

The sensitivity of the effective reproductive number to
these parameters is orders of magnitude higher than that of
the other parameters in the system. Interestingly, all of
these parameters are related to hot zone/severe infection
transmission channel.

This analysis has direct implications for suggesting the
most effective strategies of reducing infection spread in the
context of regime (IIa). Some of the most effective measures
include: reducing the deposition of the virus in hot zones
by restricting access of severely infected individuals (redu-
cing BH), increasing viral removal rate in the hot zones by
surface disinfection/aeration (increasing αH), reducing hot
zone transmission by, for example, social distancing and
enforcing wearing face covers, as well as staggering shifts
of essential workers in workplaces (decreasing β2H) and quar-
antining/isolation of symptomatic individuals (reducing γ2).
2.5. Further complexities
Additional insights can be obtained by incorporating further
complexities that might better characterize the SARS-CoV-2/
COVID-19 pandemic. A mathematical model that includes
these assumptions is presented in the electronic supplemen-
tary material. In the example of figure 3, we assume that
once the virus load in the hot zones rises to high levels, it
is likely that the rate of virus transmission saturates rather
than increases in an unlimited way. Further, we assume
that the severity of infection is not only transmission zone-
dependent, but that a higher viral load in both C and H
locations results in a higher chance of severe infection. The
model now predicts that the fraction of severe infections
rises as total infection levels increase, but that it then declines
post-peak (figure 3b). This might correspond to the obser-
vations of increased disease severity as the epidemic
expands, and then reduced disease severity as the outbreak
declines, which has been observed in Italy [36] and Sweden
[37], among other locations. Importantly, the simulations in
figure 3 show that during the initial stages of spread, mild
SARS-CoV-2 infections predominate, but once the infection
has spread beyond a certain threshold, the total viral load
in both hot zones and the community at large increases to
the point that severe COVID-19 cases predominate. This
would translate into a health crisis with an overload of the
health systems and into high levels of mortality even if
healthcare resources did not become limiting. According to
this model, it is critical to implement interventions suffi-
ciently early rather than only once increased mortality
becomes apparent (which occurs with an additional delay).
3. Discussion
We have presented and analysed a new epidemiological model
in which infection severity depends on the virus dose received
during transmission, assuming that exposure to higher virus
loads is more likely to occur under certain conditions, which
we refer to as transmission hot zones. These high viral loads
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can be reached by silent, undetected amplification cycles
before the first clinical cases are detected [33]. All model
assumptions are rooted in biological/epidemiological data.
(i) With other coronaviruses, and with SARS-CoV-2, it has
been established that infection dose influences disease severity
[26–29]; the model presented includes this key assumption.
(ii) Data clearly indicate that virus transmission is more effec-
tive in certain settings (where exposure to viral load is higher)
than in others [18,19]. These include nursing homes, food pro-
cessing plants, prisons, restaurants, bars, gyms, etc. This is the
basis for including hot zone transmission in our model. As
with all mathematical modelling studies, there are uncertain-
ties, and especially with respect to unknown parameter
values. Our understanding of the dynamics that characterize
this model, however, does not depend on knowledge of pre-
cise unknown parameter values, because a comprehensive
analytical understanding is gained as a result of this relative
‘simplicity’ of the model. We present possible behaviours
along with conditions when they are observed, which
enhances our understanding of the possible consequences aris-
ing from hot zone transmission.

One important insight was that in one of the model par-
ameter regimes, a relatively small population of severely
infected patients can be responsible for driving infection
through hot zone transmission, even though the majority of
infections are mild and acquired in the community at large.
A logical consequence of this is that even though the majority
of infections are found in the community at large, interventions
that specifically target the hot zones can be very effective. They
can reduce the viral reproduction number, inducing a decline of
the overall infection prevalence, including that in the commu-
nity at large. Hence, effective virus suppression in hot zones
might allow to maintain a relatively strong degree of overall
infection control with fewer restrictions in the community at
large, although critical interventions in the community at
large will most likely also be required.

More broadly, the model explored here allows for a sig-
nificant heterogeneity of outcomes which can inform us of
possible mechanisms of infection spread in different
locations. In contrast with this, a basic SIR model without
any additional complexity cannot account for the observed
heterogeneity of outcomes. More specifically:

(1) In figure 2c, we see a scenario where the community at
large is shut down (with the corresponding R0 < 1), but
despite these intervention measures, the infection keeps
growing during the lockdown, because the hot zones
continue to transmit. This is consistent with the March
2020 lockdown in a variety of states, such as California,
when transportation and other measures were signifi-
cantly down, but the infection continued to spread,
albeit at a relatively slow rate. In a simple SIR model
with R0 < 1 during the lockdown, the infection levels
will inevitably decline during the intervention period,
because this model lacks the hot zone transmission chan-
nel, which, even if it comprises only a small minority of
cases, could ‘carry’ the infection spread.

(2) In figure 2d, we present a scenario where upon the
reopening of society, the infection does not come back.
This is because after the end of lockdown, although com-
munity spread resumes, the hot zone transmission
continues to be suppressed, and this is sufficient to
keep the overall R0 less than one. Hence, the epidemic
does not experience a second wave absent further
changes (such as increases in transmission rates resulting
from changes in behaviour or other factors). This is con-
sistent with the observations in the post-lockdown
months in some east coast states, like New York, and
some European countries in summer 2020. Following
the first infection wave, infection levels remained sup-
pressed for several months, despite significant
reductions of non-pharmacological interventions in the
community during this phase. In a simpler SIR model
without added complexity, returning community R0 to
values greater than one will inevitably cause a second
wave of infection without delay. Our model further
makes the prediction that renewed hot zone trans-
missions would be able to trigger renewed virus
spread. This is again consistent with observations. For
example, in Europe, the initial growth in case numbers
during early autumn of 2020 seemed to be associated
with hot zones, such as food processing plants [20].

While our model can be used to interpret the heterogen-
eity in epidemiological trajectories during and after the
implementation of non-pharmaceutical interventions, it is
important to note that other mechanisms could also account
for these differences (e.g. social network structure, population
demographics, genetics, changes in non-pharmacological and
pharmacological interventions, etc.) if they are included into
the SIR framework. The model properties discussed here
identify transmission hot zones as one mechanism that can
contribute to the observed heterogeneity in data, which is a
new insight and warrants further epidemiological investi-
gation. The heterogeneity of dynamics observed in the data
on SARS-CoV-2 spread appears to be the most consistent
with a complex epidemiology modulated by a number of
different factors and mechanisms. There is already a growing
list of factors known to affect it, to which we add now the
consideration of the hot zone spread.

SARS-CoV-2 transmission, as well as past coronavirus
outbreaks, have been characterized by large numbers of
infections resulting from superspreading events; the corollary
to this finding is that most individuals infected with these
viruses did not transmit the virus as efficiently as those par-
ticipating in the superspreading events [18,19,25,38]. The ‘hot
zone’ transmission framework proposed here is broadly con-
sistent with these findings: hot zones are characterized by the
exposure of susceptible individuals to a relatively high virus
dose, which may lead to more severe disease. Superspreading
events are a type of hot zone in our model, because they typi-
cally refer to one-time larger gatherings of people, including
several infected individuals shedding virus at the same time,
which can provide the high-dose exposures. Another type of
hot zone involves the repeated meeting of the same people at
a given location, which can result in the amplification of viral
load in that location. While early virus exposure from one
infected person would likely constitute a low-dose exposure
and result in mild infection in several individuals, these indi-
viduals would then all shed virus, thus increasing the viral
dose with which others are infected. Hence, amplification
through asymptomatic or mild cases will eventually result
in exposure to a higher virus dose and in a higher chance
of severe disease in the newly infected people, thus generat-
ing a hot zone environment. Such characteristics could exist
in crowded or poorly ventilated office work spaces, schools,
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prisons, places of worship, long-term care or assisted living
communities and healthcare or hospital settings, as well as
in multigenerational households, which have all been ident-
ified as transmission clusters in various countries [18,19].
Long-term care facilities and hospitals might be especially
prone to this effect, which is consistent with the large percen-
tage of deaths in long-term care facilities. People with pre-
existing health conditions regularly visit hospitals, which
could start such an amplification cycle anywhere in a hospital
before the presence of the virus in the location is known.

These notions are consistent with data from Italy, where at
least some hospitals were identified as a major contributor to
early COVID-19 spread, like in Bergamo [39]. Similarly, in
the United States, an infection cluster was identified in a hos-
pital in Boston [40]. These notions are further consistent with
the many analyses of the disproportionately high mortality
of elderly people residing in long-term care living facilities
[41,42] rather than at individual homes across the world [43],
and with the disproportionate impact on minority commu-
nities in America [44], who may have been required to
physically be at the workplace during the outbreak due to
their employment in ‘essential services’ like transportation
and food preparation. A number of Asian and Pacific countries
implemented strong protection measures in the healthcare
system before the first COVID-19 cases were identified, due
to previous experiences with SARS and MERS. Countries
such as South Korea performed intensive targeted testing,
resulting in early identification of infected individuals, which
were thus removed from both transmission chains and any
potential amplification circles [45]. Such strategies limit the
seeding of transmission hot zones and prevent the initial
rounds of viral load amplification, which might have contrib-
uted to the relatively lighter disease burdens documented
there, despite somewhat less strict social distancing [46].

These considerations also provide a motivation to act early
and decisively to prevent the amplification of the viral loads
and to prevent potential transmission hot zones with severe
disease from forming. Facemasks might be crucial in this
respect, because they reduce exposure dose. Facemasks can
thus turn a potential hot zone that drives infection spread
into a lower dose transmission environment, which does not
have the same ability to maintain overall infection spread.

This model can be further refined by including risk factors,
social networks and other complexities, which all are likely to
be critical for any practical predictive use. For example, we
assumed in our model that disease severity was associated
with the dose of virus exposure. Risk factors (importantly age
and comorbidities), however, are awell-known important deter-
minant of disease severity, and incorporation of these additional
parameters will refine the accuracy of the model. Moreover,
model predictions depend on assumptions, which need to be
tested with epidemiological, clinical and virology data. The
strength of modelling, however, is to identify potential key dri-
vers of the pandemic, which we would not be aware of
otherwise, thus directing the required epidemiological, clinical
and virology investigations. The model suggestion that severe
infection transmission through high viral load exposure in hot
zones might be an important driver of SARS-CoV-2 spread,
even as mild disease cases predominate, could allow us to
improve the outcome of reopening society through targeted
non-pharmaceutical interventions or preferentially targetingvac-
cines to those participating in hot zone transmission situations.
4. Materials and methods
We have modelled the spread of infection by using ordinary
differential equations (ODEs) of SIR type, where we distin-
guished between patients with a mild or almost asymptomatic
infection and those with severe SARS-CoV-2 infection. Trans-
mission happened through two different ‘channels’. Several
extensions of the model are also considered including a model
with saturation in the infection term. The precise formulations
and complete analysis of the ODEs are presented in the electronic
supplementary material.
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