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Abstract

Large-scale patterns evident from satellite images of aeolian landforms on

Earth and other planets; those of intermediate scale in marine and terrestrial

sand ripples and sediment profiles; and small-scale patterns such as lamellae in

the bones of vertebrates and annuli in fish scales are each represented by

layers of different thicknesses and lengths. Layered patterns are important

because they form a record of the state of internal and external factors that

regulate pattern formation in these geological and biological systems. It is

therefore potentially possible to recognize trends, periodicities, and events in

the history of the formation of these systems among the incremental sequences.

Though the structures and sizes of these 2-D patterns are typically scale-free,

they are also characteristically anisotropic; that is, the number of layers and

their absolute thicknesses vary significantly during formation. The aim of the

present work is to quantify the structure of layered patterns and to reveal

similarities and differences in the processing and interpretation of layered

landforms and biological systems. To reach this goal we used N-partite graph
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and Boolean functions to quantify the structure of layers and plot charts for

“layer thickness vs. layer number” and “layer area vs. layer number”. These
charts serve as a source of information about events in the history of formation

of layered systems. The concept of synchronization of layer formation across a

2-D plane is introduced to develop the procedure for plotting “layer thickness
vs. layer number” and “layer area vs. layer number”, which takes into account

the structural anisotropy of layered patterns and increase signal-to-noise ratio

in charts. Examples include landforms on Mars and Earth and incremental

layers in human and iguana bones.

Keywords: Image processing, Biological morphology, Remote sensing, Aeolian

landscapes

1. Introduction

Layered patterns of different sizes and origins are broadly distributed in nature.

High-resolution satellite images of large-scale aeolian features on Earth and

other planetary surfaces (Ewing et al., 2010; Le Gall et al., 2012; Fitzsimmons,

2007; Rubin, 2006; Rubin et al., 2008; Bourke et al., 2008), Transverse Aeolian

Ridges (Wilson and Zimbelman, 2004; Balme et al., 2008; Zimbelman, 2010),

and Periodic Bedrock Ridges (Montgomery et al., 2012) consist of numerous

layers. Despite differences in size and physical characteristics, there are striking

similarities between the configuration of layered terrestrial and extraterrestrial

landscapes and of the growth layers of various biological systems such as bone

lamellae, fish scales, and tree rings. Typically, layers have numerous breaks and

confluences (i.e., bifurcations and merges, Blumberg, 2006), and thus the

number and thickness of these layers is a function of the direction of

measurement; layered patterns are anisotropic in both size (including thickness

and area) and structure. Fig. 1 depicts examples of geological and biological

patterns, demonstrating the anisotropy of layered patterns.

Layers form a record of the state of internal and external factors that control the

formation of geological (Fishbaugh et al., 2010; Thomas et al., 2005; Bourke

et al., 2010; Fenton and Hayward, 2010; Tsoar, 2005) and biological

(Casselman, 1983; Klevezal, 1996; Bromage et al., 2009) systems. It is therefore

potentially possible to evaluate the structure of layered patterns and recognize

events in the history of their formation.

The major problem encountered in the two-dimensional (2-D) analysis of

layered patterns is that the structures and sizes of these patterns are

characteristically anisotropic. One of the problems inherent in processing layered

patterns is that many elements of the procedure for quantifying large-scale

anisotropic layered patterns are not formalized and consequently not automated.
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The high level of anisotropy is very challenging for mathematicians and

computer specialists to formalize.

The empirical M model of anisotropic 2-D layered biological structures was

developed to quantify the variability of layer thickness across a 2-D plane

(Smolyar and Bromage, 2004). This model is based on a quantitative description

of the structure and thickness of layers in N different directions (across a 2-D

plane or, more precisely, across N transects); that is, M = {Layer structure,

Layer thicknesses in N directions}. Two mathematical tools, the N-partite graph

G(N) (Fig. 2A) and Boolean functions (Fig. 2B, C and D), are used to quantify

the structure of 2-D layered patterns. Boolean functions and G(N) represent the

empirical model of anisotropic 2-D layered structures and, for incremental

structures, have been used to construct a time series for “layer thickness vs.
layer number (i.e., time)” describing variability of growth rate in fish scales

(Smolyar and Bromage, 2004) and human bone lamellae (Bromage et al., 2009;

Bromage et al., 2011) across a 2-D plane. The capability of M was extended by

developing a fully automated procedure for converting binary images of 2-D

layered patterns into N-partite graphs G(N) and Boolean functions, reducing

[(Fig._1)TD$FIG]

Fig. 1. Samples of biological and geological layered patterns. Biological and geological samples are

described in terms of microns and kilometers, respectively. (A) Dunes of Rub’ al Khali desert.
(B) Cross section of an iguana bone. (C) Layered landform on Mars (ESP_021737_1710_RED).

(D) Cross-section of human bone.
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noise in the charts for “layer thickness vs. layer number” and “layer area vs.

layer number” and estimating the robustness of variability of layer size across

the 2-D plane (Smolyar, 2014). The proposed method is especially relevant

given the reproducible nature of the analysis and the huge number of available

biological images (Nature Methods, 2012) and satellite images of terrestrial and

extraterrestrial surfaces (McEwen et al., 2007; Balme et al., 2008) currently in

need of analysis.

The present work quantifies the structure of layered patterns and reveals

similarities and differences in the processing and interpretation of layered

geological and biological systems. To reach this goal we used N-partite graph

and Boolean functions to quantify the structure of layers and plot charts for

“layer thickness vs. layer number” and “layer area vs. layer number” for

biological and geological systems. These charts describe a fundamental

characteristic of living systems (i.e., growth-rate variability of layered pattern

[(Fig._2)TD$FIG]

Fig. 2. Quantifying the anisotropic structure of a layered pattern. More details can be found in

Smolyar and Bromage (2004) and Smolyar (2014). (A) Transition of 2-D layered pattern to

N-partite graph. (B) Illustration of the concept of “gate open” and “gate closed”. The concept allows

us to describe the anisotropic structure of a 2-D layered pattern in terms of a Boolean function.

(C) Layer structure is a function of the state of gates. (D) Truth Table for the pattern segment

depicted in Fig. 2C.
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across a 2-D plane) since the thickness of a layer is the measure of growth rate

at an instance in time. Growth-rate variability in layered patterns is broadly used

to identify events in the life history of biological objects (Klevezal, 1996;

Casselman, 1983; Bromage et al., 2011).

Two characteristics of thickness of geological layers make it worthwhile to plot

charts for “layer thickness vs. layer number” and “layer area vs. layer number”
for geological systems and compare them to layered biological systems. First,

the thickness of a geological layer (wavelength) is the principal morphometric

parameter of a layered landform (Balme et al., 2008). Second, “larger
wavelengths probably reflect longer development times and stronger winds”
(Yizhaq et al., 2009). Thus, charts for “layer thickness vs. layer number” and

“layer area vs. layer number” serve as a source of information about the

formation history of layered geological systems. The concept of synchronization

of layer formation across a 2-D plane is introduced to develop the procedure for

plotting “layer thickness vs. layer number” and “layer area vs. layer number,”
which takes into account the structural anisotropy of layered patterns.

Notwithstanding the fact that biological and geological layered patterns have

structural similarities, there are differences between the processing and

interpretation of their images. To the best of our knowledge, these differences

have never been investigated. To address this we describe in detail two

interrelated concepts: a) layer structure across 2-D patterns, and b) the

synchronization of layer formation across a 2-D plane. These concepts form the

basis for the quantification of anisotropic structures of layered patterns and

describe the similarity and differences in processing and interpreting these

systems. Layered patterns of human and iguana bone lamella, the Transverse

Aeolian Ridges on Mars, and the dunes of the Rub’ al Khali desert on the

Arabian Peninsula are used to compare results of the parameterization and

interpretation of biological and geological layered systems.

2. Methods

The main focus of the present work is quantifying the anisotropic structure of

layered patterns. We used trivial procedures for converting an initial grayscale

image into binary mode to calculate the thickness of layers because they are

simple but sufficient to justify the applicability of the model.

This section presents a system for processing images of 2-D layered patterns

(Smolyar, 2014). The input is a 2-D grayscale layered image in raster format

and the output is a set of characteristics of layered patterns that includes:

• Chart A: “layer thickness vs. layer number,” which describes the variability of

layer thickness across N transects. Chart A is denoted by TH = f(Ln), where

TH indicates layer thickness and Ln indicates layer number;
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• Chart B: “layer area vs. layer number,” which describes the variability of

layer areas across N transects. Chart B is denoted by AR = f(Ln), where AR

indicates area of layers;

• Index of confidence for Charts A and B;

• Signal-to-noise ratio for Charts A and B.

Sections 2.1 and 2.2 outline the method for constructing charts A and B. Focus

is given to the idea of layered structures across a 2-D plane by comparing

isotropic and anisotropic 2-D layered patterns and noise reduction in charts A

and B. Section 2.3 describes the sequence of steps for converting a grayscale

image of the 2-D layered landscape into an N-partite graph G(N) and into tables

comprising the size of the layers.

2.1. Isotropic structure of 2-D layered patterns

Fig. 3A depicts a layered pattern with isotropic structure; that is, there are no

breaks or confluences in the geometrical configuration of layers. The algorithm

for plotting charts TH = f(Ln) and AR = f(Ln) is straightforward and consists

of the following steps:

1. Plot N parallel transects crossing all layers (Fig. 3B).

2. Label the layers sequentially along transects R1, . . . , R4 (Fig. 3C).

3. Describe the structure of the layered pattern using a 4-partite graph (Fig. 3C).

In terms of graph theory, the structure of layer P2 is its path in the 4-partite

graph, which is as follows: P2 = (A2,1, A2,2, A2,3, A2,4) (Fig. 3C).

4. Calculate the thickness of layers along transects R1, . . . , R4 (Fig. 3D) and

the area of layers between adjacent transects R1 and R2, R2 and R3, and R3

and R4. Average the thickness and area of layers across N transects.

5. Plot charts TH = f(Ln) (Fig. 3E) and AR = f(Ln).

Let LP(Pi) denote the length of layer Pi such that LP(Pi) is equal to the number

of vertices crossed by path Pi. In terms of graph theory, LP(Pi) is the length of

path Pi in G(N) and equal to the number of vertices in Pi. Layers in 2-D

patterns with isotropic structure have a one-to-one correspondence between

layers situated along transects Rj and Rj+1. It follows that:

a. Each layer is crossed by all transects (Fig. 3B); that is, all layers have

identical lengths; LP(P1) = LP(P2) = LP(P3) = LP(P4) = 4 (Fig. 3B);

b. Layers form a totally ordered set, meaning that on a 2-D plane, layer Pi+1 is

always arranged after Pi in the direction of labeling (Fig. 3C);

c. Each layer has only one possible path (Fig. 3B and 3C).
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The next section considers the evolution of layer features a), b), and c) and the

procedure for plotting charts TH = f(Ln) and AR = f(Ln) for patterns with an

anisotropic layer structure.

2.2. Anisotropic structure of 2-D layered patterns

2.2.1. Features of 2-D patterns

Let us change the geometrical configuration of the layered pattern (Fig. 3A)

slightly in order to convert it to a 2-D pattern with structural anisotropy

(Fig. 4A). For patterns with anisotropic structure, there is obviously no

one-to-one correspondence between layers situated along nearby transects

(Fig. 4B). For instance, vertex A3,2 corresponds to A2,3 and A3,3 (Fig. 4C). It

follows that 2-D layered patterns with structural anisotropy have the following

features:

[(Fig._3)TD$FIG]

Fig. 3. Variability of layer thickness across a 2-D pattern with isotropic layer structure and

anisotropic layer thickness. (A) Sample of the layered pattern. (B) Construction of 4-partite graph

G(4). (C) The isotropic structure of G(4) makes it possible to plot only one version of layer

structure P1, P2, P3, P4. (D) Variability of layer thickness along transects R1, R2, R3, R4. Transect Rj

generates chart TH = fj(Ln). Charts TH = f1(Ln), . . . , TH = f4(Ln) are not identical because of

anisotropic layer size. (E) Chart averaged over TH = f1(Ln), . . . , TH = f4(Ln). Bars show

min-max value of layers P1, P2, P3, P4.
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a) Some layers are crossed by fewer than N transects. For instance, layer P2

(Fig. 4D) and layer P4 (Fig. 4 E) are each crossed by two transects;

b) Layers form a partially ordered set (Anderson, 2001; p. 87), meaning that for

at least two layers it is impossible to define the ordering relation. For

instance, layers P4 = (A3,1, A3,2) and P5 = (A3,3, A3,4) are not related

(Fig. 4F);

c) Some layers have more than one possible path. For instance, layer P4 has

three different versions of paths, presented respectively in Fig. 4D, E, and F.

[(Fig._4)TD$FIG]

Fig. 4. Steps of the transition from 2-D layer pattern with structural anisotropy into N-partite graph

G(N) and samples of different versions of the structure of layers. (A) Sample of breaking and

confluence in layer structure (i.e., “layers bifurcate and merge” Blumberg, 2006). (B) Step #1: Draw

4 transects. Arrows on transects show the direction of labeling. Dots represent points of intersection

of layers with transects. Two points on two nearby transects are connected by an edge if they belong

to the same layer. (C) Step #2: Labeling of points of intersections of transects with layers, resulting

in 4-partite graph G(4). (D) Version #1 of the structure of layers. (E) Version #2 of the structure of

layers. (F) Version #3 of the structure of layers.
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The general scheme for constructing TH = f(Ln) and AR = f(Ln) for a 2-D

layered pattern with anisotropic structure is the same as for patterns with

isotropic structure: draw the transects, measure the size of layers, develop an

N-partite graph G(N) and use it to describe the structure of layers, and average

the size of layers across transects R1, . . . , RN, resulting in charts TH = f(Ln)

and AR = f(Ln). However, the procedures for quantifying layer structure and

averaging across N transects are different because features a)–c) of 2-D layered

patterns with structural anisotropy are opposite to the corresponding features of

patterns with structural isotropy.

2.2.2. Quantifying layer structure across a 2-D plane

In terms of graph theory, the problem of quantifying layer structure in a 2-D

plane can be described as a problem of finding paths in G(N) that include all

vertices Ai,j (Roberts, 1976). By analogy with biological layered patterns

(Smolyar and Bromage, 2004):

Paths in graph G(N) cannot intersect, merge, or cross transect Rj more than once

(1)

For instance, three versions of layer structure depicted in Fig. 4D, E, and F

satisfy condition Eq. (1).

The problem of quantifying layered structures is that in order to plot charts

TH = f(Ln) and AR = f(Ln), it is necessary to find among many different

versions of layer structure one “best” version, or to plot and analyze many

different versions and to take the average. The idea of a “best” path applicable

to different categories of layered systems is difficult or even impossible to

formalize. Thus, instead of constructing one “best” version of paths, possible

versions of paths, V1, . . . , Vq, . . . , Vk, are plotted. Version Vq is associated

with charts TH = fq(Ln) and AR = fq(Ln), where q denotes the arbitrarily

chosen version of the state of the “gates” in the Boolean functions of a 2-D

layered pattern (Fig. 2B). However, due to numerous discontinuities and

convergences, a phenomenal number of possible versions may be found in only

a small portion of a layered pattern (see landform examples in Fig. 1A and C).

One possible solution to this predicament is to select two opposite versions of

layer structure, Vq and V-q, where V-q is the version of layer structure with a

state of “gates” opposite to Vq. The two opposite versions—Vq and V-q—allow

more confidence when estimating the robustness of TH = fq(Ln) and AR =

fq(Ln) with regard to the variability of layered structure than would two

randomly chosen versions (Smolyar and Bromage, 2004).

Fig. 5 illustrates the basic steps of the procedure for converting a 2-D layered

pattern into two opposite versions of layer structure, Vq and V-q. The initial
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pattern (Fig. 5A) is presented using Boolean functions consisting of seven

“gates” (Fig. 5B). The possible number of different versions of paths is equal to

2number of “gates” = 27 = 128. Not all of the 128 versions of layer structure satisfy

condition (1); these versions therefore cannot be used to construct TH = fq(Ln)

and AR = fq(Ln). Transforming the sampling area of the layered pattern

(Fig. 5C) into G(N) results in a 4-partite graph (Fig. 5D). The state of the seven

“gates” is described by binary vector X = (x1, . . . , xf, . . . , x7), where xf = 1

means that “gate” xf is open and xf = 0 means that xf is closed. Two opposite

versions of the state of gates Xq = (1, 0, 0, 1, 1, 0, 1) and X-q = (0, 1, 1, 0, 0,

1, 0) generate two opposite versions of layer structure, Vq (Fig. 5E) and V-q

(Fig. 5F). The proposed method is used in Section 3 to quantify the variability

of layer size across 2-D layered patterns of landforms and lamella bone.

2.2.3. Averaging layer size across a 2-D plane

Consider k versions of layer structure for a 2-D layered landform. For instance,

Fig. 4D, E, and F depict three versions of layer structure. Let us plot charts TH

= f1(Ln), TH = f2(Ln), and TH = f3(Ln) for each version. The sequence of

these charts can be interpreted as three measuring cycles that quantify the

variability of layer thickness across a 2-D layered pattern. In other words, we

[(Fig._5)TD$FIG]

Fig. 5. Constructing different versions of layer structure. (A) Sample of pattern with anisotropic

layer size and structure. (B) Transition of layered pattern into Boolean functions: Position of “gates”
defines all possible versions of layered structure. The number of all possible versions equals 2number

of “gates” = 27 = 128. (C) Conversion of a layered pattern with anisotropic structure and size into 4-

partite graph. (D) Structure of layered pattern presented in the form of a 4-partite graph.

(E) Sample of strictly ordered layers. (F) Sample of partially ordered layers.
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made three independent measurements of pattern features. Averaging charts TH

= f1(Ln), TH = f2(Ln), and TH = f3(Ln) allows the signal-to-noise ratio in TH

= F(Ln) to be increased proportional to the square root of the number of

measurement cycles (van Drongelen, 2007), where TH = F(Ln) is the result of

averaging these three charts. Thus, one version q of path structure leads to chart

TH = fq(Ln) with signal-to-noise ratio equal to 1, and chart TH = F(Ln)

averaged over k charts has a signal-to-noise ratio of √k.

2.2.4. Averaging layer structure across a 2-D plane

Consider how averaging charts TH = f1(Ln) and TH = f2(Ln) affects the

correspondence between sequential layer numbers on the x-axis of the average

chart TH = F(Ln) and the corresponding sequential layer numbers on a 2-D

layered pattern. Averaging the thickness of two layers with different versions of

structure P(structure version 1) and P(structure version 2) necessitates averaging

layer structure. The averaging operation with respect to layer structure implies

the union of the structure of two layers:

Paverage (structure version 1, structure version 2) = P(structure version 1) U P

(structure version 2), (2)

where U indicates the union of two structures. It follows from Eq. (2) that there

is a one-to-one correspondence between a layer on the 2-D pattern and the

corresponding layer in chart TH = F(Ln) if averaged layers have identical

structure. This statement is also true for a 2-D pattern with structural isotropy.

If P (structure version 1) ≠ P (structure version 2), then two layers with

different structures contribute to the calculation of the average thickness of point

p on the x-axis of TH = F(Ln). Thus, there is no one-to-one correspondence

between the sequential number of point p on the x-axis of the chart TH = F(Ln)

and the corresponding layer on the 2-D pattern. In other words, each point on

the x-axis of chart TH = F(Ln) corresponds to several layers of the 2-D pattern.

The geometric configuration of these layers is defined by Eq. (2). The opposite

statement is also correct: one layer of a 2-D pattern could contribute to

calculating the average thickness of different points on the x-axis of TH = F

(Ln). Thus, two opposite tendencies exist in the construction of TH = F(Ln) and

AR = F(Ln); that is, reducing noise in TH = F(Ln) and AR = F(Ln) is always

accompanied by an increase in the uncertainty of setting correspondence

between point p on charts TH = fq(Ln) and AR = fq(Ln) and corresponding

layer Pp on the 2-D pattern. The compromise between these tendencies depends

on the category of a pattern and the goals of its analysis. Section 3 provides an

example of setting correspondence between TH = F(Ln) on dunes in the Rub’ al
Khali desert.
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2.2.5. Length of layers as a noise measure in TH = F(Ln) and
AR = F(Ln)

From features of anisotropic layers it follows that different layer lengths are the

source of different levels of assurance that layer sizes represent real pattern

features rather than noise (Smolyar and Bromage, 2004). For instance, consider a

sampling area consisting of 200 transects spaced one meter apart. It would seem

reasonable to assume that layers of average size that cross only several transects

are more likely to be noise compared to layers of average size that cross more than

100 transects. Thus, in order to reduce noise in charts TH = f(Ln) and AR = f(Ln),

the shortest layers could be ignored. Experiments in reducing noise in charts

TH = f(Ln) and AR = f(Ln) by manipulating the length of layers are presented in

Section 3.

2.2.6. Index of confidence

The index of confidence, ICnf(TH, AR), is the measure of the number of

structural details of the 2-D layered landform used to construct charts TH = f

(Ln) and AR = f(Ln) such that ICnf(TH) and ICnf(AR) is the ratio of the sum

of the area of all layers, S(all layers), which is used to construct TH = F(Ln)

and AR = F(Ln) for the area of the 2-D pattern situated between the first, R1,

and last, RN, transects S(R1, RN):

ICnf (TH) = ICnf(AR) = S(all layers)/S(R1, RN). (3)

When ICnf (TH, AR) = 1, charts TH = F(Ln) and AR = F(Ln) represent all

structural details of the layered landscape. When ICnf (TH, AR) = 0, only one

transect is used to construct TH = f(Ln) and AR = f(Ln), meaning that the 2-D

layered pattern with anisotropic structure has been converted to a 1-D pattern,

and the notion of “layer area” is therefore not applicable. Confidence index ICnf

is useful for estimating the robustness of TH = f(Ln) and AR = f(Ln) with

regard to the variability of many of the parameters that TH = f(Ln) and

AR = f(Ln) depend upon. For instance, ICnf allows the number of transects

needed to construct TH = F(Ln) and AR = F(Ln) to be known for different

categories of layered patterns at different spatial resolutions.

2.2.7. Plotting charts TH = F(Ln) and AR = F(Ln)

The procedure for plotting charts TH = F(Ln) and AR = F(Ln) consists of the

following steps:

i) Plot charts TH = fq(Ln) and AR = fq(Ln) for one version, Vq, of layer

structure. The signal-to-noise ratio is equal to 1 for these charts.
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ii) Plot charts for k versions of the structure of layers and average them,

resulting in TH = F(Ln) and AR = F(Ln). The signal-to-noise ratio is equal

to √k for these charts.

iii) Calculate the index of confidence for TH = F(Ln) and AR = F(Ln).

iv) Remove layers crossed by only one transect from chart TH = F(Ln) and AR

= F(Ln), resulting in TH = F1(Ln) and AR = F1(Ln), and calculate the

index of confidence for TH = F1(Ln) and AR = F1(Ln).

v) Repeat previous step N-1 times, removing sequentially from TH = F(Ln)

and AR = F(Ln) layers crossed by 2, 3, . . . , N-1 transects, and calculate

the index of confidence for each version of the charts.

vi) If the sequence of charts TH = F1(Ln), TH = F2(Ln), . . . , TH = Fi(Ln)

has a high index of confidence, then these charts are averaged to give an

additional increase in the signal-to-noise ratio for the resulting charts.

Thus, averaging the charts allows us to improve the signal-to-noise ratio in

TH = f(Ln) and AR = f(Ln) twice: first by averaging charts for different

versions of the structure of layers and second by averaging charts with high

levels of the index of confidence.

2.3. Image processing

The aim of the image-processing procedure is to formalize the stages of

converting the initial grayscale image of a 2-D layered landform with structural

anisotropy into an N-partite graph G(N) and tables comprising the thickness and

area of layers across a 2-D plane. The present section describes the general

scheme for converting initial layered patterns into graphs G(N) and Boolean

functions and plotting charts “layer thickness vs. layer number” and “layer area
vs. layer number.” The scheme consists of five stages (Smolyar, 2014).

First, an initial grayscale image is converted into a binary image, which is then

converted into Comma Separated Values (CSV) format. Second, the image is

filtered. Values of black and white thresholds are determined empirically

according to image size and resolution. Third, transects R1, . . . , RN are

drawn quasi-perpendicular to layers, and the thicknesses of layers along the

transects are calculated. Fourth, an N-partite graph is constructed and the area

of layers situated between adjacent transects Rj and Rj+1 is calculated. Fifth,

versions V1, . . . , Vq, . . . , Vk of the layered structure are calculated. For

each version of Vq, charts TH = fq(Ln) and AR = fq(Ln) are plotted as

described in Section 2.2. Charts TH = f1(Ln), . . . , TH = fq(Ln), . . . , TH =

fk(Ln) are averaged, resulting in chart TH = F(Ln), and AR = f1(Ln), . . . ,

AR = fq(Ln), . . . , AR = fk(Ln) are averaged, resulting in AR = F(Ln). The

signal-to-noise ratio equals 1 for charts TH = fq(Ln) and AR = fq(Ln) and √k
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for charts TH = F(Ln) and AR = F(Ln). Finally, indices of confidence are

calculated for TH = F(Ln) and AR = F(Ln). Technical details of image

processing are presented in Sections 2.3.1 – 2.3.6

2.3.1. Converting grayscale images to black and white

Because the connectivity of vertices in the N-partite graph is described using

binary terms (i.e., connected/disconnected), constructing the graph is most

convenient if the image of the layered pattern is in black and white. Thus,

converting the initial grayscale image to black and white is the starting point for

pattern processing.

Grayscale images are constructed from pixels with an array of values from 0 to

255. White pixels have a value of 255, black pixels have a value of 0, and

values between 0 and 255 are various shades of gray. Two protocols are

considered for converting grayscale images of 2-D layered landforms into black-

and-white images.

Protocol #1 is used to process images of layered landforms with relatively

simple anisotropy and less than 100 layers. The protocol includes two phases: 1)

upsampling the pattern (Huss, 2001, pp. 92–97) and 2) choosing a threshold for

converting the image to black and white (Huss, 2001, pp. 30–36). If the value

of a pixel is greater than or equal to the threshold, the output will be a white

pixel; if the value is less than the threshold, the output will be a black pixel.

Fig. 6A depicts the original grayscale image (a fragment of ESP_016036_1370)

and Fig. 6B shows the results of image upsampling.

Protocol #2 is used to process images with more complicated structures and

more than 100 layers. This protocol is similar to Protocol #1 but includes an

additional step: an emboss filter is applied between the upsampling and

threshold choice steps to enhance the landform layers of the grayscale image

(Huss, 2001, p. 425). Fig. 6C shows the results of processing the image using

Protocol #2.

After the final pixel values are determined in either protocol, the value of each

pixel is presented in Comma Separated Values (CSV) format, where the XY

index of a cell in the electronic Table represents the XY coordinates of the pixel

on image of the 2-D plane. Commercially available software such as ArcGIS

provides tools for this procedure. The output of either protocol is a

black-and-white image converted to a CSV file (Fig. 6D). This file is then used

to automate the process of converting images of layered patterns into pure

mathematical objects (i.e., N-partite graphs and Boolean functions).
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2.3.2. Layer thickness

Layer thickness is an easily measurable parameter that is broadly used for

solving various biological and geological problems (Balme et al., 2008;

Bromage et al., 2009). Layer thicknesses are measured along transects R1, . . . ,

Rj, . . . , RN (Fig. 7A and B). In the present case, transects can be considered

as straight lines without any loss of generality, and layers are assumed to be

perpendicular to transects. A layer crossed by Rj is described by: (i) layer

number, (ii) layer thickness (Fig. 7B and C), and (iii) forming front (Fig. 7B

and C). Inputs of the algorithm for calculating layer thickness are the XY

coordinates of pixels comprising transects R1, . . . , RN and the black-and-white

image of the layered landform in CSV format (Fig. 6D). Black pixels are

[(Fig._6)TD$FIG]

Fig. 6. Converting grayscale images to black and white. (A) Initial image (ESP_016036_1370).

(B) Grayscale image before upsample and emboss. (C) Grayscale image after upsample (500%) and

emboss. (D) Fragment of the black-and-white image in Comma Separated Values format.
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designated as the foreground of the pattern and have a value of 1. White pixels

are designated as the background of the pattern and have no value. The

algorithm consists of the following steps:

a. Draw transects R1, . . . , RN.

b. Calculate the coordinates of the points where layers P1 and P2 intersect with

transect R1 (Fig. 7C).

c. Calculate the thickness w(Pi)j of layer Pi, which is the distance between two

adjacent forming fronts, along transect Rj, (Fig. 7B and C).

d. Repeat steps 1 and 2 for all layers along transects R2, . . . , Rj, . . . , RN,

which results in Table TN containing N columns. Column j of Table TN

comprises the layer thicknesses along transect Rj.

[(Fig._7)TD$FIG]

Fig. 7. Principal elements of 2-D layered pattern: a) direction of layer labeling; b) forming front;

c) layer thickness; d) point of intersection between forming front and transect R. (A) Initial pattern

in raster format illustrating the direction of layer labeling. (B) Fragment of the initial pattern in

raster format illustrating layer thickness and forming front. (C) Fragment of the initial pattern in

Comma Separate Values format illustrating the forming front and point of intersection between

forming front and transect R.
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2.3.3. Layered pattern segmentation

Filtering the black-and-white image of a layered pattern, constructing the N-

partite graph, and calculating the area of layers is accomplished using pattern

segmentation and labeling (Rosenfeld and Kak, 1982). In terms of pattern

recognition, a forming front is a segment consisting of eight-connected black

pixels, also defined as the set of Moore-neighborhood pixels. The size of a

segment is the number of eight-connected black pixels of which it is made up.

The procedure for segmenting black-and-white images (Fig. 8A) used here is

vastly simpler than the procedure for segmenting color or grayscale images

because the connectivity of black pixels can be described in binary terms. The

input for the procedure (a black-and-white image in CSV format) is stored

digitally in a Table format using a spreadsheet program such as Excel (Fig. 6D).

Black pixels are designated as the foreground of the pattern and white pixels are

background (Fig. 8B). The segmentation procedure consists of the following

steps:

[(Fig._8)TD$FIG]

Fig. 8. Segmenting the layered pattern. (A) Black-and-white image in raster format.

(B) Black-and-white image in Comma Separate Values format. (C) Segmentation: black pixels are

foreground; white pixels are background. (D) Segmentation: black pixels are background; white

pixels are foreground.
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1. The first label (Label1) is assigned an initial value, which is used to label

black pixels; therefore Label1 = 2;

2. Scanning the pattern from left to right and then from top to bottom, the first

unlabeled black cell is assigned Label1;

3. All black pixels that are 8-connected to the Label1 pixel are also assigned

Label1;

4. Steps 2–3 are repeated, until all black pixels have been assigned labels

(Fig. 8C);

5. The size of each segment (i.e., the number of pixels making up each

segment) is calculated.

The same algorithm can also be used to segment layered patterns in which white

pixels have been designated as foreground and black pixels as background (as in

Fig. 8D). In order to segment the white pixels, the pattern must first be

surrounded by a frame, which allows the algorithm to search for Moore

neighborhoods within the frame. The frame (Fig. 8D) is made up of asterisks,

which are neither background nor foreground in the image.

2.3.4. Pattern filtering

Filtering a layered pattern removes elements of the pattern that are not

associated with layers. There are two types of such elements. The first is black

segments with a size (i.e., number of pixels) less than a particular threshold

(BlackThreshold), and the second is white holes in black segments with a size

less than a particular threshold (WhiteThreshold). The present work chooses

values for BlackThreshold and WhiteThreshold empirically. For instance, if the

average size of black segments is 100 pixels, then segments of less than five

pixels could be eliminated with a high level of confidence. Threshold values

should be increased if initial image quality is low.

2.3.5. Constructing the N-partite graph

The inputs for constructing the N-partite graph are two Excel spreadsheets, the

first containing a black-and-white image in CSV format (Fig. 9A) and the

second containing transects in CSV format. The algorithm for constructing the

N-partite graph includes the following steps:

1. Calculate the XY coordinates of pixels comprising transects Rj and Rj+1;

2. Calculate the XY coordinates of the pixels located at the intersection of

transect Rj with white pixels pw1,j, pw2,j, pw3,j, pw4,j immediately adjacent to
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[(Fig._9)TD$FIG]

Fig. 9. Converting fragment of 2-D layered pattern situated between two adjacent transects into a

bipartite graph. (A) Black-and-white image in Comma Separate Values format situated between two

adjacent transects Rj and Rj+1. Triangles indicate the position of white pixels immediately adjacent

to the forming fronts of layers. Triangles represent the vertex of the bipartite graph. (B) The area

between adjacent transects Rj and Rj+1 is surrounded by a frame asterisks. (C) Segmentation of area

of layered pattern between Rj and Rj+1: white pixels are foreground. (D) Triangles on opposite

transects are connected if they belong to the same segment.
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the forming fronts of layers P1,j, P2,j, P3,j, P4,j (Fig. 9A). These white pixels

are the vertices of graph G(N) along transect Rj;

3. Calculate the XY coordinates of the pixels located at the intersection of

transect Rj+1 with white pixels pw1,j+1, pw2,j+1, pw3,j+1 immediately adjacent

to the forming fronts of layers P1,j+1, P2,j+1, P3,j+1 (Fig. 9A);

4. Draw a rectangular frame of asterisks around the area between adjacent

transects Rj and Rj+1 (Fig. 9B);

5. Apply the algorithm for segmenting and labeling white pixels within the

frame (Fig. 9C);

6. Connect vertices (white pixels) that belong to the same segment with a line if

they fall on different transects (Fig. 9D);

7. Repeat step (6) for all pixels on Rj. This step creates a bipartite graph

describing the structure of the layered landform between adjacent transects Rj

and Rj+1.

8. Repeat steps (1)–(7) for all pairs of adjacent transects R2–R3, R3–R4, . . . ,

RN-1–RN.

2.3.6. Area of layers

Area S(Pi,j) of layer Pi,j comprises the set of black pixels and the set of their

immediately adjacent white pixels. Pixel pbi,j (indicated by a circle in Fig. 10A)

represents the point of intersection between the black component of layer Pi,j and

transect Rj; pixel pwi,j (indicated by a triangle in Fig. 10A) represents the point of

intersection between the white component of layer Pi,j and transect Rj. Because the

distance between any pair of adjacent transects Rj and Rj+1 remains constant

across the sampling area, it is possible to compare the results of calculating the

area of layers between any pair of adjacent transects Rj and Rj+1.

The input for calculating the area of layers is an Excel spreadsheet containing a

black-and-white image in CSV format (Fig. 10A). The output of the algorithm is a

Table containing N-1 columns. Column j contains the areas of layers situated

between adjacent transects Rj and Rj+1. The algorithm for calculating area S(Pi,j)

consists of the following steps:

1. Assign sequential numbers to pixels pbi,j and pwi,j (Fig. 10A);

2. Calculate the coordinates of points pbi,j and pwi,j, where layer Pi,j intersects

with transect Rj (Fig. 10A);

3. Draw a rectangular frame of asterisks around the area between adjacent

transects Rj and Rj+1 in order to segment the black and white pixels

(Fig. 10B);
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[(Fig._10)TD$FIG]

Fig. 10. Procedure for calculating layer area. (A) Circles represent black components of the layer;

triangles represent white components. (B) A frame consists of asterisks covering the area between

transects Rj and Rj+1. The layer area within this frame is to be calculated. (C) Segmentation of black

pixels results in area of black components of layers. (D) Segmentation of white pixels results in area

of white components of layers.

Article No~e00079

21 http://dx.doi.org/10.1016/j.heliyon.2016.e00079

2405-8440/Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00079


4. Apply the algorithm for fragmenting and labeling (Fig. 10C) to label the

forming fronts between transects Rj and Rj+1. In this case, the foreground of

the layered pattern is designated as pixels with value 1 (black pixels) and

the background is pixels with no value (white pixels); the framing asterisks

are neither background nor foreground. Fragment number K is assigned to

each black pixel pbi,1.

5. Calculate the areas of the fragments by counting the number of pixels

comprising each fragment. One black fragment could potentially form more

than one layer as a result of breaks and confluences in the layers’
geometrical structure. If fragment K creates forming fronts for U layers,

then the area of forming fronts for the individual layer is equal to the area

of fragment K divided by U;

6. Calculate the value of U(pbi,j) for each pbi,j, where U(pbi,j) denotes the

number of layers formed by fragment K(pbi,j);

7. Calculate area S(Pi,j)blackpixels of layer Pi,j:

• S(Pi,j)blackpixels = S[K(pbi,j)]/U(pbi,j).

• S[K(pbi,j)] is the area of fragment K;

8. Repeat steps (1)–(7) for transects R2–R3, . . . , RN-1–RN;

9. Repeat steps (1)–(8) to calculate the area S(Pi,j)whitepixels of white component

pwi,j of layer Pi,j (Fig. 10D):

• S(Pi,j)whitepixels = S[K(pwi,j)]/U(pwi,j).

• Calculate area S(Pi,1) of layer Pi,j between transects Rj and Rj+1:

• S(Pi,j) = S(Pi,j)blackpixels + S(Pi,j)whitepixels;

10. Repeat step (9) for transects R2–R3, . . . , RN-1–RN.

3. Results

3.1. Mars landform: noise reduction and index of confidence

Images of Martian landforms such as Transverse Aeolian Ridges (TARs) are an

example of 2-D layered landforms with anisotropic structure and size. The “ripple
field” in Eastern Candor Chasm in E03-02283 (Wilson and Zimbelman, 2004) is

used to test the proposed method. The parameters of the procedure for converting a

grayscale pattern (Fig. 11A) to binary (Fig. 11B) are as follows (Section 2.3.1):

• Resample (Huss, 2001, p. 92–97). Width: 500%; height: 500%.

• Emboss (Huss, 2001, p. 425). Depth: 20; level: 495; direction: 22.

• Convert image to binary (Huss, 2001, p. 30–36). Conversion method: line art;

threshold: 65.
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Three charts for “layer thickness vs. layer number” are plotted for the sampling

area (Fig. 11C). The first chart represents the variability of layer thickness along

an arbitrarily chosen transect (Fig. 11D). The notion of a signal-to-noise ratio is

not applicable for this chart, because this transect does not represent a 2-D

layered pattern. The second chart represents layer thickness across 100 transects

for one arbitrarily chosen version, Vq, of layer structure (Fig. 11E). For this

chart, the signal-to-noise ratio equals 1. To increase the signal-to-noise ratio,

thirty-six different versions—V1, . . . , V36—of this layer structure were

generated, resulting in chart sequence TH = f1(Ln), . . . , TH = fq(Ln), . . . ,

[(Fig._11)TD$FIG]

Fig. 11. Variability of layer thickness across Transverse Aeolian Ridges (TAR) on Mars. (A)

Grayscale TAR image E03-02283 (Wilson and Zimbelman, 2004). NASA/JPL/Malin Space Science

Systems. (B) Black and white TAR image. White rectangle is the sampling area. (C) Sampling area

of TAR image. (D) Variability of layer thickness along an arbitrarily chosen transect. (E) Variability

of layer thickness across 100 transects for one version, V1, of layer structure. The distance between

transect Rj and Rj+1, j = 1,100 is ∼5.3 meters. (F) Variability of layer thickness across 100 transects

averaged over versions V1, . . . , V36 of layer structure.
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TH = f36(Ln). Fig. 6F depicts chart TH = F(Ln) averaged over TH = fq(Ln),

. . . , TH = fq(Ln), . . . , TH = f36(Ln). For TH = F(Ln), the signal-to-noise

ratio is √36 = 6.

Chart TH = F(Ln) is the source of N charts TH = F1(Ln), . . . , TH = Fp(Ln),

. . . , TH = FN(Ln), shown in Fig. 12A, which describe the layer thickness

variability across N transects with different levels of detail. Chart #1 (TH =

F1(Ln); Fig. 12B) takes into account all layers regardless of length—even the

shortest layers crossing only one transect—meaning that it describes layer

thickness variability across N transects with the highest level of confidence.

These short layers could be interpreted as noise and therefore be excluded from

consideration. Chart #2 is Chart #1 minus layers with PL(Ai) = 1 (Fig. 12B),

and Chart #3 is Chart #2 minus layers with PL(Ai) = 2. Chart #N only includes

layers crossed by N transects. Each chart from the sequence Chart #1, . . . ,

Chart #p, . . . , Chart #N is accompanied by the index of confidence, ICnfp
(Fig. 12C).

Fig. 13A and B represent the results of averaging Charts #4–#9 for layer

thickness and area across 100 transects. Charts #4–#9 were chosen for averaging

because the coefficient of linear correlation between each pair of Charts #4–9 is

> 0.81 (thus all of these charts have similar shapes) and the index of confidence

for these charts is very high, > 0.96 (Fig. 12C), meaning that Charts #4–#9 are

robust for layer size variability across the sampling area of the 2-D layered

landform.

3.2. Rub’ al Khali dunes: signal-to-noise ratios and chart
fuzziness

The Digital Elevation Model (Amante and Eakins, 2009), available via the

Discovery Portal of the National Center for Environmental Information of

NOAA (http://ngdc.noaa.gov/mgg/dem/), is the source of the image of linear

dunes in the Rub’ Al Khali desert (Fig. 14A). The parameters of the procedure

for converting the grayscale sampling area (Fig. 14A, rectangle in the white

frame) to a binary (Fig. 14B) are as follows (Section 2.3.1):

• Resample; width: 700%; height: 700%.

• Emboss; depth: 20; level: 495; direction: 90.

• Convert image to binary; conversion method: line art; threshold: 83.

Fifty transects are used to quantify the variability of layer thickness across the

sampling area. The distance between adjacent transects is 2250 meters.

Thirty-six different versions of layer structure (V1, . . . , Vq, . . . , V36) are

constructed. Chart TH = fq(Ln) is associated with version Vq of layer structure;
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[(Fig._12)TD$FIG]

Fig. 12. Opposite tendencies in the construction of TH = F(Ln): level of noise vs. index of

confidence. (A) 100 transects create 100 charts TH = Fp(Ln), p = 1, 100. Each chart TH = Fp(Ln)

describes layer thickness variability across 100 transects with different level of detail and indices of

confidence. (B) Chart #1 takes into account all details of layered landscapes, even layers crossed by

only one transect. Chart #1 has highest possible level of index of confidence, but is noisy compared

to Charts #2. #3, . . . . Chart #2 is equal to Chart #1 minus the number of layers crossed by a

single transect. Thus, Chart #p = Chart #(p-1) minus number of layers crossed p-1 transects. (C)

The plot of “index of confidence vs. chart number” allows a compromise between high signal-to-

noise ratios and low indices of confidence (or vice versa). The plot indicates that noise levels for

Chart #3 decrease significantly compared to Chart #1, while the index of confidence for Chart #3 ≈
index of confidence for Chart #1.
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the signal-to-noise ratio, {TH = fq(Ln)}, is equal to 1. Charts associated with

V1, . . . , V36 are averaged, resulting in TH = F(Ln), which has a signal-to-

noise ratio of 6. Charts TH = F1(Ln), . . . , TH = Fp(Ln), . . . , TH = F50(Ln)

are generated by TH = F(Ln) (Fig. 14C). Charts TH = F4(Ln), . . . , TH =

F13(Ln) have low noise levels with respect to TH = F1(Ln), . . . , TH = F3(Ln)

and high levels of the index of confidence (Fig. 14D). Thus, charts TH =

F4(Ln), . . . , TH = F13(Ln) are averaged (Fig. 14E). The chart shows clear

trends in dune thickness variability across the sampling area.

The next experiment evaluates the influence of sampling density on the shape of

charts TH = F(Ln) and AR = F(Ln). Fig. 15A and B depict variability of layer

thickness and area and the index of confidence across 5 and 150 transects,

respectively. A comparison of the charts in Fig. 15A and B makes it clear that

even low sampling density (five transects) generates charts with nonchaotic

variability of layer thickness and area across the sampling region. Additionally,

TH(average 4–13) = F(Ln) generated by fifty transects (Fig. 14E) is

[(Fig._13)TD$FIG]

Fig. 13. Layer thickness vs. Layer areas. Number of transects: 100. The distance between transect

Rj and Rj+1, j = 1,100 is ∼5.3 meters. (A) Variability of layer thickness across 100 transects as a

result of averaging Charts #4–9. Index of confidence = 0.96. Coefficient of linear correlation

between Charts #4–9 ≥ 0.820. (B) Variability of layer areas across 100 transects as a result of

averaging Charts #4–9. Index of confidence = 0.96. Coefficient of linear correlation between Charts

#4–9 ≥ 0.820.
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[(Fig._14)TD$FIG]

Fig. 14. Variability of dune size across the Rub’ al Khali desert. (A) Grayscale pattern of linear

dunes in the Rub’ al Khali desert. The rectangle in the white frame is the sampling area. (B) The

sampling area in black and white. (C) Set of charts generated by TH = F(Ln). Each chart describes

layer thickness variability across the sampling area with different levels of noise and indices of

confidence. (D) Linear trend in the variability of index of confidence (ICnf) shows slow decrease of

ICnf over Charts #4–13, while noise decreases substantially (Fig. 14E). (E) Plot “layer thickness vs.
layer number” is the result of averaging Charts #4–13. The average index of confidence for Charts

#4-13 is 0.950.
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indistinguishable from TH(average 3–20) = F(Ln) generated by 150 transects

(Fig. 15B). Thus, fifty transects are sufficient to quantify the variability of layer

thickness and area in the region of study (Fig. 14B).

The next experiment illustrates the uncertainty of setting correspondence between

points on the x-axis of TH = F(Ln) and corresponding layers in a 2-D layered

landform. Fig. 16A depicts the variability of layer thickness across fifty transects.

The signal-to-noise ratio for the chart in Fig. 16A is 6. Six points on the x-axis of

chart TH = F4(Ln) are labeled with letters A–F (Fig. 16A). Graph G(N) is used to

trace the position of A–F in the sampling area of the 2-D landform. Fig. 16B

provides evidence that each point on the x-axis of TH = F(Ln) corresponds to

more than one layer in the sampling area of the 2-D landform. If the signal-to-

noise ratio for TH = F(Ln) is increased, then correspondence between points on

the chart (Fig. 16A) and layers in the sampling area become fuzzier.

[(Fig._15)TD$FIG]

Fig. 15. Robustness of charts TH = F(Ln) and AR = F(Ln) with respect to change in sampling

density: 5 transects vs. 150 transects. (A) 5 transects. Distance between two adjacent transects is

27.6 km. (B) 150 transects. Distance between two adjacent transects is 0.75 km.
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[(Fig._16)TD$FIG]

Fig. 16. Points on chart TH = F(Ln) vs. layers in sampling area. (A) Variability of layer thickness

across 50 transects for Chart #4. Six points on the x-axis are labeled with letters A–E. The
signal-to-noise ratio for Chart #4 is 6. (B) Each point on the x-axis corresponds to more than one

layer on the 2-D pattern. If the signal-to-noise ratio for Chart #4 increases, then the correspondence

between points on the x-axis and layers in the 2-D pattern becomes fuzzier. Thus, to precisely

identify the positions of layers on 2-D patterns and corresponding points on the x-axis of TH = F

(Ln) and AR = F(Ln) are mutually exclusive goals.
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3.3. Transverse Aeolian Ridges on Mars: layer thickness vs.
layer area

Fig. 17A depicts grayscale images of Transverse Aeolian Ridges on Mars

(Balme et al., 2008). The parameters of the procedure for converting the

grayscale image to a binary (Fig. 17B) are as follows (Section 2.3.1):

• Resample; width: 1000%; height: 1000%.

• Emboss; depth: 20; level: 495; direction: 30.

• Convert image to binary; conversion method: line art; threshold: 55.

[(Fig._17)TD$FIG]

Fig. 17. Transverse Aeolian Ridges (TAR) on Mars: Variability of layer thickness and area across

81 transects of HiRISE image PSP_001414_1780_RED. The distance between transects Rj and Rj+1,

j = 1,81 is ∼2.30 meters. (A) Grayscale sampling area of TAR. (B) Black and white sampling area

of TAR. (C) Chart “layer thickness vs. layer number”. (D) Chart “layer area vs. layer number. (E)

Nonlinear trend in the variability of index of confidence (ICnf) shows significant decrease of ICnf

over Charts #1–20: ICnf(Chart #1) = 1, ICnf(Chart #20) = 0.4.
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Eighty-one transects are used to plot TH = F(Ln) and AR = F(Ln). The distance

between two adjacent transects is 2.3 meters. Fig. 17C and D illustrate the

variability of layer thickness and area across eighty-one transects.

Compare the plots “index of confidence vs. chart number” for experiments 1

(Fig. 17E) and 3 (Fig. 15B) and denote these charts by ICnf(Exp 1) and ICnf

(Exp 3). The chart ICnf(Exp 3) exhibits minor changes over Charts #1–#20,
whereas ICnf(Exp 1) exhibits significant changes over Charts #1–#20. For
instance, ICnf(Exp 1, Chart #20) > 0.8 (Fig. 15B) and ICnf(Exp 1, Chart #20)

= ∼0.4 (Fig. 17E). Thus, TH = F(Ln) and AR = F(Ln) in experiment 3 are

more robust than those in experiment 1.

3.4. Human bone lamellae

Fig. 18A depicts binary image of human bone lamellae. Seventy-five transects

are used to plot TH = F(Ln) (Fig. 18B) and AR = F(Ln) (Fig. 18C). Fig. 18D

illustrate the variability of Index of confidence (Eq. (3)).

3.5. Iguana bone lamellae

Fig. 19A depicts grayscale images of iguana bone lamellae. The parameters of

the procedure for converting the grayscale image to binary (Fig. 19B) are as

follows (Section 2.3.1):

• Resample;width: 1000%; height: 1000%.

• Emboss;depth: 20; level: 495; direction: 30.

• Convert image to binary; conversion method: line art; threshold: 55.

Fifty transects are used to plot TH = F(Ln) (Fig. 19C) and AR = F(Ln)

(Fig. 19D). Fig. 19E illustrate the variability of Index of confidence (Eq. (3)).

4. Discussion

4.1. Layered landforms vs. bone lamellae: similarity in
processing

Layer characteristics result from the cumulative effects of various internal and

external factors that form the size and structure of landforms (Andreotti et al.,

2009; Lorenz et al., 2010; Milkovich and Head, 2005) and biological systems

(Klevezal, 1996; Bromage et al., 2009). Thus charts TH = f(Ln) and AR = f

(Ln) are digital records of states of these factors across the 2-D plane.

Charts TH = f(Ln) and AR = f(Ln) for layered landforms and biological images

exhibit similar characteristics: high levels of noise (Fig. 11E), clear trends after
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noise reduction (Fig. 13A, B; Fig. 14E; Fig. 15B; Fig. 17C, D; Fig. 18B, C;

Fig. 19B, C), and cyclic variability of layer thickness and areas across the 2-D

plane (Fig. 15B; Gossel and Laehne, 2013).

From an algorithmic point of view, layered landforms and biological patterns

have anisotropic structures, which may be described in terms of an N-partite

[(Fig._18)TD$FIG]

Fig. 18. Lamella bone of a human: Variability of layer thickness and areas across 75 transects. (A)

Binary image of lamella bone of human. (B) Chart “layer thickness vs. layer number”. (C) Chart
“layer area vs. layer number”. (D) Chart “index of confidence vs. chart number”.
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graph and Boolean functions. This similarity permits us to use the same formal

procedure for converting layered patterns into a pure mathematical model.

Structural anisotropy of layered patterns leads to uncertainty in determining the

correspondence between points on TH = F(Ln) and AR = F(Ln) and in layers

on the 2-D pattern; each point corresponds to more than one layer on the 2-D

[(Fig._19)TD$FIG]

Fig. 19. Lamella bone of a iguana: Variability of layer thickness and areas across 50 transects.

(A) Grayscale and (B) binary image of lamella bone of iguana. (C) Chart “layer thickness vs. layer
number”. (D) Chart “layer area vs. layer number”. (E) Chart “index of confidence vs. chart

number”.
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layered pattern, and each layer on the pattern contributes to calculations of the

average thickness and area of more than one point on TH = F(Ln) and AR = F

(Ln). Thus, to precisely identify the positions of layers on 2-D patterns and

corresponding points on the x-axis of TH = F(Ln) and AR = F(Ln) are

mutually exclusive goals.

4.2. Layered landforms vs. bone lamellae: differences in
interpretation

In the case of biological systems, incremental layers follow each other in time.

That is, each layer is a time marker; the sampling area has one layer with

marker “time begins” and one layer with marker “time ends.” In contrast, it is

impossible to identify “time begins” and “time ends” for some categories of

layered landforms. For instance, linear (longitudinal) dunes form parallel to a

wind vector (Tsoar, 1989). From this it follows that various dunes (layers) are

formed at the same instant of time. This statement is also true for some

biological systems. For instance, fingerprint ridges form simultaneously in

different regions (Kücken and Newell, 2005).

Consider the procedure for constructing TH = f(Ln) and AR = f(Ln) from the

standpoint of synchronizing layer formation in the space-time domain. Transects

Rj and Rj+1 are represented by time scales Tj and Tj+1. Let us assume that layer

Pi,j was formed at time ti,j. Additionally, layer Pi,j could correspond to more

than one layer crossed by transect Ri+1 due to the anisotropic structure of the 2-

D layered landform. Thus, it is necessary to define the structure of layer Pi,j
across the 2-D plane in order to calculate the variability of the layer’s thickness
and area across transects Rj and Rj+1.

The process of connecting the vertices situated on Rj with vertices situated on

Rj+1 (Fig. 2A) is a process of synchronizing layer formation in time scales Tj

and Tj+1, or more precisely in spatial-temporal scales Tj and Tj+1. This is due

the fact that transect Rj as well as corresponding scale Tj represents

characteristics of layered patterns in the space-time domain.

Graphs and Boolean functions are the quantitative description of all possible

versions of the synchronization of layers formed across a 2-D plane over a

period of time. Thus, charts TH = f(Ln) and AR = f(Ln) represent the set of

repeating observations of average layer thickness and area across the 2-D plane.

Because the average thickness/area of layer Pi is the measure of the average

formation rate of layered biological systems at an instant of time Ti across a

2-D plane, TH = f(Ln) and AR = f(Ln) represent the growth-rate variability of

a 2-D layered biological system in the space-time domain.
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Graph and Boolean function are tools only for the synchronization of layered

formation in the spatial domain of 2-D layered landforms only (because the

order of layers in the time domain is unknown). This fact permits us to consider

TH = f(Ln) and AR = f(Ln) as spatial series for a 2-D layered landforms.

Consider potential sources of cyclic trends in TH = f(Ln) and AR = f(Ln) for

biological layered systems. Two facts about layer formation in biological

systems provide the basis for interpretations of the cyclicity of TH = f(Ln) and

AR = f(Ln). The first fact is that the thickness of layers is proportional to the

growth rate of an incremental system. The second fact is that layers follow each

other in time.

Cyclicity in human bone has only just begun to be documented. Evidence to

date has revealed a six- to eight-week rhythm as well as the occasional

observance of an annual rhythm (Bromage et al., 2011). Annual rhythms are

known to occur in seasonal environments that experience yearly oscillations in

resource availability (Klevezal, 1996). In humans, annual cyclicity may be

explained by resource availability for individuals living under natural

circumstances. However, a six- to eight-week rhythm does not align with any

known endogenous physiological or exogenous environmental rhythm. Because

we can approximate the number of lamellae, and thus time, along the layer

number axis, we estimate that the lamellae formed over approximately 194

weeks (Fig. 18), from which we know that each lamella represents about eight

days of bone formation (Bromage et al., 2011). Fig. 18B is a chart of layer

thickness vs. layer number, wherein the bone growth-rate variability structure

reveals high-frequency variability on the order of two weeks, while lower

frequency variability is also present. Even lower frequency oscillations exist in

the time domain of six months, plus or minus. These results are interesting

because we observe that the developed method allows us discover rhythms that

do not have an immediate environmental or physiological explanation.

Cyclicity in iguana bones is caused by external environmental factors,

presumably largely temporal differences in food supply and temperature. These

key environmental features vary on time scales of a day to weeks and months

over an annual cycle. Primarily, for these herbivorous lizards, the production of

fresh greenery is important as food input. In their natural habitats in the dry and

wet tropics, the seasonality of rainy and dry seasons strongly influence the

availability of their preferred plant food. In addition to food intake, digestion

plays a major role in how much energy is available to individual organisms for

growth, including bone production. The speed of digestion follows a Q10 of ca.

2.5, indicating that at ambient temperature differences of 10 degrees Celsius,

digestion differs by a factor of 2.5 fold. Thus, during hot seasons the speed of

digestion and associated growth is rapid, while during cold (or wet and cloudy)
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seasons growth slows dramatically. Similar principles apply to daily changes in

temperature and associated speed of digestion and magnitude of energy

metabolism (i.e., energy turnover is significantly reduced at night). Taken

together, these temporal (daily, seasonal, annual) variations in environmental

parameters may be reflected in the layered patterns in iguana bones.

Fig. 19 is an examination of the 2-D layered pattern of femoral bone from a

six-month-old laboratory-reared iguana. Laboratory temperature was kept

constant, and lighting was controlled to twelve hours on and twelve hours off.

During the period of bone formation, the animal was given two vital labels

(calcein green) twenty-eight days apart. These were incorporated into the

mineralizing surface of new bone. From this experiment we were able to

conclude that the iguana formed one lamella per day.

Fig. 19B is a chart of layer thickness vs. layer number for which roughly one

week is represented for every five units on the layer number scale. First we

notice that for each of the first two 20 units on the layer number scale (roughly

0–40), there are two pronounced increases in growth rate. This is followed by

one large increase lasting between roughly 45–65. Given that environmental

conditions remained constant, the two-weekly growth rate variability is a rhythm

without any known biological foundation, but it must be fundamental. This

rhythm became accentuated during roughly 45–65 and again between roughly

65–85 units on the layer number scale, but there is no biological or

environmental explanation at present.

Finally we would like to point out that the possibility also exists that using the

developed method we can discover rhythms that do not have an immediate

environmental, geological, or physiological explanation.

4.3. Noise reduction

Three levels of noise reduction are used to improve the signal-to-noise ratio in

TH = f(Ln) and AR = f(Ln). First, binary segments of the layered pattern not

associated with layers are removed from the image (Section 2.3.4). Second,

thirty-six versions of the layer structure (V1, . . . , Vq, . . . , V36) are generated;

chart TH = fq(Ln) is plotted for each version, Vq. The signal-to-noise ratio for

TH = fq(Ln) is equal to 1. Charts TH = f1(Ln), . . . , TH = f36(Ln) are

averaged, resulting in TH = F(Ln). The signal-to-noise ratio for TH = F(Ln) is

equal to √36 = 6 (Section 2.2.3). Thirty-six versions of layer structure were

arbitrarily chosen to illustrate the possibility of substantially reducing noise in

charts TH = f(Ln) and AR = f(Ln).

Chart TH = F(Ln) takes into account 99% of the sampling area; in other words, the

index of confidence for TH = F(Ln) is 0.99 (Fig. 12C) because TH = F(Ln) takes
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into account all layers regardless of their lengths. The third level of noise reduction

is based on the assumption that the greater the length, PL(Pi), of layer Pi, the more

that layer has been sampled by transects. Therefore, there is a higher certainty that

the average thickness of Pi is a measure of real characteristics of the 2-D layered

pattern rather than a source of noise. A smaller value of PL(Pi) reflects more

anisotropy and therefore less certainty about the variability of the thickness of

layer Pi across the 2-D plane.

The index of confidence allows a compromise between more detail and a lower

signal-to-noise ratio or less detail and a higher signal-to-noise ratio in describing

the variability of layer thickness across N transects. It is therefore possible to

plot the most robust charts TH = F(Ln) and AR = F(Ln).

4.4. Assumptions

Assumption #1. Factors controlling layer formation within the sampling area are

constant. If this assumption is valid, then the identical procedure of scale

linkage is applicable to all layers within the sampling area.

Assumption #2. Layer size is unimodally distributed across N transects. This

assumption permits the average size of layers to be calculated. If this

assumption is not valid (e.g., layer thicknesses are distributed bimodally), then

the idea of an average layer size across the sampling area makes no sense. If

this assumption fails, then a new problem arises, such as finding the subarea of

maximal size with unimodal characteristics within a sampling area that has

bimodally distributed layer size.

4.5. Limitations

○ Limitation #1. The proposed method is not applicable to formalizing the size

and structure of three-dimensional layered objects.

○ Limitation #2. Transects must be perpendicular or quasiperpendicular to

layers in order to avoid errors in calculating layer thickness. The parameter

for “layer area” is not sensitive to the angle at which a transect crosses the

layer.

○ Limitation #3. Transects must be straight lines.

○ Limitation #4. The distance between each pair of transects Rj and Rj+1 must

be constant across the sampling area.

With respect to Limitation #1, technologies such as Ground Penetrating Radar

(landforms) and serial sectioning (incremental patterns) make it possible to trace

layered structures in 3-D space. Models of 2-D layered patterns with anisotropy

must be modified in order to be applicable for the quantification of 3-D layered
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patterns. Limitations #2–5 result from technical limits of current software. It is

possible that these limitations will be overcome in the future.

4.6. Areas of application

Layered patterns are broadly distributed in nature (Ball, 1999; Rubin, 2006), and

new nanotechnologies are also a source of self-assembled ripple patterns with

anisotropy (Lian et al., 2006; Peng et al., 2008) similar to layered biological and

geological patterns. Additionally, Discrete Elevation Model data (Amante and

Eakins, 2009), hundreds of thousands of satellite images of the surface of Earth

and other planets (Bourke et al., 2010; Neish et al., 2010; McEwen et al., 2007),

and an abundant supply of incremental biological patterns are available for study

but require various automated procedures before they can be readily analyzed.

The proposed method is applicable to plot special-time and spatial series for

layered systems of different origins.

The empiric model of layered patterns with structural anisotropy could be used

for solving various problems relating to the study of layered systems and

formation mechanisms. For instance, an N-partite graph G(N) could be used to

reveal the evolution of a layered aeolian system over time. Charts TH = F(Ln)

and AR = F(Ln) could measure the adequacy of a model of 2-D layered pattern

formation.

Boolean functions (i.e., the idea of gates being open or closed) can provide tools

to quantify the sensitivity of charts TH = F(Ln) and AR = F(Ln) to the

variability of 2-D layered landform structure. In addition, the distribution of

values of the index of structural anisotropy across a 2-D plane could also be a

source of information about the history of pattern formation (Smolyar and

Bromage, 2004).

5. Conclusion

The output of the developed method (i.e., charts TH = F(Ln) and AR = F(Ln))

form the basis for applying the quantitative method of analyzing the variability

of layer thickness across a 2-D plane, with an aim to reconstruct events in the

history of the layered systems formation. Graphs and Boolean functions, which

allow the structure of layered systems to be quantified, are key tools for

formalizing 2-D layered patterns. From a mathematical perspective, 2-D layered

objects have some of the simplest geometrical structures found in nature, which

is why graphs and Boolean functions are sufficient to adequately describe 2-D

layered patterns with anisotropic size and structure. These mathematical tools

provide numerous possibilities for formalizing layered-pattern analysis.
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