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Abstract: In recent years, bone tissue engineering (BTE), as a multidisciplinary field, has shown
considerable promise in replacing traditional treatment modalities (i.e., autografts, allografts, and
xenografts). Since bone is such a complex and dynamic structure, the construction of bone tissue
composite materials has become an attractive strategy to guide bone growth and regeneration.
Chitosan and its derivatives have been promising vehicles for BTE owing to their unique physical and
chemical properties. With intrinsic physicochemical characteristics and closeness to the extracellular
matrix of bones, chitosan-based composite scaffolds have been proved to be a promising candidate
for providing successful bone regeneration and defect repair capacity. Advances in chitosan-based
scaffolds for BTE have produced efficient and efficacious bio-properties via material structural design
and different modifications. Efforts have been put into the modification of chitosan to overcome
its limitations, including insolubility in water, faster depolymerization in the body, and blood
incompatibility. Herein, we discuss the various modification methods of chitosan that expand its
fields of application, which would pave the way for future applied research in biomedical innovation
and regenerative medicine.

Keywords: modified chitosan; cross-linking; structure modification; bone tissue engineering

1. Introduction

Human bone is a three-dimensional (3D) composite porous structure with several
roles within the body consisting of 30% organic matter and 70% inorganic matter [1]. It
performs the functions of protection, locomotion, storage depot for calcium and phosphate
in the body, housing for bone marrow, and structural integrity to the body [2,3]. However,
with aging, accidents, and bone illnesses, bone deformities’ high frequency and handicaps
have become prevalent difficulties in clinical orthopedics and a serious societal issue. The
demand for bone grafting techniques has constantly been increasing all across the globe [4].
Critical-sized bone defects are believed to cause an unfavorable wound environment and
therefore cannot undergo spontaneous healing [5]. Conventional tactics such as autografts
or allografts, alone and in combination, are still used for bone repair and regeneration even
though only limited therapeutic efficacy can be achieved in clinical settings [6]. However,
the applications of autografts are limited by the donor site morbidity, insufficiency, and
low availability of bone grafts [7], and allografts hold the risk of disease transmission and
immunoreaction [8].

Recently, advances in tissue engineering and technologies in this field could provide
more efficient treatment [9,10]. Bone tissue engineering (BTE) has arisen as an alternative
and attractive approach to overcoming the disadvantages of conventional bone grafts for
treating critical size defects through scaffolds, seed cells, and biologically active molecules.
It offers prospective alternatives to autografts and allografts by making effective use of
the regulation of tissue regeneration. BTE aims to accommodate natural and synthetic
biomaterials to design regenerative bone scaffolds encapsulated with specific essential com-
ponents. The scaffolds should maintain the following properties for adequate bone tissue
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regeneration, including biocompatibility, suitable mechanical properties, pore interconnec-
tivity, and bioresorbability [10]. The ideal biomaterials for bone scaffolds render essential
physical and chemical properties for tissue regeneration compatibilities, such as a large
surface area, suitable mechanical strength, stability, and the improvement of cell adhesion,
proliferation, and differentiation [11]. So far, several materials with biological properties
have been developed as BTE scaffolds materials, encompassing natural polymers, synthetic
polymers, bioceramics, biodegradable metals, and carbon-based nanomaterials [12–14].

The marine environment accounts for about half of the global biodiversity, and nearly
70% of the earth’s surface is covered by oceans [15]. Among the many polysaccharides
available from the marine environment, chitin stands out for its availability as it is the
second most abundant natural polymer after cellulose [16]. Although chitin is abundant
and possesses special functional characteristics such as biocompatibility, bioactivity, and
biodegradability [17–20], its use is limited due to its poor solubility and mechanical strength.
This makes chitin not very serviceable and shifts attention towards chitosan (CS) [21]. As
a positively charged low-cost natural polymer [22], CS is the main derivative of chitin.
Shrimp and crabs are the most common sources cited in the literature as the raw material
for chitosan preparation. Existing studies regard the by-products of crustacea such as
the lobster cephalothorax as a suitable source for chitosan preparation on an industrial
scale [23,24]. CS consists of 2-amino-2-deoxy-β-d-glucopyranose and N-acetylglucosamine
units and displays extraordinary properties. The amine groups of CS will boost cell ad-
hesion and growth. CS-based biomaterials have shown promise when applied to tissue
engineering and regenerative medicine because of their excellent biocompatibility [25],
antibacterial properties [26], and osteoinductive ability. Owing to the vast similarities
with glycosaminoglycans (GAGs), CS can increase the bone regeneration rate. One of the
most vital manifestations of the biocompatibility of CS scaffolds is that they can promote
cell adhesion, proliferation, and differentiation [27,28]. They can maintain a cell’s normal
activities and promote tissue regeneration. Meanwhile, the portable amino groups of CS
bind with the negatively charged mucin (cell membrane), resulting in mucoadhesion [29].
CS can additionally improve the osseointegration and corrosion resistance of metal im-
plants, which is indispensable for the long-term survival of internal implants in vivo [30].
However, it is not likely that CS alone can be used to make up the scaffold structure because
of the non-affinity of water [31]. It also does not fully meet the mechanical requirements of
the implant site. Studies have shown that functional groups of the polysaccharide backbone
serve as anchoring sites for chemical modifications, generating versatile scaffolds of great
significance in the biomedical field [32]. The possible modification of the major functional
groups (OH and NH2) at carbon-2 and carbon-6 permits the preparation of various CS
derivatives of improved chemical and physical characteristics for specific uses and func-
tions [33]. CS has high-level osteoconductivity but low-level osteoinductive activity [34].
Therefore, it would be optimal to modify CS or from compounds with other biomaterials to
enhance the solubility, mechanical properties, and antibacterial properties of the composite
scaffold for BTE.

To date, there have been considerable efforts to explore modified CS-based materials
for BTE. Table 1 summarizes the recent studies and essential results of modified CS-based
materials used in BTE to enhance the efficacy of bone repair and regeneration. There are
several key considerations in designing a modified CS-based system to achieve efficient
and efficacious therapy for future clinic applications. Therefore, in this review, we report
the current advances and applications of modified CS and its composite biomaterials
for BTE. This review is divided into six parts: (1) anti-inflammatory effect and safety
of CS; (2) physically cross-linked CS for BTE; (3) chemically cross-linked CS for BTE;
(4) enzymatically cross-linked CS for BTE; (5) structure modification of CS for BTE, and
(6) CS grafted with biodegradable polymers for BTE. It is believed that this review article
could help researchers understand the whole picture of progress, recent advances, and
future prospects with modified CS-based scaffolds for bone defect treatment.
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2. Post-Implantation Complications and the Safety of Chitosan

Despite the phenomenal success of implants of BTE particularly in the realms of
dentistry and orthopaedics, there are still challenges to overcome. The failure of implants
resulting from infection, prosthetic loosening, and non-union continue to be the most
serious examples [35]. As we know, new biomaterials for bone regeneration may induce
a foreign body reaction (FBR) around the implant itself and may cause systemic inflamma-
tion [36]. After biomaterial implantation, several factors have a significant impact on bone
tissue repair, inter alia macrophage–osteoblast cross-talk, soluble environmental factors,
and surface properties of the implant [37]. The success of biomaterial implantation depends
highly on the implant’s macrophage polarization [38]. Macrophages are known to be in-
volved in the in vivo biodegradation of resorbable polymers through the release of reactive
oxygen intermediates, enzymes, and acids [39]. They also exert an immunomodulatory
effect on osteogenic differentiation, inducing bone formation [40,41]. Macrophages secrete
an incredible amount of signaling molecules that initiate an inflammatory response against
the foreign body and regulate cell migration and differentiation, tissue remodeling, and new
blood vessel formation [42]. The pro-inflammatory mediators, TNF-α and IL-1, may lead to
excessive bone resorption by the priming of osteoclasts [35,43,44]. The local damage caused
by implantation and the presence of a foreign material elicits an immune response that uses
chemokines to attract circulating monocytes to the area, which differentiate into activated
macrophages that release TNF-α, IL-1, IL-6, and M-CSF [45]. Under chronic inflammation,
these macrophages exist in abundance and have been found to differentiate further into
pre-osteoclasts and then into mature osteoclasts in the presence of M-CSF. Furthermore,
these macrophages can express chemokines to enable self-activated osteoclastogenesis. It
is worth noting that macrophages isolated from peri-prosthetic tissue have been found to
differentiate into mature osteoclasts without the company of MSCs or osteoblastic cells [46].

Bone injury and chain reactions mediated by free radical species (reactive oxygen
species, ROS) generation are other critical factors. ROS affect the long-term stability
of bone/implants and mediate the apoptosis of osteoblasts and osteocytes, leading to
osteoclastogenesis and thereby favoring bone resorption [47]. Post-implantation, vicinity
acquired oxidative stress and bacterial infections lead to apoptosis with eventual bone-
resorption and implant failure, respectively. After the implantation, in such patients
(disease, fracture, and age being the contributors), the oxidative stress secludes the material
from the surrounding tissue and also leads to cytotoxicity [47]. An in vivo study on rabbits
reported that significant levels of oxidative stress are induced in the tissues surrounding
a bone implant (especially, ceramic and titanium in comparison to polyethylene) [48].

Several studies have been developed in order to combat the aforementioned complica-
tions. CS and its derivatives show an intensified anti-inflammatory cytokine induction [49].
Studies have demonstrated that CS-based scaffolds bioactivated with osteoinductive signals
can inhibit in vitro inflammatory responses [50]. The scaffolds show anti-inflammatory
activity also in in vitro co-cultures, which better mimic the in vivo damaged bone microen-
vironment. CS-based bioactivated scaffolds may inhibit the synthesis of inflammatory me-
diators such as IL-1β [51], reduce oxidative stress metabolites, decrease pro-inflammatory
cytokine (TGF-β) levels, and promote anti-inflammatory marker generation (IL-10) in
hMSCs. CS with a low molecular weight could favor macrophage polarization to the M2
phenotype and its bioactivity in the NF-κB and FGF-2 pathways [52].

Several preclinical and clinical experiences further confirm the biological properties
and safety in practice for tissue engineering. Ueno H et al. evaluated the effect of CS
as an accelerator of wound healing, and experimental open skin wounds on the dor-
sal side in normal beagles were made [53]. The reports verified that CS could activate
immunocytes and inflammatory cells such as PMN, macrophage, fibroblasts, and angioen-
dothelial cells. A randomized controlled trial [54] evaluated the effect of CS combined with
Dysphania ambrosioides (A) extract on the bone repair process in vivo. Results showed that
when CS-based spheres exhibited the ability to guide bone repair and osteoinduction they
stimulated osteogenesis by recruiting osteoprogenitor cells [55]. Feng Liu et al. investigate
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the role of CMCS in knee arthroplasty [56]. Data confirmed that CMCS could effectively
inhibit the inflammatory response around the prosthesis and osteoclast activation and
promote osteogenesis by interfering with the osteoprotegerin and the receptor activator
of nuclear factor kappa-B ligand or the receptor activator of the nuclear factor kappa-B
signaling pathway.

In the investigations of Chih-Hsin Wang et al. [57], it was revealed that CS dressing
had superior procoagulant and antimicrobial properties to regular gauze-type surgical
dressing in patients with surgical wounds. For BTE, CS has been revealed to stimulate
a rapid osteoblast response, displaying rapid cell spreading and cytoskeleton reorganization
through the clinical trial developed by Antonia G Moutzouri [58].

These preclinical and clinical trials demonstrate potential for using this biomaterial for
bone tissue regeneration purposes and open perspectives for further research to determine
the mechanisms of these interactions and to develop bioactive scaffolds for BTE. The
overviews of the trials above are displayed in Table 2.

Table 2. Overview of CS-based biomaterials in preclinical and clinical trials.

Animals/Volunteers
(Total) Incisions/Defects/Cells Chitosan-Based Form Effects Ref.

Preclinical
trials

Beagles (n/d) Open skin wounds on the
dorsal side

20 mg/wound
(2 × 2 cm)

Activate immunocytes and
inflammatory cells [53]

Mail Wistar rats (60)
Bone defects measuring

2 mm in diameter in
both tibias

CS/D. ambrosioides
spheres

Faster bone regeneration and
a controlled release of the extract [54]

New Zealand white
rabbits (20)

Undergoing TKA surgery
and implanted with

titanium rod prostheses
CMCS hydrogel

Reduce the inflammatory response
around rabbit knee prostheses, affect
the OPG/RANKL/RANK signaling
pathway, and promote osteogenesis.

[56]

Clinical
trials

Patients undergoing
abdominal surgery

(30)
Wound incisions CS membrane

An effective antimicrobial and
procoagulant and promote wound

repair by providing a suitable
environment for beneficial microbiota

[57]

Patients aged
50–70 years old

undergoing total or
elective hip

replacement (n/d)

Human bone marrow
stromal cells CS immobilized glasses

Stimulate fast osteoblast response,
displaying rapid cell spreading and

cytoskeleton reorganization
[58]

n/d: No data specified.

3. Fabrication Strategies

Recently, manufactured scaffolds for BTE have been prepared by various methods such
as electrospinning (ES) [59], self-assembly [60], and 3D bioprinting [61,62]. ES has been used
for decades to generate nano-fibers via an electrically charged jet of polymer solution [63].
It is a process that utilizes an electric field to control the deposition of polymer fibers
onto target substrates. The ES techniques include the sacrificial components method, wet-
electrospinning method [64], cryogenic electrospinning method [65], dispersion-shaping
method [66], gas-foaming method [67], and electrohydrodynamic printing method [68].
These advanced ES techniques can offer a 3D microenvironment to facilitate cell coloniza-
tion inside scaffolds, enhance nanofibers’ mechanical strength, mimic the extracellular
matrix (ECM) [69,70], and support nutrient and waste exchanges [71]. Amongst available
biopolymers, CS and its naturally derived composites have been widely adapted for TE
applications. Evidence supports the favorable properties and biocompatibility of CS–ES
composite biomaterials for BTE [72,73]. Compared with pure CS membranes, CS nanofibers
prepared by electrospinning have exhibited an excellent affinity for osteoblasts, which can
facilitate osteoblast proliferation and maturation as well as upregulate osteogenic gene
expression [74–76]. However, translating the chitin/chitosan nanofibers from laboratory to
clinical application needs further research.

Along with the rapid development of organizational engineering, 3D printing tech-
nology, an additive fabrication method, is considered to be a new paradigm of bone tissue
engineering and biomanufacturing [77,78]. 3D printing is a process for constructing 3D
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physical objects from digital models mimicking a natural-like extracellular matrix through
the successive layer-by-layer deposition of materials [66,79]. The technique involves the
deposition of a mixture of living cells and biomaterials (e.g., hydrogels) [80]. These printing
approaches include FDM [81], stereolithography [82], different nozzle extrusion-based
3D printing technologies [83–85], and low-temperature manufacturing [86,87]. To date,
several biomaterials, including bone and cartilage tissues, cardiac tissues and heart valves,
neural, lung, liver, pancreatic, skin, retinal, vascular, and composites tissues have been
fabricated through this technology [88]. Finely printed scaffolds can mimic the macro-and
micro-structures of bone. The mechanical properties of the scaffolds could be regulated
by structure designing, and the biological activity and degradation of the scaffolds can be
adjusted through chemical composition [89]. Owing to the aqueous solubility of CS in an
acidic environment, it is largely utilized for bioprinting applications, where it accounts for
4% of total polymer distribution used for bioink preparation [90]. The CS chains expand
into a semi-rigid rod confirmation due to ionic repulsion between the charged groups
(NH3+), and thus the CS ink exhibits shear thinning behavior under low shear rates at
25 ◦C, leading to better flow through the needle [91], which is beneficial for the extrusion-
based 3D bioprinting [92]. CS-based hydrogels hold great promise for the development of
3D bioprinting inks to fabricate engineered constructs [93]. The chemical modification of CS
through its high number of amino and hydroxyl groups improves its water solubility and
facilitates formulation development. Neutralization and gelation under alkaline conditions,
derivatization, cross-linking, or a combination with other polymers, are required for CS
to be printed. For instance, hydroxyapatite (HAp) [94], pectin [95], β-TCP [96], graphene
oxide (GO) [97], and various cross-linkers have been incorporated into CS for mechanical
reinforcement of CS-based inks or 3D printed scaffolds in bone tissue engineering.

However, there are still a lot of challenges that need to be overcome before the 3D
printing technology can be adopted as a common fabrication technology and can achieve
its full potential. The limited variety of available, environmentally friendly, and printer-
friendly materials is a key barrier to the wide-scale adoption of 3D printing technologies.

4. Modification Methods of Chitosan for BTE

There are numerous protocols for the preparation of modified and hybrid CS scaffolds,
which attract huge interest, particularly in BTE [98–100]. Among different methods of
modified CS, cross-linking, structure modifications, and grafts with biodegradable poly-
mer are the basic approaches to producing BTE scaffolds. Depending on the nature of
the polymeric backbone and the functional groups, CS could be cross-linked by using
various methods, including physical, chemical, and enzymatic approaches and a combi-
nation of these. The primary purpose of cross-linking is to facilitate the biomechanical
properties of scaffolds by the formation of a firm network in the polymeric matrix [101].
Furthermore, cross-linking can also modify the antigenic sites of natural materials and
reduce their antigenicity [102]. Physical cross-linking pathways take place through the
formation of hydrophobic interactions [103], hydrogen bonds [104,105], ionic/electrostatic
interactions [106,107], crystallization, and stereo complex formation. Chemically cross-
linked CS is prepared by stable binding in which polymeric chains are held together by
covalent bonding through free radical polymerization, addition and condensation poly-
merization, enzyme induced cross-links, Diels–Alder click chemistry, Schiff base reaction,
oxime formation, and Michael addition [108].

Physical cross-linking could increase the stability of the CS through interaction be-
tween cationic CS and negatively charged ionic cross-linker. It does not need the presence of
catalysts or the intense purification of the final product. The process has received prominent
advantages in biomedical safety due to the absence of chemical cross-linking agents, which
lessen the cytotoxic effects. However, these types of hydrogels are reversible, mechanically
unstable, and lack permanent junctions between the polymers, which may lead to the
natural dissolution of hydrogels from the aqueous medium [109–111].
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Compared with physical cross-linking, chemical cross-linking is a versatile method to
alter the biological application characteristics of CS. Better stability and excellent mechani-
cal properties remain as the binding between CS with the cross-linker through a covalent
bond [112]. It also displays irreversible and permanent junction behavior within the hy-
drogel system. In addition, chemically cross-linked CS-based scaffolds present resistance
to environmental variables. However, several concerns accompany this preparative tech-
nique, including adverse effects of toxic chemical cross-linking agents and difficulty in
sterilization [113]. The enzymatic cross-linked process can often be controlled by adapting
the temperature, pH, or ionic strength. The enzymes are mostly active under mild aque-
ous reaction conditions. However, the cross-linker is expensive, and the process remains
substrate specific.

Cross-linked CS is developed by one-step cross-linking of functional groups with cross-
linkers, while structure-modified CS is prepared through chemical functionalization [114,115].
The active chemical properties of C6–OH and C2–NH2 can be used as handles for func-
tionalization to create CS derivatives through various kinds of molecular design. These CS
derivatives can improve the physical and chemical properties of pure CS. Structure mod-
ification is the primary method of improving the water solubility of CS by introducing a
hydrophilic group to an amino group. The original hydrogen bond and crystallinity of CS
will be destroyed. Then, various kinds of CS derivatives appear. CS quaternary ammonium
salt has been widely used as nontoxic or low-toxicity antibacterial material [116]. The pH- and
thermo- sensitivity can be increased by introducing a sensitive acyl group in CS to control
a drug’s release in a delivery system [112,117,118]. CS derivatives with excellent properties
have been synthesized through chemical reactions and have also broadened the scope and
fields of its applications in BTE [119,120]. The advantages and limits of various modified
methods of CS are compared in Table 3.

Table 3. Advantages and limitations of modified methods of chitosan.

Cross-Linking Method Strength Limit

Physical cross-linking
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and graft polymerization. Different methods have their own main characteristics [124].
Graft copolymerization is a simple method [125] to improve native properties of CS [126]
such as enhancing complexation or chelating properties and antimicrobial and bacteriostatic
effects [127]. This process alters the surface properties, while the modified product still
retains the bulk properties of CS [128]. The use of grafting reduces desorption and conveys
long-term chemical stability because of its covalent nature. The graft copolymerization
of CS copolymer holds great promise for widespread use in producing sustained-release
drugs and other biopharmaceuticals for BTE.
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5. Applications of Chitosan Cross-Linking Modification for BTE
5.1. Physically Cross-Linked Chitosan for BTE

Physically cross-linked hydrogel is one of the ways to prepare CS-based scaffolds, which
are typically created by secondary forces. The polymeric network chains are formed via
non-covalent bond interactions. Physical cross-linking is a ‘green’ and environmentally
friendly method to enhance the functions of CS-based scaffolds [129] and has prominent
advantages in biomedical applications [130–132]. A new CS physical hydrogel with various
degrees of deacetylation (DDs) was prepared through diverse DDs of nanoporous chitin
hydrogels under mild conditions [133]. The hydrogels were transparent and mechanically
robust due to the extra intra- and intermolecular hydrogen bonding interactions between
the amino and hydroxyl groups on the nearby CS nanofibrils. Pan et al. set up cross-linking
networks based on poly(vinyl alcohol) (PVA) and CS through direct ink writing (DWI) [134].
The cyclic freezing–thawing followed by sodium citrate solution soaking yielded the first
network of PVA crystallization and the second one of CS ionic interactions between amino
and carboxyl groups. PVA as a cross-linker increases the resistance of CS through hydrogen
bonding with the amino group of chitosan molecules [97]. The optimized composite hydrogel
has a high toughness. The evidence supporting this CS physical hydrogel induction the
differentiation of mouse bone marrow mesenchymal stem cells (mBMSCs) into epidermal
cells in cooperation with EGF and IGF-1 in vitro has potential for use in BTE.

In another study, gelatin, CS, and a nano calcium phosphate blend was utilized for BTE
scaffolds [135]. Carboxylate groups of gelatin exhibit a negative charge when the pH of the
medium is higher than 4.7. Therefore, the positively charged ammonium ions of CS could
interact with carboxylate groups of gelatin, resulting in the formation of electrostatic cross-
linking. A further interesting example is the formation of a hybrid CS–gelatin hydrogel,
the mechanical properties of which are strongly enhanced upon the addition of phytate,
a multivalent negatively charged ion, to the hydrogel [136]. This system proves that the
physico–chemical properties of CS are linked to the hydrogel features. In fact, when CS
is neutralized with sodium phytate, a rather dense precipitate is formed due to the high
charge density and stiffness of the polysaccharide. In contrast, a well hydrated, elastic
hydrogel is formed when co-crosslinked with gelatin. Finally, the composite hydrogel
system presents a self-healing capacity, which originates from the dynamic nature of the
ionic cross-linking point [137].

Owing to the excellent load-bearing and low-friction properties of “double network
(DN) hydrogels”, extensive studies on the clinical applications of DN gels as a composite
scaffold for BTE have been performed [138,139]. The DN hydrogel comprises two asym-
metric network structures with differing characteristics and is stiff and robust [140,141].
The rigid network as a sacrificial bond could effectively spread energy, while the flexible
network could maintain structural integrity during deformation [142,143]. This principle is
considered universal, having been observed in various rigid materials, such as polymers,
metals, and ceramics [144,145]. It also accounts for the toughness of natural tissues [146].
Bi et al. prepared a physically cross-linked PVA/CS DN hydrogel with surface mineraliza-
tion (Figure 1) [147]. In the low-temperature environment, the PVA molecular chain could
form the crystalline region and interact with CS chains to form stable hydrogen bonds,
heightening their thermal stability [148]. However, a significant challenge is to fabricate
conductive hydrogels with high stretchability, excellent toughness, outstanding sensitivity,
and low-temperature stability [149]. Therefore, a type of conductive hydrogel consisting of
a DN structure is synthesized. The dynamically cross-linked CS and the flexible polyacry-
lamide network doped with polyaniline constitute the DN through the hydrogen bonds
between the hydroxyl, amide, and aniline groups [150]. The flexible electronic sensors
based on the DN hydrogels demonstrate superior strain sensitivity and linear response to
various deformations. The large amount of fracture energy absorbed by CS contributed
to the perfect mechanical properties. The hydrogel is cytocompatible, nonhemolytic, and
suitable for bone repair.
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5.2. Chemically Cross-Linked Chitosan for BTE

To add new functionalities and adapt the mechanical properties of the scaffolds for BTE
to the desired needs, the formation of hybrid chemically cross-linked CS-based hydrogels
has been extensively probed. The strong adhesive, anti-inflammatory, hemostatic, and
bactericidal properties of CS make this polysaccharide an excellent candidate for a broad
range of BTEs. We point the reader to some reviews on the topic.

5.2.1. Aldehyde

Aldehyde is a covalent cross-linking agent for CS. The free aldehyde groups perform
a Schiff reaction with the amino groups of CS. In the field of natural and/or synthetic
polymer preparation and stabilization, glutaraldehyde (GA) is the most commonly used
cross-linker for CS [151]. Studies proved that the addition of GA to the scaffold composition
reinforces the mechanical properties and further incorporates ceramic granules, which,
besides their bioactivity, will facilitate cell adhesion by the creation of contact points over
the scaffold surface. Y.Z. Zhang et al. reported that cross-linking improved the mechanical
performance of the gelatin fibrous membrane when the electrospun gelatin nanofibers were
cross-linked with glutaraldehyde [152]. Compared with those of the untreated membrane,
the tensile strength and modulus of the cross-linked membrane increased nearly ten times.
Rosana V Pinto et al. [153] developed composite scaffolds, based on cross-linked CS with
GA, combined with different atomized calcium phosphates (CaP) granules-HAp or biphasic
mixtures of HAp and β-tricalcium phosphate (β-TCP). The biological assessment of the
composite scaffolds showed that the specimens with 0.2% crosslinking were the ones with
the best mechanical behavior and osteoblastic biocompatibility, as well as the highest
osteogenesis-related gene expression, as shown in Figure 2. However, the toxicity [154]
and legislative issues [155] of GA have restricted its application thus far. In comparison,
the potential excess of free dialdehydes in the scaffold structure will compromise the
cellular behavior [153] due to the cytotoxicity and side effects of glutaraldehyde exposure,
e.g., asthmatic symptoms, rhinitis, and skin irritation. Researchers are committed to finding
and developing new aldehyde cross-linking agents.

Vanillin (4-hydroxy-3-methoxy benzaldehyde), the main component of vanilla bean
extract, has emerged as a promising natural, nontoxic cross-linking agent for CS [156,157].
The shear-thinning characteristic and improved mechanical properties of CS cross-linked
by vanillin have long been known and have potential in the 3D printing technique for
BTE [158]. Zhang et al. cross-linked CS films with vanillin, and the results proved the
beneficial effect of vanillin on the mechanical properties of CS films [159]. The CS films
cross-linked with 5% vanillin produced a 1.53-fold increase in their tensile strength from
6.64 MPa, in the case of the uncross-linked CS films, to 10.18 MPa. Limei Li et al. fab-
ricated a featured resveratrol (Res) delivery nano-hydroxyapatite (n-HAp)/CS compos-
ite microsphere cross-linked by vanillin/ethanol solution [160]. The microspheres had
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anti-inflammatory activity evidenced by the decreased expression of pro-inflammatory
cytokines TNF-α, IL-1β, and iNOS in RAW264.7 cells in a dose-dependent manner. The
composite microspheres could also stimulate BMSC proliferation and osteo-differentiation,
as well as enhance entochondrostosis and bone remodeling under osteoporotic conditions.
In addition, cinnamaldehyde, an eco-friendly bactericidal agent, might be used as a promis-
ing cross-linker for preparing CS particles due to its aromatic conjugation and aldehyde
group. Further, as an antimicrobial agent, it could improve the stability and antibacterial
properties of CS particles, making them a green solution with a wide range of applications
in life sciences and BTE [161].
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5.2.2. Genipin

Genipin is a natural cross-linking agent extracted from the gardenia plant [162]. It is
significantly less cytotoxic than GA and has superior antibacterial properties, reducing the
likelihood of bacterial adherence following scaffold implantation [163,164]. The mecha-
nism of genipin cross-linking is pH-dependency. Under acidic and neutral circumstances,
the amino groups of CS react with the olefinic carbon atom at C-3 of genipin to open
the dihydropyran ring [165] and create heterocyclic amines. Genipin occurs through the
nucleophilic attack by hydroxyl ions in an aqueous solution to form intermediate aldehyde
groups, which subsequently undergo aldol condensation. Similar to aldehydes, the alde-
hyde groups of genipin can react with the amino groups of CS to form the Schiff base and
then create a net-like structure [166]. BTE scaffolds made up of genipin-cross-linked CS
have been extensively studied in terms of manufacturing and characteristics. Researches
have proved that osteoblast-like MG-63 cells could be cultured on genipin-cross-linked CS
scaffolds [167]. Wu F et al. loaded a genipin cross-linked carboxymethyl chitosan (CMCS)
hydrogel with gentamycin and achieved increased adhesion, proliferation, and differentia-
tion of osteoblasts as well as full inhibition of Staphylococcus aureus [168] (Figure 3). Genipin
also enormously improves the mechanical properties of composite scaffolds. Genipin can
form intramolecular and intermolecular cross-linking networks and can further form an
interpenetrable polymer network (IPN) [169]. During the cross-linking step, more cross-
linking points will lead to higher biostability. For instance, the elastic modulus of the
genipin-cross-linked CS-PVA blend increased from 0.22 to 2.08 MPa. Nevertheless, this
value was lower than when GA was employed, but genipin is much less cytotoxic than
GA [170]. Thus, it would be safer to employ the naturally procured genipin to augment
the mechanical properties of CS [171]. E. Frohbergh et al. developed a one-step platform
for electrospun nanofibrous scaffolds of CS, which also contained HAp nanoparticles and
were cross-linked with genipin [172]. The results showed that the cross-linked CS/HAp
scaffold resulted in a five-fold increase in Young’s modulus, approximating that of perios-
teum. Rheological studies by Pandit et al. showed that the stiffness of hydrogels made
of methylcellulose, CS, and agarose increased upon cross-linking the CS with increasing
amounts of genipin [173]. In fact, the growth of osteoblasts and the differentiation marker
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expression of osteoblasts will be both enhanced in cross-linked CS gel and demonstrate
significant bacterial inhibition.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 11 of 43 
 

 

linking step, more cross-linking points will lead to higher biostability. For instance, the 

elastic modulus of the genipin-cross-linked CS-PVA blend increased from 0.22 to 2.08 

MPa. Nevertheless, this value was lower than when GA was employed, but genipin is 

much less cytotoxic than GA [170]. Thus, it would be safer to employ the naturally pro-

cured genipin to augment the mechanical properties of CS [171]. E. Frohbergh et al. de-

veloped a one-step platform for electrospun nanofibrous scaffolds of CS, which also con-

tained HAp nanoparticles and were cross-linked with genipin [172]. The results showed 

that the cross-linked CS/HAp scaffold resulted in a five-fold increase in Young’s modulus, 

approximating that of periosteum. Rheological studies by Pandit et al. showed that the 

stiffness of hydrogels made of methylcellulose, CS, and agarose increased upon cross-

linking the CS with increasing amounts of genipin [173]. In fact, the growth of osteoblasts 

and the differentiation marker expression of osteoblasts will be both enhanced in cross-

linked CS gel and demonstrate significant bacterial inhibition. 

 

Figure 3. Schematic drawing of the preparation of the chitosan hydrogel. 

There is also evidence proving that genipin can be exploited in bioactive scaffolding 

systems able to finely tune the role of inflammatory cells towards a regenerative pheno-

type while avoiding chronic inflammation and the resulting fibrotic capsule [174]. Simona 

Dimida et al. used human monocyte-like THP-1 cells to evaluate their inflammatory mor-

phological responses towards the suspension–adhesion transition under treatments with 

Phorbol-12-myristate-13-acetate (PMA) on a genipin-cross-linked CS scaffold [175]. Evi-

dence from monocyte-like cells showed that the genipin seems to promote the slowing of 

the monocyte-macrophage transition at a morphological level. 

CS scaffolds cross-linked with genipin are most attractive for BTE. While genipin is 

expensive because a large quantity is wasted during its preparation due to homopolymer-

ization, minor amounts of genipin are necessary. Today, genipin is only used in experi-

mental studies, and there is no economic justification for its use in mass production. 

5.2.3. Tripolyphosphate (TPP) 

TPP (Na5P3O10), an ionic cross-linker [176], is the salt sodium penta-anion polyphos-

phate and the conjugate base of triphosphoric acid. TPP interacts with the amino groups 

of long polymer molecules and forms a 3D network of ionically cross-linked regions. 

Then, the system will be inhomogeneous. The reaction is strongly associated with pH 

[177]. This process is more straightforward and gentler than previous cross-linking meth-

ods [178,179]. Moreover, since phosphate groups are considered necessary for bone min-

eralization, TPP is also widely employed as a cross-linker to develop biomimetic polymer 

systems for bone regeneration [180] and can enhance the mechanical properties suitable 

for human bone. For pure CS film, TPP cross-linked film significantly improved the elastic 

modulus compared to the noncross-linked one, whose elastic modulus values were close 

to the reported values for human bone [181], but more brittle [182]. For composite CS-

based biomaterials, cross-linking CaP/CS paste using the TPP solution significantly in-

creased the strength and Young’s modulus, much more noticeably in the wet state of the 

Figure 3. Schematic drawing of the preparation of the chitosan hydrogel.

There is also evidence proving that genipin can be exploited in bioactive scaffold-
ing systems able to finely tune the role of inflammatory cells towards a regenerative
phenotype while avoiding chronic inflammation and the resulting fibrotic capsule [174].
Simona Dimida et al. used human monocyte-like THP-1 cells to evaluate their inflamma-
tory morphological responses towards the suspension–adhesion transition under treat-
ments with Phorbol-12-myristate-13-acetate (PMA) on a genipin-cross-linked CS scaf-
fold [175]. Evidence from monocyte-like cells showed that the genipin seems to promote
the slowing of the monocyte-macrophage transition at a morphological level.

CS scaffolds cross-linked with genipin are most attractive for BTE. While genipin is
expensive because a large quantity is wasted during its preparation due to homopolymeriza-
tion, minor amounts of genipin are necessary. Today, genipin is only used in experimental
studies, and there is no economic justification for its use in mass production.

5.2.3. Tripolyphosphate (TPP)

TPP (Na5P3O10), an ionic cross-linker [176], is the salt sodium penta-anion polyphos-
phate and the conjugate base of triphosphoric acid. TPP interacts with the amino groups of
long polymer molecules and forms a 3D network of ionically cross-linked regions. Then,
the system will be inhomogeneous. The reaction is strongly associated with pH [177]. This
process is more straightforward and gentler than previous cross-linking methods [178,179].
Moreover, since phosphate groups are considered necessary for bone mineralization, TPP
is also widely employed as a cross-linker to develop biomimetic polymer systems for
bone regeneration [180] and can enhance the mechanical properties suitable for human
bone. For pure CS film, TPP cross-linked film significantly improved the elastic modulus
compared to the noncross-linked one, whose elastic modulus values were close to the
reported values for human bone [181], but more brittle [182]. For composite CS-based
biomaterials, cross-linking CaP/CS paste using the TPP solution significantly increased
the strength and Young’s modulus, much more noticeably in the wet state of the CaP/CS
scaffolds [183]. The TPP concentration also affects the scaffolds’ dimensional stability in
aqueous medium and the mechanical properties [184–186]. There are studies reporting
that scaffolds treated with TPP at concentrations from 2.5 to 5% had good physical and
structural integrity. A higher TPP cross-linking concentration and more time enable the
creation of stable cytocompatible scaffolds for 3D anisotropic tissue formations. Osteoblast
adhesion and vitality can also be enhanced by simulating the structure of mineralized
cortical bone by incorporating TPP-cross-linked CS and bioceramics, such as nHAp and
β-TCP. Simultaneously, the cross-linking reaction can favor porous structure formation with
convenient features for application in BTE [187]. The porous structures are conducive to nu-
trient transport and host blood vessel construction. Suren P Uswatta et al. [188] fabricated
porous injectable spherical nHA/CS scaffolds via non-toxic coacervation and lyophilization
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techniques (Figure 4). TPP-cross-linked CS could promote osteoblast adhesion, and the
addition of nHA increased the ultimate tensile strength of the scaffold.
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However, the simple mixing of CS and TPP solutions is not suitable for regulating
the cross-linking reaction since instantaneous gelation leads to precipitate formation. With
better and standardized fabrication techniques, the potential clinical use of a cross-linking
agent could lead to improved bone substitute and tissue engineering applications. However,
other important factors such as biodegradability and biocompatibility should also be
considered carefully. Therefore, different approaches should be employed to prepare
suitable scaffolds for BTE [189,190].

5.2.4. Other Cross-linkers

As previously stated, hydrogel materials are in constant use for their excellent bio-
logical properties, while improving their processability and mechanical properties is still
required. To address the present constraints, Ana Mora-Boza et al. reported the fabrica-
tion of dual cross-linked 3D scaffolds using a low concentrated (<10 wt%) ink of gelatin
methacryloyl (GelMA)/CS with a novel cross-linking agent, glycerylphytate (G1Phy) [191].
G1Phy is a hybrid derivative of phytic acid with reduced toxicity. The ionic post-treatment
mediated by G1Phy provides fast and homogeneous ionic cross-linking between phos-
phate groups in G1Phy and the amine groups in CS and GelMA. The cross-linking process
is crucial for the long-term stability properties of the polymeric networks. The prelimi-
nary in vitro testing with L929 fibroblasts revealed the encouraging adhesion, spreading,
and proliferation outcomes when compared with other phosphate-based conventional
crosslinkers (e.g., TPP) used for BTE.

Zwitterionic CS is an environmentally benign biomaterial of interest [192]. Ionic
cross-linking of polycationic CS with carboxyl anions renders a polyampholytic (mixed
charged) character to the polymer. Paulomi Ghosh et al. evaluated the fiber-forming ability
of CS with citric acid at physiological pH via instantaneous ionotropic complexation [193].
The citrate–CS fibers were further cross-linked via carbodiimide chemistry to introduce
amide bonds in the network structure, forming a dual cross-linked network. The dual cross-
linked fibers demonstrated superior protein adsorption and bio-mineralization among the
fiber types, giving rise to higher mesenchymal stem cell adhesion and better osteogenesis.
Furthermore, in vivo experiments confirmed the mechanical stability and osteoconductive
nature of the dual cross-linked fibers.
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5.2.5. Photo-Cross-Linked Chitosan

As an advancing technology, the digital light processing (DLP) technique employs
a digital mask projection to trigger localized photopolymerization. The method enables
high-efficiency fabrication of 3D hydrogel structures with high precision ranging from
1 to 100 µm, which plays an essential role in fabricating unique 3D objects in the biomedical
fields [194,195]. The easy availability of DLP printers has made this technology promising,
primarily in personalized medicine [196]. The key to photocurable printing is photocuring
hydrogels [197]. Until now, photo-crosslinked CS has been extensively used for the DLP
of BTE.

The most frequently used method of photo-cross-linking CS is the free-radical poly-
merization of (meth)acrylate-based monomers. Photo-radiation produces free radicals
by dissociating photoinitiators that are added to the bioink. The chitosan methacryloyl
(CS–MA) polymer networks are formed through photopolymerization of carbon –carbon
double bonds between CS molecular chains. The higher the DS, the more dense the in-
termolecular cross-linking degree. More importantly, through DLP-based 3D printing,
the optimized CS–MA can be processed into complex 3D hydrogel structures with rapid
and accurate spatiotemporal control, high-resolution, high-fidelity, and good biocompat-
ibility [198]. The aggregation of CS–MA and graphene oxide (GO) is favorable for bone
regeneration. The platelets promote the migration and proliferation of osteogenic cells,
increase blood vessel formation, and induce inflammatory reactions [199].

Recently, bioorthogonal click reactions such as thiol–ene click chemistry have raised
considerable attention as an alternative cross-linking mechanism to chain-growth poly-
merization. These reactions can proceed via Michael-addition reactions or a step-growth
polymerization under light irradiation (mostly UV or visible light). This cross-linking
method has three steps: initiation, propagation, and termination. Zhou et al. synthesized
photo-clickable thiol-ene hydrogels based on CS using photopolymerization of maleic
chitosan (MCS) and thiol-terminated PVA in the presence of a biocompatible photoinitiator
(Figure 5) [200]. MCS was synthesized by the ring-opening reaction of CS with maleic
anhydride, and photopolymerized MCS/PVA hydrogels were obtained by thiol-vinyl
photopolymerization. Studies found that as the PVA content increased, the MCS/PVA hy-
drogels presented a higher compressive modulus, slower absorption rate, lower equilibrium
swelling ratios, and more compact pores, suggesting an increased cross-linking density of
the hydrogel network. The properties promoted L929 cell adhesion and proliferation on
the hydrogel surface.
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5.3. Enzymatic Cross-Linked Chitosan for BTE

In general, enzymatic cross-linking methods have been applied to synthesize various
polymeric platforms and hydrogels. The primary enzymatic cross-linkers are transglutami-
nases (protein glutamine gamma-glutamyltransferase), tyrosinase (Tyr), lysyl oxidase, phos-
phatases, and horseradish peroxidase (HRP), and hydrogen peroxide (H2O2). Enzymatic
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cross-linking provides high reaction rates under physiological conditions. It is also a “green”
approach with mild reactions and biocompatible catalysts for hydrogel synthesis [201].
Substitution of phenol-containing functional groups on CS is a widely explored method
for developing injectable hydrogels through HRP-mediated enzymatic cross-linking [202].
HRP-mediated cross-linking of proteins and peptides through the tyrosine residues and
growth factors, such as bone morphogenetic proteins-2 (BMP-2), contains multiple tyrosine
residues within the peptide sequence. The oxidative tyrosine coupling reaction of BMP-2
can lead to covalent binding of the protein to 3-(4-Hydroxyphenyl)propionic acid (HPP)-
modified CS chains during cross-linking. Shalini V Gohil used a critical-sized bilateral
calvarial defect model to compare the osteogenesis potential of human bone morphogenetic
protein-2 (rhBMP-2)-loaded enzymatically cross-linkable HPP-modified glycol chitosan
(HRP-GCS + BMP) and the collagen HAp matrix “Healos®”. The spatial control of rhBMP-2
bioactivity at the cellular level was confirmed by fluorescence expressed in osteoblast and
pre-osteoblast cells. The retained rhBMP-2 in the HPGC + BMP implant could localize
osteoprogenitor recruitment and osteogenesis while also minimizing rhBMP-2 diffusion
loss at the implantation site (Figure 6).
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In addition, the enzymatic crosslinking reaction produces large quantities of entangled
nanofibers, contributing to a denser network and smaller pore size of the composite gel
network [203], which can offer better mechanical properties and excellent chemical and
thermal stability compared with ionically crosslinked polymer networks [204]. Studies are
in progress to develop an enzymatically cross-linkable hydrogel platform with good spatial
localization of the encapsulated growth factor and controlled, degradation-dependent
release characteristics.

Overall, cross-linked CS’s rigidness, acid-solubleness, reusability, and selectivity have
shown more remarkable improvements than pure CS in BTE. Table 4 provides the cross-
linking mechanism of different cross-linking agents and CS for a clearer understanding.



Int. J. Mol. Sci. 2022, 23, 6574 14 of 39

Table 4. Cross-linking mechanism of different cross-linking agents and chitosan.

Cross-Linking Agents Cross-Linking Mechanism

Glutaraldehyde
(GA)
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Table 4. Cont.

Cross-Linking Agents Cross-Linking Mechanism
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6. Application of Structure-Modified Chitosan for BTE

Another significant concern in developing CS biological properties for BTE is the
CS derivates. Recently, there has been a growing interest in structure modification of
chitosan to improve the solubility of these compounds and widen their applications in
tissue engineering [205]. Given that the primary and secondary hydroxyl groups at the
C-6 and C-3 locations of CS are active functional groups that are susceptible to chemical
reactions, the structure could be modified by being acylated, esterified, alkylated, etheri-
fied, azidated, and halogenated. CS and its derivatives are natural polymers that exhibit
enzymatic biodegradability, pH sensitivity, a polycationic nature, etc. [206]. Several studies
showed that CS with substituent incorporation can decrease intracellular reactive oxy-
gen species (ROS), thereby boosting the osteogenic differentiation of mesenchymal stem
cells (MSCs) [207]. Scaffolds based on CS derivatives have favorable biocompatibility and
physicochemical properties, which hold much promise for BTEs.

6.1. Carboxymethyl Chitosan, CMCS

Inspired by the natural extracellular matrix, carboxymethyl chitosan (CMCS)-based
composite scaffolds have great potential in BTE. CMCS is an anionic CS derivative. Modifi-
cation of CS by carboxymethylation of hydroxyl and amino groups affords better solubility
of aqueous solution at different pH values, which achieves the processability in BTE.
Chelation with more Ca2+ is enabled due to the introduction of carboxymethyl groups
in CMCS [208]. Furthermore, the enhanced mineral deposition could be attributed to
the carboxymethyl groups for providing more nucleation sites [209,210], also effectively
regulating the nucleation and growth of apatite from the solution [211]. In addition, CMCS
enhanced the biodegradability after introduction of carboxymethyl [212,213]. Studies have
shown that CMCS electrospun scaffolds promoted proliferation, and suitable cell–cell and
cell–environment interactions were observed, especially at maximum concentrations of
CMCS [214]. The research of Zhang et al. also proved this view [215]. In physiological
circumstances, several functional chemical groups of CMCS stimulated osteoblast adhe-
sion, proliferation, and CaP deposition (Figure 7). There are also studies focusing on the
analgesic and anti-inflammatory properties of O-CMCS by applying classical rat pain and
inflammation models [216]. Results of anti-inflammatory properties show that O-CMCS in-
hibited inflammation induced by carrageenan in the hind paw of rats, which demonstrated
that O-CMCS has remarkable anti-inflammatory activity.
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The improvement in compressive strength makes it an attractive candidate for bone
defect repair at the same time. Because of its porosity, gel-forming characteristics, simplicity
of chemical manipulation, and high affinity for in vivo macromolecules, CMCS will be
a viable contender as a supporting material for BTE [217].

6.2. Hydroxypropyltrimethyl Ammonium Chloride Chitosan, HACC

Bone substitutes exhibiting osteoconductivity and antimicrobial activity are increas-
ingly needed to prevent and treat contaminated or infected bone defects. Hydroxypropy-
ltrimethyl ammonium chloride chitosan (HACC) is a water-soluble CS derivative with
a strong cationic nature. The addition of quaternary ammonium groups to the CS molecule
preserves the characteristics of raw CS and significantly weakens hydrogen bonds, improv-
ing water solubility and antibacterial activity [218]. Foremost, HACC is biodegradable, is
used to treat multidrug-resistant bacterial infections, and is successfully used as an antimi-
crobial agent for BTE. The antimicrobial activity and biocompatibility of HACC could be
adjusted by varying the degree of substitution (DS) of quaternary ammonium. Studies have
proved that HACC with 26% DS displayed a significantly enhanced antibacterial effect over
that of the CS and glycidyl trimethylammonium chloride (GTMAC) [219]. The electrostatic
interaction between the positively charged quaternary ammonium groups of HACC and
the negatively charged phosphoryl groups of the phospholipid components of bacterial
membranes affected the cytoplasmic membrane integrity [220], thereby inhibiting bacteria
from forming biofilms and enhancing the bone regeneration properties effectively [221].

Antibiotic-loaded polymethyl methacrylate (PMMA) has successfully treated and
prevented osseous infections. It represents the current gold standard for local antibiotic
delivery systems in orthopedic surgery [222]. However, the local overuse of antibiotics
also leads to the evolution of antibiotic-resistant bacteria, which accounts for the failure
of anti-infective treatments [223]. To solve the situation, Tan et al. reported that HACC,
which was loaded into PMMA, significantly inhibited the formation of biofilms caused by
methicillin-resistant Staphylococcus strains [224]. Further studies showed that HACC-loaded
PMMA could improve properties, e.g., a lower polymerization temperature, prolonged
setting time, higher hydrophilicity, greater apatite formation on the surface after immersion
in simulated body fluid, and better attachment of the hBMSC, which is a better choice for
better osteointegration in BTE (Figure 8). The good biocompatibility, antibacterial nature,
and osteogenic activity displayed by the HACC-grafted scaffold makes it a potential option
for the regeneration of contaminated or infected bone defects.

6.3. Sulfated Chitosan, SCS

Another CS derivative is SCS. It is the general term for sulfonated and sulfated CS
derivatives. SCS is the production of sulfonation reaction, the incorporation of sulfonate
groups onto CS [225]. Due to the existence of residual amino groups, the resulting SCS
chains present polyampholytic characteristics encountered in the structure of some sulfated
GAGs, a particular class of complex charged polysaccharides involved in the extracellular
matrix (ECM) (e.g., chondroitin sulfate, heparin). GAGs are known to regulate cell behav-
iors, such as cell adhesion, migration, proliferation, and differentiation [226,227]. Thus,
SCS derivatives should benefit from these excellent biological properties depending on the
degree of substitution.
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Figure 8. (a) Relative ALP activity of hMSCs after 6, 10, and 14 days of culture, (*) denotes a signif-
icantly lower ALP activity of cells than that on the PMMA surface at day 6 and day 10 (p < 0.01),
(#) denotes a significantly lower ALP activity level compared to that on the PMMA-C and PMMA-H
at day 6 and day 10 (p < 0.05); (b) Image of the positive ALP staining on the four PMMA-based bone
cements on day 14; (c) Colorimetric quantitative analysis of the extracellular matrix mineralization
on the samples after three weeks of incubation, (*) denotes significantly lower mineralization than
the mineralization on the PMMA (p < 0.01). ($) denotes significantly lower mineralization than the
mineralization on PMMA-H (p < 0.01); (d) Alizarin Red staining showing that mineralization was
consistent with the quantitative analysis of mineralization; (e,f) Relative osteogenesis-related gene
expressions of the hMSCs cultured on the PMMA-G and PMMA-H bone cement for 14 days and
21 days based on real-time PCR, # p < 0.05 compared with PMMA-G. Data were redrawn from [224].

The most attractive characteristic of SCS is that it has been employed for its blood
anticoagulant properties ascribable to their chemical structure similar to that of hep-
arin [228,229]. SCS could act as heparan sulfate mimetics to regulate protein growth
factor activity and other physiological processes. The stimulation from 6-O-sulfated chi-
tosan (6SCS) could enhance the bioactivity of BMP-2. The increased chai length and further
sulfation on 26SCS also resulted in higher ALP activity. Research indicated that BMSCs
cultured in the coculture system of N, 6-O-Sulfated chitosan (26SCS), and BMP-2 exhibited
higher cell viability. Further, more vascular endothelial growth factor (VEGF) and NO
were secreted to improve the angiogenic potential of BMP-2 and thus could lead to better
bone regeneration [230] (Figure 9). Han et al. elucidated the effects of SCS coating on
the poly(d,l-lactide) (PDLLA) membrane on the HUVEC and MC3T3-E1 co-culture sys-
tem [231]. It was suggested that SCS could influence the bone repair microenvironment
and stimulate osteoblast proliferation and activity by upregulating gene expression and
supporting micro-angiogenetic processes via new bone formation. Furthermore, various
concentrations of SCS have different effects on the osteogenic activity of BMP-2. A low
dose of 26SCS enhances BMP-2-induced mineralization in vitro and ectopic bone formation
in vivo. Additionally, a low dose of 26SCS promotes the interaction between BMP-2 ligands
and receptors and inhibits the function of Noggin [232]. Hence, SCS is a more potent en-
hancer of BMP-2 bioactivity than native heparin, which is promising for future applications
in BTE as a synergistic factor of BMP-2 for local bone regeneration.
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Figure 9. (a) Cell viability of BMSCs treated with BMP-2 and BMP-2/SCS determined by the MTT
assay, (*) denotes significant difference (p < 0.05) as compared to the control group, (**) denotes
p < 0.05 compared to both control and BMP-2 group; (b)Secretion kinetics of VEGF from BMSCs after
culturing with BMP-2 and BMP-2/SCS. (c) Intracellular NO secretion of BMSCs in the culture medium
(control group), BMP-2, and the BMP-2/SCS group, (d) Immunohistochemican anti-CD31 staining
of the ectopic bone section, and (e) The statistical analysis of blood vessels after the microvessel
counting was conducted at 200×. Probability (p) value of b0.05(*) is considered as significant and
(p) value of b0.01(**) is considered to be highly significant. Data were redrawn from [230].

6.4. Glycol Chitosan, GCS

Glycol chitosan (GCS) is a water-soluble derivative of CS wherein the C6 hydroxyl
groups are functionalized with glycol groups [233]. It is ideal for producing biomaterial,
which is soluble under alkaline, neutral, and acidic conditions, that is, over the whole pH
range studied [234]. GCS and its nanoparticulate formulations are regarded as excellent
drug delivery vehicles due to their appropriate biocompatibility, biodegradability, and
bioadhesive nature [235]. GCS can also be further developed into hydrogel scaffolds for
BTE. GCS ligands are likely to stabilize the formed nHA inorganic cores by creating an
organic shell with the hydrophilic glycol moieties preferentially oriented toward the water
medium and providing steric hindrance that prevents nanoparticle aggregation and ag-
glomeration, which is different from the electrostatic stabilization by carboxylic groups
reported for carboxymethyl CS [209,210,236]. The morphology of the cells shows predomi-
nantly elongated sprawling on membranes emitting cytoplasmic processes that facilitate
adhesion and cell communication [237,238], which also suggests the biocompatibility of
the HBMS cells.

GCS is also an excellent drug carrier for delivery systems owing to its physicochemical
features, biocompatibility, biodegradability, and mucoadhesiveness [239]. In the study of
Chih-Wei Chiang et al. [240], SrR, used for the treatment of osteoporosis, was added in
GCS/HA nanoformulation through electrostatic interaction. A cell viability test demon-
strated SrR nanoparticles (SrRNPs) exerted no cytotoxic effects on osteoblasts in vitro.
Radiographical and histological analyses suggested a higher level of bone regeneration
in the SrRNPs-H-implanted groups than in other experimental groups. Interestingly, the
hydrogel carrier promoted local site-effective delivery of SrR. GCS is expected to provide
enough mechanical support for a steady release of drugs to guarantee drug activity and
safety in BTE.

6.5. Guanidinylated Chitosan, GC

Guanidine is an essential class of organic compounds. It is present in many medicinally
important compounds that show biological activity and therapeutic functions, such as
broad-spectrum antimicrobials and antidiabetic drugs. Polymers functionalized with
amine groups can be easily converted to guanidinium groups. Attachment of the guanidine
group onto CS can introduce a positive charge onto the polymer backbone, which would
result in better aqueous solubility at neutral pH and shows potentially good antimicrobial
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activity [241]. Surface hydrophilicity and hydrogen interactions would increase to improve
self-healing, shape memory, and mechanical and biological properties by loading this
semi-conductive CS derivative into the polymer structure. Research showed that GC
could stimulate the osteoblast differentiation of mesenchymal stem cells and upgrade the
mineralization process [242]. The presence of the positively amino and guanidino groups
will create a specific signal for cell recognition and attachment (Figure 10). There are
also studies focusing on the effect of GC on osteogenic signaling pathways. Zhang et al.
developed a self-healing and pro-osteogenic hydrogel system based on the self-assembly
of laponite nanosheets and guanidinylated CS [242]. This hydrogel system offers a multi-
functional encapsulation platform for encapsulating living cells, therapeutic agents, and
synthetic bone grafts structure. Simultaneously, it may stimulate the Wnt/-catenin signaling
pathway, which promotes cell adhesion and osteogenic differentiation in mesenchymal
stem cells to enhance bone regeneration.
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Figure 10. Schematic illustration of supramolecular hydrogels with self-healing and injectable
properties for bone regeneration with no need for growth factors, self-healing processes of DBM-
loaded supramolecular hydrogels, and of two DBM-loaded hydrogels after attachment directly.
Modified from [242].

There are also some other structure-modified strategies of CS. It has been modified
with 5-fluorouracil to serve as an in vitro anti-tumor drug delivery system [243]. It has
also been modified with different simple organic and polymeric materials, especially with
halloysite nanotubes (HNTs). HNTs are unique inorganic nano clays formed by aluminosil-
icate kaolin sheets that are rolled. HNTs have been used successfully in several studies as
nanomodifiers [244–246]. This is an attractive option for BTE due to boosting the mechani-
cal properties of polymer matrix resulting from their high aspect ratio and tough structure
and the absorbable degradation products that induce osteogenic cell differentiation [247].
Several studies have proved the favorable biological properties of the scaffolds and hy-
drogels consisting of CS and HNTs [98,248,249]. Liu et al. combined solution-mixing and
freeze-drying techniques to develop novel CS/HNT nanocomposite (NC) scaffolds [250].
Measurements of the NC scaffolds’ mechanical and thermal properties revealed a substan-
tial improvement in compressive strength, compressive modulus, and thermal stability
compared with those of the pure chitosan scaffold. Meanwhile, adding a significant amount
of HNTs (up to 50 wt.%) to the biopolymer matrix did not disturb cell proliferation and
hemocompatibility [246]. Kadam AA et al. designed a surface-engineered nano-support for
enzyme laccase-immobilization through grafting the surface of HNTs with Fe3O4 nanopar-
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ticles and CS [251]. These CS-based, rapidly separable super-magnetic nanotubes for
efficacious enhancement of laccase biocatalysis can be applied as nano-supports for other
enzymes. In conclusion, HNT-modified CS can greatly improve physical defects while
maintaining the original biological properties of the CS, which shows excellent potential in
BTE and can be used as stem-cell carriers for bone repair [252].

7. Application of Chitosan Grafted with Biodegradable Polymers for BTE

During the last decades, CS has been widely modified by graft copolymerization with
a multitude of polymers to improve some CS weaknesses to broaden its application in
BTE [253], such as the limited chain flexibility, the poor mechanical strength, the low thermal
resistance or its low selectivity as an adsorbent [254]. Generally, a graft copolymer con-
sists of a high-weight macromolecular chain of one monomer, referred to as the backbone
polymer, with one or more branches or grafts of different monomers/polymers [255,256].
CS usually acts as the backbone chain in grafting due to its high molecular weight [257,258].
The amino and hydroxyl groups are the points of initiation of the graft copolymeriza-
tion [259]. The biodegradable polymers that have been copolymerized with CS are very
varied, and the most studied include PLA, polycaprolactone (PCL) [260], lignocellulosic
products, pectin [132], gelatin [261–263], silk proteins [264,265], and peptides [266,267].
Cui et al. grafted CS on electrospun PLA nanofibers to induce the deposition and growth
of HA crystals [268]. The HA content and growth kinetics can be modulated by changing
the CS content grafted on the surface of electrospun fibers. The mineralized scaffolds from
CS-grafted PLA fibers provided favorable conditions for the proliferation of MC3T3-E1
cells, and they have the potential to be used in applications as coating materials on medical
devices and as scaffolds for BTE. The in vitro fibroblast static cultivation on CS/PLA films
has also a faster cell growth rate compared to CS [269]. Hydroxypropyl methylcellulose
(HPMC) could be grafted with CS and, subsequently, complexed with carboxymethylcel-
lulose (CMC) to obtain a polyampholytic hydrogel for sustained drug delivery [270]. In
addition, CMC can establish strong ionic cross linkages with CS to form polyelectrolyte
complexes. The composite scaffolds are cyto-friendly and can promote differentiation of
mMSCs to osteoblasts, which is useful as scaffolds to develop bone tissues [271].

Furthermore, developing hybrid biomaterials by including peptide sequences into
biopolymers is an attractive alternative to confer functional cell–biomaterial interaction [272].
RGD peptide and HVP-aldehyde peptide can also be grafted with CS. In the study of
Wang et al. [273], a cyclic RGD peptide was grafted with CS by a thiolation reaction and
a cross-linking agent and was used in addition to GO in drug delivery applications. Paola
Brun et al. reported that the 1:1 mixture of HVP functionalized-CS:CS is the best com-
promise between preserving the antibacterial properties of the material and supporting
osteoblast differentiation and calcium deposition [ES]. The published literature also shows
that grafted chitosan is a promising substance for biomedical applications. In the future,
the production and clinical use of new graft copolymers of chitosan will provide a new
approach to BTE research of commercial importance.

Overall, pure CS could be structure-modified through amino and hydroxyl groups
such as acylation, carboxylation, etherification, graft copolymerization, and ring opening
of epoxides to produce a series of CS derivatives (Table 5). These CS derivatives show
improved water solubility, biological activity, and mechanical properties compared to
native CS, which would be more appropriate in the applications of BTE.
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Table 5. Structural formula of structure-modified chitosan.

CS Derivates Chemical Formula

Carboxymethyl chitosan, CMC
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Table 1. Summary of the following different types of modifications of chitosan, fabrication techniques,
bioactive molecules, and experimental model system in the study of bone regeneration in vitro and
in vivo.

Modification Fabrication Materials Effect Cell/Model Ref.

Physically
cross-linked

ice template-assisted
freeze-drying EO-loaded CS/Dex

Exhibit antioxidant, antifungal
properties and the inhibition of

Candida parapsilosis fungi
- [129]

freeze-drying nanoporous chitin
hydrogels

Enhance the strength and Young’s
modulus of hydrogel, mBMSC

adhesion, and proliferation
mBMSC [133]

direct ink writing
(DWI) CS/PVA Promote toughness performance - [134]
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Table 1. Cont.

Modification Fabrication Materials Effect Cell/Model Ref.

double network CS/PVA/HAp
Increase cell adhesion,

proliferation, OCN, ALP, COL I,
and osteochondral repair efficacy

Rat bone marrow
mesenchymal stem cells
(rBMSCs) and L929 cells

(Mouse fibroblast cell
line)/New Zealand white
rabbits with a bone defect

(5 mm in diameter and
8 mm deep) in the lateral

femoral condyle

[147]

Aldehyde-
crosslinking freeze-drying CS/HA/β-TCP

Promote biological performance,
metabolic activity, ALP

expression, cell morphology,
cell/scaffold interaction, and

gene expression

MG63 human
osteoblastic-like cells [153]

freeze-drying CS/vanillin hydrogel

Achieve a good balance
between self-healing

capability and
mechanical strength

- [156]

emulsion method CS/vanillin hydrogel Provide favorable cell attachment
and biocompatibility

MG63 cell/
muscular incision 20 mm

long on the backs of
SD rats

[157]

freeze-drying vanillin-CS/CS
Exhibit suitable viscosity values
and shear thinning behavior for

3D printing applications
- [158]

freeze-drying Cinnamaldehyde/CS

Show thermal characteristics and
stability and synergistic

antibacterial activity against
Staphylococcus aureus and

Escherichia coli bacteria

Staphylococcus aureus or
S. aureus (ATCC 25923)
and Escherichia coli or
E. coli (ATCC 35218)

bacteria

[161]

Genipin
cross-linking

CS and hyaluronic
acid solutions
PEC+BMP-2

Control the swelling ratio and
degradation of PEC and achieve

quite a high loading efficacy,
prolonged, and sustained BMP-2

release profile

MC3T3-E1 cells [165]

mixing
gentamycin sulfate

(GS)-loaded
CMCS hydrogel

Achieve superb inhibition of
bacterial growth and biofilm

formation of Staphylococcus aureus,
enhance the adhesion,

proliferation, and differentiation
of MC3T3-E1 cells

MC3T3-E1 cells [168]

electrospinning CS/HA nanofibers Increase in Young’s modulus and
osteoinductive bioactivity

Murine 7F2
osteoblast-like cells [172]

mixing CS/methylcellulose
Enhance fibroblast, endothelial,

and osteoblast proliferation
and adhesion

Osteoblasts, fibroblasts,
and HUVECs [173]

DWI and freeze-drying HA/CS composite
scaffolds

Friendly environment, increase
cell population, levels of viability,

and attachment

MG63 human
osteoblast-like cells [274]

self-assembly HA/GO/CS
composite hydrogel

Improve the microstructure and
mechanical strength. Balance the

rigidity and toughness of the
composite hydrogel

Rat bone marrow
mesenchymal stem cells

(rBMSCs)
[275]

Tripolyphosphate
(TPP)

cross-linking

coacervation and
lyophilization

nHA/CS/TPP
Scaffolds

Exhibit highest ultimate
compressive strength and show

good osteoblast adhesion
and proliferation

OB-6 line cell [188]

freeze-drying CS/Gel/β-TCP
scaffolds

Show mechanical improvements,
bioactivity, high proliferation rate,

high extracellular calcium
deposition, excellent cell

adhesion, and characteristic
osteoblast cell morphology

Human osteoblast cells
(CRL-11372) (hOB) [179]

freeze-drying HA/β-TCP/CS
composites

Show good swelling properties,
and higher levels of cell

proliferation and growth

Human osteoblast-like
cells (Saos-2) and mouse

fibroblastic-like cells
(L929)

[276]

Glycerylphytate
(G1Phy)

3d-printing and
photopolymerization GelMA/CS scaffold

Exhibit excellent shape fidelity,
resolution, swelling behavior, and

mechanical and biological
properties; enhance cell adhesion

and proliferation

L929 fibroblasts [191]
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Table 1. Cont.

Modification Fabrication Materials Effect Cell/Model Ref.

Carbodiimide
and citric acid

extruded in a coagulant
bath using viscose-type
stainless steel spinneret

citrate–CS fibers

Improve the mechanical property,
higher stability against enzymatic
degradation and hydrophobicity,
and superior bio-mineralization

MSCs
New Zealand white

male rabbits
[193]

Photo-
crosslinking UV light MCS/TPVA

(Darocur 2959)

Exhibit rapid gelation behavior,
improved stiff and compressive

strength. Promote L929 cell
attachment and proliferation

L929 cell [200]

visible blue light with
riboflavin CS-MTT hydrogel

Recruit native cells and promote
calvarial healing without the

delivery of additional therapeutic
agents or stem cells

male CD-1 nude mice [277]

blue light (420–460 nm) ChI-MA/GO
Showe intermediate platelet

aggregation hemolytic tendencies,
enhance tissue regeneration

NHOst cells
Reconstruction of the

distal epiphysis of
the femur

[199]

Enzymatic-
crosslinking

Standard carbodiimide
coupling method

HPP-GC +
BMP(HRP + H2O2)

Localize osteoprogenitor
recruitment and osteogenesis

Col3.6 rat critical sized
bilateral calvarial

defect model
[278]

Carboxymethyl
chitosan,
CMCS

electrospinning CMCS/HA
Increase the ALP activity and

Runx2 expression, promote new
bone formation and maturation

mBMSCs
circular critical-size

Calvarial bone defects
(diameter of 5 mm) on
both parietal bones of
Sprague–Dawley rats

[211]

electrospinning PCL/CMCS
nanofibrous scaffolds

Adjust the viscosity and charge
density and exhibited excellent

initial cell attachment
and proliferation

human osteoblast cells
(MG63) [214]

freeze-drying NOCC/FD
composite hydrogel

Enhance the proliferation, ALP
activity, and mineralization of

osteoblast cells

L929 mouse fibroblasts
and 7F2 osteoblast cell [279]

freeze-drying SF/CMCS/CNCs/
Sr-HAp

Maintain high porosity with a
lower swelling ratio, enhanced

protein adsorption and
ALP activity

bone mesenchymal stem
cell (BMSC) [217]

Hydroxyprop-
yltrimethyl
ammonium

chloride
chitosan
(HACC)

3D-printing PLGA/HA/HACC
composite scaffold

Favor cell attachment,
proliferation, spreading, and
osteogenic differentiation and

exhibit good neovascularization
and tissue integration

human bone
marrow-derived

mesenchymal stem cells
(hBMSCs)

[219]

solvent
casting-particulate
leaching method

silica/HACC/
zein scaffold

Exhibit long-lasting antibacterial
activity against Escherichia coli and

Staphylococcus aureus, and
significant early osteogenic

differentiation

Rabbit model of
critical-sized radius

bone defect
[221]

PTFE mould HACC-PMMA

Improve properties, stem cell
proliferation, osteogenic

differentiation, and
osteogenesis-associated

gene expression

human mesenchymal
stem cells (hMSCs) [224]

Sulfated
chitosan (SCS) - 2-N,6-O- SCS +

BMP-2

Exhibit a higher cell viability and
sprouting ability, secrete more

VEGF and NO, and improve the
angiogenic potential

Rat bone marrow stromal
cells (BMSCs) [231]

solution casting
SCS coated on

poly(d,l-lactide)
(PDLLA)

Increase osteogenic- and
angiogenic-related gene and

protein expression

Mouse preosteoblast cells
(MC3T3-E1s) and human

umbilical vein
endothelial cells

(HUVECs)

[231]

- 2-N,6-O- SCS +
BMP-2

Enhance BMP-2 bioactivity to
induce osteoblastic differentiation
in vitro and in vivo by promoting

the BMP-2 signaling pathway

C2C12 cells [232]

Glycol chitosan
(GCS)

solvent cast and
evaporation

nHA/GCS
composites

No cytotoxicity and promotion of
cell ingrowth and
osteoconduction

osteoblastic-like (SAOS)
and embryonic cell lines

(HEK293T)
[238]

solvent cast and
evaporation

CHA/
SF/GCS/DF-PEG

self-healing hydrogel
+ BMP-2

Promote osteogenic
differentiation of mOPCs and
promote the proliferation and

migration of HUVECs

C57BL/6 suckling rat
A 4-mm-deep hole in the
femoral condyle of SD rat

[280]
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Table 1. Cont.

Modification Fabrication Materials Effect Cell/Model Ref.

electrostatic interaction GCS-HA NPs +
PEGDA+ SrRNPs-H

Increase the level of bone
regeneration

Dorsal incision around
the lumbar and sacral

pine area of male
Wistar rats

[240]

Guanidinylated
chitosan (GC)

sol–gel chemistry and
freeze-drying

Sulfonate and
carboxylate-
containing

chitosan/silica
hybrid composites

Showed a substantial effect on the
mineralization of calcium

phosphate and was more efficient
to induce heterogeneous
nucleation and growth of

hydroxyapatite

- [281]

-

GC/PANI-
containing
self-healing

semi-conductive
waterborne scaffolds

Exhibit excellent shape memory
properties and shape recovery

ratio, enhanced cell attachment,
COL-1, ALP, RUNX2, and

OCN expression

Human adipose-derived
mesenchymal stem cells

(hADSCs)
[282]

mixing LNSs/GC

Show inherent osteogenic
properties, a versatile moldable

vehicle, facilitating handling and
osteogenic potential

Mouse bone marrow
stromal cell line (BMSCs,
D1 ORL UVA [D1], D1

cell, CRL-12424)
[242]

Grafted with
PLA electrospun CS/PLA/HA

Enhance proliferation of
MC3T3-E1 cells used in

applications as coating materials
on medical devices

MC3T3-E1 cells [268]

Grafted with
HPMC

coupling
reagent-mediated

approach
CS/HPMC

Highly water-soluble across a
wide pH range, high pH buffering

capacity, and a high drug
encapsulation efficiency

Metronidazole,
methylene blue,

tetracycline
hydrochloride, and

mometasone furoate as
drug models

[270]

Grafted with
CMC Freeze-drying

CS/HPMC/
mesoporous
wollastonite

Cyto-friendly nature to human
osteoblastic cells, confirmed by

calcium deposition and
expression of an

osteoblast-specific microRNA

MG-63 [271]

Grafted with
cycle RGD

peptide
noncovalent method CS/cRGD/GO

Provide a multifunctional drug
delivery system and can be

efficiently loaded with a number
of therapeutic agents for
biomedical applications

hepatoma cells (Bel-7402,
SMMC-7721, HepG2) [273]

Grafted with
HVP-aldehyde

peptide
mixing CS/HVP

Support the adhesion of
osteoblasts, the formation of
elongated cell shapes, and

increased osteoblast
differentiation.

Human (h)
osteoblast cells [283]

8. Future Directions for Modified CS-Based Bone Scaffolds

The past few decades have seen revolutionary advancements for designing dynamic
living constructs and replacing malfunctioned bone tissues in BTE applications. Intelligent
hydrogels that respond rapidly to the exterior stimulus changes have attracted considerable
attention from many scientists [284]. These “smart hydrogel scaffolds” could be modified
and improve osteogenic differentiation of stem cells, leading to a more responsive reaction
to changes in their surrounding environment [285], such as pH [286,287], temperature [288],
light [289], and the electric field [290]. CS-based stimuli smart hydrogels have emerged as
powerful platforms that provide sophisticated 3D-living constructs with spatiotemporal
architecture and customized properties sensitive to external temperature and pH. Among
the various external stimuli, pH- and thermo-sensitive biocompatible materials based on
natural polymers are highly sought by researchers since their potential applications cover
a wide range. Temperature and pH are the most affected environmental stimuli under
in vitro and in vivo conditions [291]. There is interest in obtaining sensitive materials
because of the excellent adhesion, biocompatibility, and biodegradability of CS. However,
CS is a poor water-soluble natural polysaccharide, making it challenging to self-assemble
from hydrogels.

The present contribution focuses on synthesizing and characterizing a pH- and thermo-
responsive system based on CS modified with isopropyl side chains. CS-based injectable
hydrogels present considerable potential for bone remodeling with sensitivity to the pH
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value. The use of poly (alic acid) (PAA) to modify CS is crucial for forming pH-sensitive
hydrogels. These hydrogels are designed to target and control the release of drugs for
treating bone diseases or infection [292,293], which can be changed by modulating the
pH [117]. Lin et al. prepared PAA/CS/silica hydrogel through UV polymerization [294].
A higher compressive strength of the composite hydrogel could be achieved by forming
an interpenetrating network (IPN) structure between PAA and CS with nano-silica. The
hydrogel also had good biological safety. The growth factor (platelet glue) was fast and
ultimately released from PAA/CS/Si hydrogel scaffolds within 620 min, which illustrated
that the hydrogels are beneficial for use as scaffolds for bone defect repair. Furthermore,
CS can also be modified by introducing isopropyl side-chains utilizing N-alkylation with
a picoline–borane complex as a reducing agent. The altered hydrophilic/hydrophobic
character endows the N-isopropyl chitosan (iCS) with the ability to form hydrogels when
electrostatic chain–chain repulsion is limited. The sol–gel transition occurs at a pH compati-
ble with the applications in the biomedical field. Considering biocompatibility, N-isopropyl
chitosan (iCS) shows an interesting potential role in tissue engineering [295].

Temperature is another critical factor that influences the formation of intelligent
CS hydrogels. The excellent moldable ability of thermo-responsive CS injectable hydro-
gels proved to be a new class of bone substitute materials that respond to temperature.
This hydrogel exerts no potential adverse effects on the surrounding cells/tissues [296].
Reports have demonstrated success with thermos-sensitive CS hydrogel using poly (N-
isopropylacrylamide) (PNIPAM). PNIPAM is the most studied thermo-responsive polymer,
which exhibits a lower critical solution temperature (LCST) in water at around 32 ◦C [297].
Graft copolymerization of N-isopropylacrylamide (NIPAAm) with CS could produce a
thermo-sensitive biocompatible drug-delivery carrier [298]. The hybrid hydrogel exhibits
significant volume changes under the stimulation of pH and temperature. Importantly,
the hydrogel system showed good cytocompatibility and rapid gelation ability without
prolonged inflammatory response in vitro and in vivo. On account of the advantages of
intelligent CS-based hydrogels, the synthesized dual-responsive biocompatible hydrogel
has the potential to be used as an injectable hydrogel for controllable drug delivery and
minimally invasive BTE applications.

Comparing intelligent CS-based hydrogels to other presently available conventional
materials shows great advantages, as they have the ability of in-situ osteoblastic differentia-
tion induction and interesting biological functions. The incorporation of growth factors
and other bioactive molecules as well as nano-particles as smart modifications can enhance
cell differentiation, proliferation, and attachment and therefore may improve new bone
formation [299]. Even though hydrogels show instinctive superiorities in tissue engineering,
many problems remain unaddressed. For instance, the interactions of injectable hydrogels
with immune cells, which include macrophages, neutrophils, and dendritic cells (DCs)
are still unclear and may mediate both defense and destruction. Further, the drug release
mechanisms should be studied further to gain insight and thereby improve understanding
of the design of more advanced and reliable hydrogel drug delivery systems.

9. Challenges and Future Prospects

BTE is regarded as the best alternative approach to conventional bone grafting tech-
niques. A scaffold is an essential subunit that provides mechanical strength, a site for cell
attachment, proliferation, and differentiation. Polymer selection and scaffold fabrication
techniques are the key factors. The scaffold can be fabricated using various techniques
based on the implantation site, the nature of polymers, and their characteristics.

CS is a readily available polymer with good biodegradability and biocompatibility.
It has non-toxic, mucoadhesive, hemostatic, and antimicrobial properties employed in
a broad range of biomedical and biopharmaceutical research. CS has displayed significant
osteoconductivity but minimal osteoinductive properties [3]. The main limiting factor is the
mechanical property, which requires strong cross-linking/blending with other materials to
support bone tissue regeneration. Since CS has a pKa of 6.5 and its semi-crystalline nature
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favors strong intra/intermolecular hydrogen bonding, the solubility of CS at neutral pH is
limited. The polycationic nature of CS can induce thrombosis, red blood cell aggregation,
and hemolysis, making it unsuitable for tissue engineering applications. In addition, CS
has poor antimicrobial properties at neutral pH because of the protonation of amino groups
that occurs only in an acidic medium.

To solve the limitations above, several modifications at C2 or C5 positions of CS by
introducing various reactive groups or by copolymerization with other polymers of interest
or grafting with biological and synthetic macromolecules are explored nowadays, which
render appropriate bone regenerative properties. Modified CS offers unique bio functions,
such as water solubility, antibacterial properties, and pH and thermo-sensitivity. The inclu-
sion of bioceramic materials in modified CS may facilitate the spreading of bone marrow
stromal cells and significantly enhance the mechanical property [300–302]. These various
chemical modifications can retain the original properties and expand the applications of
CS in different fields such as anti-hypertensive, anti-oxidant, anti-allergy, immunology
regulation, genetic material delivery, and bio-imaging [303,304]. CS modification has de-
veloped and innovated in recent years thanks to the development of ecologically friendly
and biodegradable polymers and the intersection and penetration of numerous disciplines.
These structural modifications are advantageous for the structure-activity relationship and
could potentially contribute to the research of functional polymer materials. The value of
applications in BTE would be adequately reflected with these developments of modified
CS technology, while concurrently creating considerable societal and economic value.

Although investigators have fabricated a variety of biomaterials that mimic the mor-
phology and functions of natural bone tissue and have verified the effectiveness in pro-
moting bone regeneration at the cellular and animal levels, there are still many obstacles
and challenges in the BTE application of modified CS [164,305]. Future implant designs
should give an even greater consideration to local cellular responses. Adoption of this
more holistic approach has the potential to increase the rate of bone tissue regeneration,
providing enhanced osseointegration and improved long-term clinical success. The bio-
absorption of modified CS and the regulatory mechanisms of osteocyte and osteoclast
growth and development in osseointegration in vivo require further elucidation. Further,
special attention should be paid to their safety, efficacy, and controllability in vivo. Not only
the biomaterials but also the extensive process–property optimization should be required to
achieve this goal. Demand for novel fabrication techniques will increase in the fore coming
years due to their ability to design a scaffold that can be tailored for specific patient and
clinical needs. It is equally valid that further fundamental and applied studies are required
to improve our capacity to predict the properties of highly complex, multi-component,
CS-based materials for BTE.

10. Conclusions

This review summarized modified CSs for their application in BTE. Modified-CS-based
scaffolds/hydrogels displayed superior physical, chemical, mechanical, and biological
properties, unlike their counterparts, serving as excellent vehicles for accelerating bone
regeneration. Future studies should focus on optimizing novel modifying methods and
evaluating their performance parameters during modifications of bone scaffolds.

This review showed that the empirical refinement of CS has candidly thrown open
new avenues for the treatment of bone defects. Thus, an effort was made here to provide
insights into the past and current trends in using modified CS polymers. Integration and
processing of the different properties offered by various modified CS composites would be
further beneficial for treating bone and bone-related defects.
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