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Regional variations in the diversity 
and predicted metabolic potential 
of benthic prokaryotes in coastal 
northern Zhejiang, East China Sea
Kai Wang1,2,*, Xiansen Ye3,*, Huajun Zhang1, Heping Chen1,4, Demin Zhang1,2 & Lian Liu3

Knowledge about the drivers of benthic prokaryotic diversity and metabolic potential in interconnected 
coastal sediments at regional scales is limited. We collected surface sediments across six zones covering 
~200 km in coastal northern Zhejiang, East China Sea and combined 16 S rRNA gene sequencing, 
community-level metabolic prediction, and sediment physicochemical measurements to investigate 
variations in prokaryotic diversity and metabolic gene composition with geographic distance and under 
local environmental conditions. Geographic distance was the most influential factor in prokaryotic 
β-diversity compared with major environmental drivers, including temperature, sediment texture, 
acid-volatile sulfide, and water depth, but a large unexplained variation in community composition 
suggested the potential effects of unmeasured abiotic/biotic factors and stochastic processes. 
Moreover, prokaryotic assemblages showed a biogeographic provincialism across the zones. The 
predicted metabolic gene composition similarly shifted as taxonomic composition did. Acid-volatile 
sulfide was strongly correlated with variation in metabolic gene composition. The enrichments in the 
relative abundance of sulfate-reducing bacteria and genes relevant with dissimilatory sulfate reduction 
were observed and predicted, respectively, in the Yushan area. These results provide insights into the 
relative importance of geographic distance and environmental condition in driving benthic prokaryotic 
diversity in coastal areas and predict specific biogeochemically-relevant genes for future studies.

Coastal sediment accumulates remnants of anthropogenic and environmental perturbations (i.e., excess chem-
ical pollutants) and serves as a fundamental component in global biogeochemical cycling. Benthic prokaryotes 
play crucial roles in biogeochemical cycling within marine ecosystems1–3. The diversity of benthic prokaryotes 
has been investigated across various coastal marine ecosystems4–9, demonstrating a wide range of environmen-
tal drivers shaping benthic prokaryotic communities such as sediment depth10, water depth11, temperature12, 
ocean currents5, sediment texture8, salinity6, nutrients13, organic matter quantity and availability14, heavy metals 
and organic pollutants7. Previous studies have suggested that geographic distance also drives variation in ben-
thic prokaryotic communities15,16. Moreover, random distributions within the entire community and specific 
functional groups in sediments were commonly reported, as evidenced by a large unexplained variation in the 
community composition4,17. However, knowledge about the drivers of prokaryotic diversity in interconnected 
coastal sediments at a regional scale is still limited. Such information may be beneficial for understanding the 
relative importance of geographic distance and local environmental condition in shaping the diversity of benthic 
prokaryotes in coastal ecosystems.

Unraveling the functional potential of prokaryotes is crucial to better understanding their roles in bioge-
ochemical cycling. A growing number of studies have used metagenomic sequencing to reveal the functional 
potential of prokaryotes in marine sediments, focusing on metabolic pathways involving carbon, nitrogen, and 
sulfur cycles13,18,19. Alternatively, PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of 
Unobserved States)20, as a bioinformatics tool, has been applied using 16S rRNA gene data to infer the functional 
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profile of microbial communities in human/mammal21, soil20, seawater and sediment22, and stromatolites23, 
providing a glimpse into the metabolic potential of prokaryotic communities, leading to hypotheses on the 
biogeochemically-relevant genes worth further studies.

The coastal area of northern Zhejiang is an interconnected marine ecosystem in the East China Sea that covers 
~200 km, primarily comprising Hangzhou Bay, which is highly influenced by discharges from the Qiantang River 
and industry24; Xiangshan Harbor, a semi-enclosed bay, frequently perturbed by aquaculture25; Sanmen Bay, per-
turbed by booming fishery26; the Zhoushan Islands, located at the mouth of Hangzhou Bay and acting as barriers 
from the estuary to the ocean; coastal eastern Xiangshan, covered by fishery hot spots; and the Yushan Islands, 
serving as a reserve area27. In the present study, we used 16S rRNA gene sequencing and PICRUSt functional 
prediction to investigate regional variations in the diversity and metabolic functional potential of prokaryotic 
communities in the surface sediments from above coastal zones to answer three questions: (1) Does geographic 
distance overwhelm local environmental condition in shaping prokaryotic β -diversity? (2) Do prokaryotic assem-
blages show biogeographic provincialism across the zones? (3) How does the predicted metabolic potential of 
prokaryotes shift across the coastal zones?

Methods
Study area description, sampling, and physicochemical analyses of sediments. We collected 34 
surface sediment samples from 34 stations across six representative coastal zones, including the Yushan Islands 
(YS), Xiangshan Harbor (XSH), Hangzhou Bay (HZ), the eastern Zhoushan Islands (ZSE), the eastern Xiangshan 
(XSE), and Sanmen Bay (SM), which are important in ecosystem functioning/service and geographically cover 
the main marine area of coastal northern Zhejiang (Fig. S1), during a summer cruise (August 15–28, 2013). 
ArcGIS 10.0 (ESRI, USA) was used to create the sampling map. The sediments were obtained using a box-corer, 
and the surface subsamples (top 0–5 cm) were collected using a custom-made corer (inner diameter 5 cm); 
the samples were mixed well in a sterile glass bottle. We selected an empirical criterion (0–5 cm) often used in 
studies focusing on the surface-layer of sediments28–30 to obtain a general pattern of prokaryotic diversity in 
the surface sediments across the study area. The sediment cores were partly transferred to sterile cryovials and 
immediately stored in liquid nitrogen prior to DNA extraction. The surface sediment temperature was measured 
inside the box-corer after the sediments were collected. An additional sample was used to measure gravimetric 
moisture content (MC). The pH was measured with a SenTix meter (WTW, Germany). The sediment subsam-
ples were partly freeze-dried, ground, homogenized and stored at − 20 °C, and the fresh subsamples were stored 
at 4 °C prior to analyses. Acid-volatile sulfide (AVS) in fresh sediments was volatized using hydrochloric acid, 
and the amount of sulfide was spectrophotometrically determined based on its reaction with N,N-dimethyl-p-
phenylenediamine to form methylene blue31. The sediment texture was measured according to Sperazza et al.32 
using a particle size analyzer (Beckman-Coulter LS 200, USA). The total organic carbon (TOC) and total nitrogen 
(TN) in the sediments were determined using an Elementar Vario EL II analyzer33,34. The sediment samples were 
digested with sulfuric acid to convert total phosphorus (TP) into phosphate, and the phosphate in the extracts was 
spectrophotometrically determined based on a reaction with vanadium-ammonium molybdate35. Heavy metals 
and arsenic in sediments were measured as previously described36, with some modifications in the digestion 
reagent, comprising nitric acid, perchloric acid, and hydrofluoric acid (5:1:1, v/v/v), and subsequently the metals 
in the extracts were diluted and determined using an inductively coupled plasma mass spectrometry (Agilent 
7500 A, USA).

DNA extraction, 16S rRNA gene amplification, and Illumina MiSeq sequencing.  The genomic 
DNA of sediment samples was extracted using a Power Soil DNA Isolation Kit (MO BIO, USA). The DNA 
extracts were quantified using a Qubit 2.0 fluorometer (Life Technologies, USA) and subsequently submitted 
to Novogene Co. Beijing for 16 S rRNA gene amplification, library preparation, and 250 bp paired-end Illumina 
MiSeq sequencing. Briefly, the 16 S rRNA gene V4 region was amplified using dual-indexed bacterial/archaeal 
primers 515F-806R37 containing adaptor sequences for the MiSeq platform. An aliquot of 10 ng of purified DNA 
template from each sample was amplified in triplicate in a 30 μ L reaction system under the following conditions: 
denaturation at 98 °C for 1 min, followed by 35 cycles of denaturation at 98 °C for 10 sec, annealing at 50 °C for 
30 sec and extension at 72 °C for 30 sec, with a final extension at 72 °C for 5 min. Triplicate polymerase chain reac-
tion (PCR) amplicons of each sample were pooled, purified using a PCR fragment purification kit (Takara, Japan), 
and subsequently quantified using the Qubit fluorometer. An equimolar amount of PCR amplicons was combined 
into one pooled sample and sequenced on the Illumina MiSeq platform.

16S amplicon processing and analysis.  The sequences generated in the present study were deposited 
in the Sequence Read Archive of DDBJ (http://www.ddbj.nig.ac.jp) and are available under accession number 
DRA004709. Raw FASTQ files were demultiplexed with QIIME v1.8.038, and the paired reads were joined with 
FLASH using the default settings39. The joined pairs were subsequently quality filtered and analyzed with QIIME. 
Briefly, the reads were truncated at any site of more than three sequential bases receiving a Phred quality score 
(Q) <  20, and any read containing ambiguous base calls was discarded, as were reads with < 75% (of the total read 
length) consecutive high-quality base calls. The remaining sequences were chimera assessed using USEARCH40. 
After filtering the chimera reads, the sequences were clustered into operational taxonomic units (OTUs, 97% sim-
ilarity) using the pick_open_reference_otus.py script. The representative sequences were taxonomically assigned 
against the Greengenes database (13_8_release) and aligned using PyNAST41 against a template alignment of the 
Greengenes core set. A phylogenic tree was generated from the filtered alignment using FastTree42. The singletons 
and Chloroplast sequences were removed, as were the other sequences not assigned to bacteria/archaea. The full 
dataset (n =  34) contained 1,280,208 clean reads (mean 37,653 reads per sample).

http://www.ddbj.nig.ac.jp
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α -Diversity and β -diversity estimates were calculated by even rarefication at 10,000 reads per sample using 
QIIME, respectively, with multiple indices (number of observed species, Shannon-Wiener index, and phyloge-
netic diversity) and Bray-Curtis distance between samples. Kruskal-Wallis test was used to compare the varia-
tions in prokaryotic α -diversity and sediment physicochemical parameters among zones. We used a Principal 
Coordinates Analysis (PCoA) plot based on Bray-Curtis distance to visualize the sample clusters and dissimilar-
ity in prokaryotic community composition between zones and subsequently tested the significance of pairwise 
dissimilarity in community composition between zones with Analysis of Similarity (ANOSIM). Box plots with 
Multivariate Dispersion Indices (MVDISP) were used to show the dissimilarity and dispersion in community 
composition between stations in each zone. Simple and partial Mantel tests were used to test the correlations of 
geographic distance and environmental parameters with prokaryotic β -diversity (variation in community compo-
sition), and subsequently a Mantel correlogram was used to examine the significance of distance effect on prokar-
yotic β -diversity across a subset of different geographic distance scales (classes) among the sampling stations in 
turn. Pearson correlations between the pairwise matrix of Bray-Curtis distance and geographic distance between 
stations within each geographic distance class were generated by Mantel tests with 999 permutations. Positive 
significant correlations (P <  0.05) indicate spatial correlation in β -diversity. Distance-based Multivariate Linear 
Model (DistLM) was performed using the DISTLM_forward3 program43 to confirm the environmental drivers 
shaping community composition and to show their contributions to variation in community composition, where 
‘marginal tests’ were used to assess the contribution of each variable alone and ‘sequential tests’ with forward 
selection were used to evaluate the cumulative contribution of the variables to community variation. Pairwise 
geographic distances between stations were calculated using the distance_matrix_from_mapping.py script with 
QIIME. MVDISP and ANOSIM were performed in PRIMER v544. Mantel tests and Mantel correlogram were per-
formed in R using ‘vegan’45. The dominant discriminant prokaryotic taxa (relative abundance > 1% in at least one 
sample; showing significantly greater relative abundances in one zone compared with those in the other zones) in 
each coastal zone were identified using Least Discriminant Analysis (LDA) effect size46, which employs the facto-
rial Kruskal-Wallis test (P <  0.05) to identify taxa with significantly different relative abundances between zones 
(using one-against-all comparisons). We used a heatmap to visualize the Spearman correlations between highly 
abundant discriminant taxa (primarily at the family/genus level) from all the zones and sediment environmental 
variables in R using ‘pheatmap’ package47.

PICRUSt functional prediction.  The PICRUSt v1.0.0 pipeline was used to predict the functional potential 
of prokaryotic communities20. Sequences used for PICRUSt prediction were clustered into OTUs (97% similarity) 
using the pick_closed_reference_otus.py script against the Greengenes database (13_5_release) using QIIME. Any 
reads that did not hit the reference collection were discarded. The rarefied OTU table (8,000 sequences per sam-
ple) was used for predicted 16 S rRNA gene copy number normalization using the normalize_by_copy_number.
py script, and then the metagenome functional profiles were predicted using the predict_metagenomes.py script, 
generating a table of Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthologs (KOs). The resulting table 
was collapsed at KO level 3 within the pathway hierarchy of KEGG using the categorize_by_function.py script. 
The Nearest Sequenced Taxon Index (NSTI) score, which is the sum of phylogenetic distances for each OTU 
between its nearest relative with a sequenced reference genome, measured in terms of substitutions per site in the 
16S rRNA gene and weighted according to the frequency of that OTU, was used as an indicator for the accuracy 
of PICRUSt20. A PCoA plot based on pairwise Bray-Curtis distances between samples on KEGG level 3 gene 
ontologies were used to visualize the sample clusters and dissimilarity in the predicted composition of functional 
gene families between zones. The only ‘Metabolism’ category gene ontologies were filtered from the level 3 out-
put table to generate a second PCoA plot. The metabolism-only gene ontologies were also used for Canonical 
Correspondence Analysis (CCA), wherein sample ordinations were constrained and co-plotted by environmental 
parameters with significance using an Analysis of Variance (ANOVA) with 999 permutations (P <  0.05). The pre-
dicted relative abundances of genes associated with sulfur metabolism (genes with copy number lower than 1,000 
in the whole dataset were discarded) were plotted in R using ‘pheatmap’47.

Results
Variations in key environmental factors. The metadata of the sediment parameters are summarized in 
Dataset S1. Generally, the AVS concentration and water depth of YS samples were at peak levels across the zones 
(Fig. S2). However, the sediment temperature of the YS samples was the lowest of all the zones. The sediment tex-
ture showed a somewhat spatial pattern, as indicated by the clay and silt contents, particularly in the HZ samples. 
The TOC and TP showed less overall variation across the zones.

Prokaryotic α-diversity. No significant difference was observed in prokaryotic α -diversity across the 
zones as indicated by the number of observed species, Shannon-Wiener index, and phylogenetic diversity 
(Kruskal-Wallis, all P >  0.05; Fig. S3). Moreover, no significant correlation was observed between prokaryotic 
α -diversity and any of the measured environmental factors (data not shown).

Prokaryotic community composition. The PCoA plot illustrates the dissimilarity of the prokaryotic 
community composition across the six coastal zones (Fig. 1). We observed two major clusters comprising stations 
from the YS and the other zones; however, samples from the other five zones also showed somewhat distinct 
patterns in community composition as indicated by the ANOSIM, except for samples from XSE and SM, which 
exhibited no significant difference with each other, though prokaryotic compositions in these two zones were 
significantly different from those in the other zones, respectively (Table 1). Moreover, stations from XSH and HZ 
showed high within-zone variability according to Bray-Curtis distances and the MVDISP between stations within 
each zone (Fig. 1).
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Factors driving prokaryotic β-diversity. The results of the Mantel test indicated that geographic distance 
was correlated with prokaryotic β -diversity (variation in community composition; r =  0.322, P =  0.001; Table 2). 
Temperature, silt, clay, AVS, and water depth were significant individual determinants of community compo-
sition, as well as sediment texture and environmental distance (r =  0.208, P =  0.027). However, environmen-
tal factors showed relatively weaker correlations with prokaryotic β -diversity than geographic distance. Heavy 
metals, arsenic, TOC, TN, MC, pH, TP, and sand were not significantly correlated with prokaryotic β -diversity. 
All the environmental drivers (except environmental distance) were correlated with β -diversity when the geo-
graphic distance was controlled; however, stronger geographic distance effects on β -diversity were observed with 
environmental variations controlled compared with environmental effects with geographic distance controlled 
(Table 2). The Mantel correlogram indicated that spatial correlation in β -diversity was observed at short geo-
graphic distance scales among the sampling stations, revealing a patchy distribution of communities with dis-
tances up to 36.6 km (Fig. S4). The DistLM showed that two additional factors (TOC and TP) weakly correlated 
with β -diversity in addition to the other factors identified using Mantel tests (Table 3). Sequential tests with 
forward selection demonstrated that the environmental factors constrained 30.7% of the community variation.

Figure 1. Principal Coordinate Analysis (PCoA) based on Bray-Curtis distance for prokaryotic 
communities in the surface sediments (upper); Box plots (lower) showing the distance between stations in 
each coastal zone. The data above the bars are multivariate dispersion indices (MVDISP), and the lines at the 
top, bottom, and middle of the box correspond to the 75th, 25th, and 50th percentiles (median), respectively. 
Whiskers at the top and bottom of the box indicate max and minimum values, respectively. The short lines in 
the boxes indicate the means. YS: Yushan, XSH: Xiangshan Harbor, HZ: Hangzhou Bay, ZSE: eastern Zhoushan 
Islands, XSE: eastern Xianshan, SM: Sanmen Bay.

YS XSH HZ ZSE XSE

XSH 0.893, 
P =  0.005

HZ 0.781, 
P =  0.002

0.456, 
P =  0.016

ZSE 0.905, 
P =  0.001

0.552, 
P =  0.021

0.558, 
P =  0.003

XSE 0.799, 
P =  0.001

0.466, 
P =  0.024

0.441, 
P =  0.013

0.223, 
P =  0.014

SM 1.000, 
P =  0.002

0.738, 
P =  0.008

0.468, 
P =  0.008

0.716, 
P =  0.001

0.085, 
P =  0.234

Table 1.  One-way Analysis of Similarity (ANOSIM) based on Bray-Curtis distance for prokaryotic 
communities in surface sediments between coastal zones (Global R = 0.587, P < 0.001, 999 permutations). 
Bold R values present significant differences (P <  0.05); YS: Yushan, XSH: Xiangshan Harbor, HZ: Hangzhou 
Bay, ZSE: eastern Zhoushan Islands, XSE: eastern Xianshan, SM: Sanmen Bay.
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Discriminant taxa across coastal zones. Approximately 99% of the clean sequences were classified at the 
phylum level (Fig. S5). The LDA taxonomic cladogram (Fig. 2) revealed the predominant discriminant taxa of five 
coastal zones (samples from XSE and SM were tested as the same group according to the non-significant pattern 
between their compositions as indicated in Fig. 1 and Table 1). δ -Proteobacteria (31.7%, including the families 
Desulfobacteraceae, Desulfobulbaceae, Desulfuromonadaceae, Geobacteraceae, and Syntrophobacteraceae), 
ε -Proteobacteria (2.5%, including the family Helicobacteraceae), the candidate γ -Proteobacteria family OM60 
(1.6%), and Euryarchaeota (1.0%, including the DHVEG-1 clade) were the most abundant in the YS stations. 
Bacteroidetes (15.4%, including the families Flammeovirgaceae, Flavobacteriaceae, and Saprospiraceae), the 
δ -Proteobacteria family Desulfarculaceae (3.9%), and the Chlorobi order Ignavibacteriales (0.72%) were the most 
abundant in the XSH stations. Chloroflexi (8.4%, including the family Dehalococcoidaceae), Nitrospirae (3.6%, 
including the family Thermodesulfovibrionaceae), and the α -Proteobacteria family Rhodospirillaceae (1.1%) 
were the most abundant in the HZ stations. α -Proteobacteria (6.7%, including the families Hyphomicrobiaceae 
and Rhodobacteraceae), Actinobateria (4.6%, including the koll13 clade), Verrucomicrobia (1.8%, including the 
genus Persicirhabdus), and the two γ -Proteobacteria families Marinicellaceae (3.4%) and Pseudomonadaceae 
(0.85%) were the most abundant in the ZSE stations. Thaumarchaeota (6.4%, including the genus Nitrosopumilus) 
and the two γ -Proteobacteria families Piscirickettsiaceae (21.0%) and Ectothiorhodospiraceae (0.84%) were the 
most abundant in the XSE-SM stations. Many discriminant taxa of the YS stations were positively correlated with 
AVS, some of which were also positively correlated with water depth and/or TP and negatively correlated with 
temperature (Fig. 3). Overall, the discriminant taxa of the other zones were not well clustered according to their 
correlation coefficients with measured physicochemical parameters, exhibiting patchy patterns with respect to 
environmental conditions.

Simple

Controlled by

Partial

r P r P

Geo_distance 0.322 0.001 Temperature 0.274 0.003

Geo_distance — — Silt 0.254 0.001

Geo_distance — — Texture 0.256 0.002

Geo_distance — — Clay 0.259 0.003

Geo_distance — — AVS 0.311 0.002

Geo_distance — — Env_distance 0.285 0.002

Geo_distance — — Water_depth 0.307 0.002

Temperature 0.278 0.001 Geo_distance 0.220 0.002

Silt 0.271 0.003 Geo_distance 0.182 0.025

Texture 0.262 0.004 Geo_distance 0.172 0.035

Clay 0.256 0.001 Geo_distance 0.166 0.039

AVS 0.224 0.036 Geo_distance 0.207 0.042

Env_distance 0.208 0.027 Geo_distance 0.140 0.096

Water_depth 0.199 0.025 Geo_distance 0.173 0.039

Cd 0.175 0.068 Geo_distance 0.168 0.092

TOC 0.142 0.078 Geo_distance 0.063 0.243

TN 0.089 0.188 Geo_distance 0.084 0.211

MC 0.063 0.170 Geo_distance − 0.085 0.916

Cr 0.047 0.321 Geo_distance 0.044 0.318

pH 0.017 0.392 Geo_distance 0.019 0.388

TP 0.009 0.431 Geo_distance 0.029 0.348

As 0.001 0.486 Geo_distance − 0.010 0.542

Hg − 0.001 0.472 Geo_distance 0.014 0.416

Zn − 0.010 0.514 Geo_distance 0.034 0.343

Sand − 0.023 0.569 Geo_distance − 0.098 0.832

Pb − 0.045 0.689 Geo_distance − 0.061 0.740

Cu − 0.052 0.701 Geo_distance − 0.024 0.590

Table 2.  Simple Mantel test demonstrating the correlations of sediment environmental variations 
(Euclidean distance) and geographic distance with the variation in prokaryotic community composition 
(based on Bray-Curtis distance, 999 permutations). Partial Mantel test demonstrating the correlation 
of geographic distance with variation in community composition controlled by significantly correlative 
environmental variables obtained from simple Mantle tests and those of environmental variables controlled 
by geographic distance. Data in bold indicate significant correlations (P <  0.05). Geo_distance: geographic 
distance; env_distance: environmental distance (Euclidean distance); AVS: acid-volatile sulfide; TOC: total 
organic carbon; TN: total nitrogen; MC: moisture content; TP: total phosphorus.
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Predicted metabolic potentials. The NSTI scores of each sample ranged from 0.129 to 0.240, with a mean 
of 0.186 (Dataset S2). Shifts in functional gene family composition, predicted using PICRUSt, were visualized by 
three major clusters: YS, ZSE, and XSE-SM; while samples from HZ and XSH showed somewhat random pat-
terns (Fig. S6A). Similar patterns were observed when the Metabolism group of KEGG orthology was examined 
(Fig. S6B). The Mantel correlation coefficient of the variation in the composition of whole functional gene fami-
lies with geographic distance (ρ  =  0.230, P =  0.002) was slightly lower compared with that between the variation 
in composition of metabolic gene families and geographic distance (ρ  =  0.269, P =  0.001). However, the varia-
tions in taxonomic composition were more strongly correlated with variations in whole functional gene families 
(Mantel ρ  =  0.631, P =  0.001) compared with metabolic gene families (Mantel ρ  =  0.589, P =  0.001). The shifts in 
metabolic potential were predicted as correlated with AVS, TOC, TP, and sediment texture based on the CCA 
plot (Fig. 4). Particularly, AVS and TP were positively correlated with the distinct pattern of predicted metabolic 
potential in the YS stations. Moreover, PICRUSts predicted enrichments in the relative abundance of the genes 
relevant with dissimilatory sulfate reduction in the YS stations, including genes encoding sulfate adenylyltrans-
ferase (sat), adenylylsulfate reductase (aprAB), and sulfite reductase (dsrAB; Fig. 5).

Marginal tests

Variable pseudo-F P Explained prop.

Water_depth 3.663 0.001 0.103

Temperature 3.470 0.001 0.098

Clay 2.240 0.006 0.065

Silt 2.233 0.004 0.065

AVS 2.201 0.005 0.064

TOC 1.741 0.018 0.052

Sand 1.636 0.040 0.049

TP 1.594 0.030 0.047

pH 1.487 0.069 0.044

MC 1.465 0.077 0.044

Hg 1.194 0.219 0.036

Cd 1.072 0.334 0.032

Pb 1.038 0.368 0.031

TN 0.969 0.464 0.029

As 0.887 0.589 0.027

Cr 0.827 0.726 0.025

Cu 0.827 0.723 0.025

Zn 0.724 0.887 0.022

Conditional (sequential) tests

Variable pseudo-F P Explained prop. Cumulative prop.

Water_depth 3.663 0.001 0.103 0.103

Clay 2.434 0.001 0.065 0.168

TOC 2.124 0.002 0.055 0.223

Temperature 1.774 0.015 0.045 0.268

MC 1.574 0.033 0.039 0.307

AVS 1.367 0.076 0.033 0.340

Cd 1.194 0.178 0.029 0.369

Hg 1.128 0.253 0.027 0.396

pH 1.044 0.369 0.025 0.422

Sand 1.115 0.294 0.027 0.448

TN 1.025 0.393 0.025 0.473

TP 0.936 0.566 0.023 0.495

Zn 1.004 0.463 0.024 0.520

Cu 1.020 0.447 0.025 0.544

Pb 0.976 0.494 0.024 0.567

As 0.866 0.654 0.021 0.588

Cr 0.848 0.661 0.021 0.609

Table 3.  Distance-based multivariate linear model of the variability of prokaryotic community against 
sediment environmental variables with 999 permutations. Marginal tests: each variable was analyzed 
individually (ignoring other variables); Sequential tests: forward selection of variables, where the proportion of 
variation explained by each variable added to the model was conditional on the variables previously included in 
the model. Data in bold present significant correlations (P <  0.05); Refer to Table 2 for variable abbreviations.
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Discussion
The relative importance of geographic distance and local environmental condition in prokar-
yotic β-diversity. Although prokaryotic α -diversity did not show significant variation across the zones, we 
observed that variations in prokaryotic community composition (β -diversity) between zones were significant, 
except the variation between XSE and SM. The high within-zone heterogeneity in community composition 
between samples from XSH and HZ likely reflected the large spatial scale of sampling in HZ and variations in 
hydrologic conditions in XSH comprising seven distinct hydrologic subzones48. The geophysical drivers, such 
as water depth, temperature, and sediment texture, were also reported in previous studies8,11,12. Besides texture, 
porosity, as an important sedimentological parameter, was reported to be associated with microbial community 

Figure 2. Taxonomic cladogram comparing all samples categorized in the five coastal zones by least 
discriminant analysis (LDA) effect size. Samples from XSE and SM are tested as the same group according 
to the non-significant pattern between their compositions as indicated in Fig. 1 and Table 1. Significantly 
discriminant taxon nodes are colored, and the branch areas are shaded according to the highest ranked group 
for that taxon. When the taxon was not significantly differentially represented among the sample groups, the 
corresponding node was colored white. Highly abundant and selected taxa are indicated. For the complete list 
of discriminant taxa and ranks used to generate this cladogram see Dataset S3. Refer to Fig. 1 for coastal zone 
abbreviations.

Figure 3. Correlations between highly abundant discriminant taxa (primarily at the family/genus level) 
of five coastal zones (Fig. 2) and sediment environmental variables. The asterisks in the grids demonstrate 
significant Spearman correlations as **P <  0.01, *P <  0.05. Refer to Table 2 for variable abbreviations.
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structure in the coastal sediments49,50. Moisture content is known to be used to approximate porosity in the 
flooded sediments51. However, we found that MC was not significantly associated with the variation in prokar-
yotic composition according to the results of Mantel and DistLM marginal tests, though it contributed 3.9% of 
variation in DistLM sequential tests. This could be partly explained by the narrow scale of MC in the studied 
samples (40.3 ±  6.13%, mean ±  standard deviation), reflecting that porosity might have less explanatory power 
compared with other driving parameters. Acid-volatile sulfide is the only chemical driver confirmed using both 
the Mantel test and DistLM. The vertical gradient of sulfide could be associated with the variation in prokaryotic 
composition in sediments52,53. Nevertheless, all the individual environmental drivers were not strongly corre-
lated with prokaryotic β -diversity. Overall, geographic distance was more important in shaping the prokaryotic 
community composition compared with the measured environmental factors, suggesting a ‘Distance-decay pat-
tern’. However, the Mantel correlogram indicated a patchy distribution of communities across the larger spatial 

Figure 4. Canonical Correspondence Analysis (CCA) of sediment predicted gene ontologies across 
sampling stations. PICRUSt predicted function data are based on KOs with only genes classified as 
“Metabolism” included.

Figure 5. Relative abundances of PICRUSt predicted genes relevant with sulfur (S) metabolism across the 
coastal zones. The red font indicates the genes relevant with dissimilatory sulfate reduction, and the blue font 
indicates the genes relevant with assimilatory sulfate reduction.
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scales, suggesting a somewhat random distribution of prokaryotes with geographic distance. On the other hand, 
unmeasured abiotic and biotic factors, such as salinity and inorganic nutrients in pore water, predation, and 
viral infection, might potentially explain the observed variation in prokaryotic composition associated with geo-
graphic distance. The large unexplained variation in prokaryotic composition could also reflect potential effects 
of unmeasured factors and stochastic processes on community assembly. In addition, integrating a relatively large 
sediment layer (0–5 cm) could cause the vertical heterogeneity in prokaryotic composition and activity associated 
with biogeochemical gradients, such as the spatial separation of oxygen and sulfide52,54, to be ignored, thus lead-
ing to uncertain variations in prokaryotic composition.

Discriminant assemblages showed a biogeographic provincialism across the coastal 
zones. The dominant phyla and proteobacterial classes were similar to those previously reported in coastal 
sediments8,9. We observed that Cyanobacteria were not dominant in the sediments, with a low average relative 
abundance (0.011%, data not shown). This could be partly explained by the limited light-permeability of the tur-
bid waters containing a great amount of suspended particles in the study area overall27. Correspondingly, a num-
ber of previous works reported that Cyanobacteria were not dominant in the coastal marine sediments9,11,55,56. 
The LDA taxonomic cladogram indicated a biogeographic pattern of prokaryotic assemblages across zones 
at multiple taxonomic levels. We observed relatively abundant Desulfobacteraceae, Desulfobulbaceae, and 
Syntrophobacteraceae in the YS stations. Most members of these δ -proteobacterial families are sulfate-reducing 
bacteria (SRB)57. However, some filamentous bacteria belonging to the Desulfobulbaceae likely mediated 
electrogenic sulfur oxidation at oxic-anoxic interfaces in coastal sediments54. The ε -Proteobacteria family 
Helicobacteraceae was also relatively abundant in this zone. This family is dominated by the Helicobacter genus, 
commonly associated with animal and/or human hosts58. However, a number of sulfur-oxidizing species such as 
Sulfuricurvum kujiense, Sulfurimonas autotrophica, and Sulfurovum lithotrophicum, classified within this family, 
have been isolated from sulfur-rich environments including freshwater nature reserves, hydrothermal vents, and 
deep-sea sediments58. Helicobacteraceae were also reported as dominant members in coastal sediments contam-
inated by organic contaminants7. The high AVS concentration and great relative abundances of bacterial groups 
with potential members relevant with sulfur metabolism suggested that the Yushan area might be suitable for 
studying the microbial-mediated processes of sulfur metabolism in coastal sediments.

The discriminant assemblages in the XSH stations were dominated by the phylum Bacteroidetes. Members 
of Bacteroidetes have been implicated in algal organic matter processing59 and organic matter degradation in 
marine sediments60,61. Since we observed a similar level of TOC in XSH as in the other zones, the availability and 
composition of organic matter should be estimated in future studies to examine the hypothesis that the organic 
matter in the XSH sediments could be more favorable for Bacteroidetes. The phyla Chloroflexi and Nitrospirae 
were relatively abundant in the HZ stations. The discharge of the Qiantang River led to a high concentration of 
inorganic N in the waters of this zone27. Given the shallow water depth, we inferred that the pore water of these 
sediments might contain a great amount of inorganic N. Some members of Chloroflexi and Nitrospirae catalyze 
the second step of nitrification62. The dominance of these taxa might be consistent with their roles in N metab-
olism. The Chloroflexi family Dehalococcoidaceae contains members with a dehalogenation complex63. A high 
level of halogenated organic pollutants in the sediments of this zone has been reported, resulting from the indus-
trialization of the surrounding cities64. We inferred that the higher relative abundance of Dehalococcoidaceae 
might be associated with halogenated pollutants. Notably, the above potential relationships should be verified 
with more details from biogeochemical profiles in future studies. The discriminant assemblages in the ZSE sta-
tions were dominated by α -Proteobacteria and Actinobacteria. The major Actinobacteria clade koll13 and the 
α -Proteobacteria family Hyphomicrobiaceae were positively correlated with the contents of sand and silt in the 
sediments. These findings might be partly explained by the mycelial structure of members of Actinobacteria and 
Hyphomicrobiaceae, which colonize more easily in sand/silt-rich (larger particle size) sediments. The discrimi-
nant assemblages in the XSE-SM stations were dominated by Thaumarchaeota and the γ -Proteobacteria family 
Piscirickettsiaceae. As a major member of Thaumarchaeota in this zone, the genus Nitrosopumilus (N. maritimus) 
includes ammonia-oxidizing archaea65. One of the Piscirickettsiaceae genera Piscirickettsia includes important 
fish pathogens, such as P. salmonis66, whose potential presence might be associated with the highly active fishery 
and aquaculture in these two zones.

Overall, we did observe discriminant assemblages across the coastal zones, suggesting some biogeographic 
provincialism of benthic prokaryotes in this marine ecosystem. Some of the assembly patterns in each zone might 
reflect the measured environmental factors and/or reported local features. However, most of the discriminant 
taxa were poorly associated with the measured factors, and the relationships between local environmental con-
ditions and discriminant taxa did not cluster discriminant taxa from each zone well, suggesting more sufficient 
biogeochemical data should be collected to obtain a better understanding of the biogeographic provincialism of 
prokaryotes in future studies.

Alternation in predicted metabolic potential across coastal zones.  The PICRUSt has been used 
to accurately predict the functional profiles of the human microbiome and soils20. Although the accuracy of 
PICRUSt generally decreased with increasing NSTI score, reliable results were generated from a dataset of soil 
samples with a mean NSTI score of 0.17; however, environments containing much unexplored diversity, such as 
the Guerrero Negro hypersaline microbial mats, showed a markedly low accuracy with a mean NSTI score of 
0.2320. In the present study, the marine sediments also contained much unexplored diversity (lost in the closed 
reference OTU picking procedure), with a mean NSTI score of 0.186, suggesting that the results are sketchy and 
should be carefully interpreted. Thus, we explored the variation in the composition of functional gene families at 
a higher and more general level of KEGG. We observed that the composition of whole functional gene families 
was distinct in YS, ZSE, and XSE-SM stations, while samples from XSH and HZ showed higher within-zone 
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variability, similar to the pattern in taxonomic composition. However, the overall variation in functional gene 
composition between stations within or among zones was much lower compared with that in the taxonomic 
composition comparisons, indicated by the one-order magnitude difference in the scale of PCoA axes, reflecting 
the Bray-Curtis distance between samples. This converging trend in the predicted functional structure of com-
munities might be partly explained by the functional redundancy hypothesis67 and the sketchy results generated 
using PICRUSt.

Overall, the environmental factors driving the predicted composition of metabolic gene families are similar 
to those driving the taxonomic composition. Because we observed AVS as a most important chemical factor 
correlated with metabolic gene family composition, we specifically investigated the relative abundances of the 
genes relevant with sulfur metabolism across the coastal zones. The greater relative abundances of genes rele-
vant with dissimilatory sulfate reduction were predicted in the YS stations compared with other zones (except 
two HZ stations and one XSH station). Particularly, dsrAB are commonly used as diagnostic markers in eco-
logical studies of sulfite- and sulfate-reducing microorganisms68. In addition, SRB depend on a dsrAB-type 
dissimilatory sulfite reductase as a crucial part of the enzymatic system for sulfate respiration69. Most dsrAB 
sequences from Svalbard and Greenland sediments were affiliated with Desulfobacteraceae, Desulfobulbaceae, 
and Syntrophobacteraceae68, corresponding to the dominance of δ -proteobacterial SRB in the YS stations and 
other coastal surface sediments70,71. Sulfate reduction is the dominant pathway for organic matter mineralization 
in coastal marine sediments, leading to the accumulation of sulfide in deeper sediments72. This process could 
be affected by sulfate availability, methane emission, and labile organic matter73. Labile organic matter has been 
reported associated with SRB, which serve as electron donors in sulfate reduction19,74. However, according to the 
metabolic flexibility of SRB, many of these species could grow as syntrophs in cooperation with methanogens 
in sulfate-free sediments73. Although the enrichment in the relative abundances of SRB and the genes relevant 
with dissimilatory sulfate reduction was observed and predicted in the Yushan stations, respectively, the lack of 
sulfate data restricts the evaluation of sulfate reduction potential. Moreover, these SRB cells could be inactive and 
dormant in communities without active expression of relevant genes. One the other hand, extracellular DNA 
from dead cells containing amplifiable ribosomal genes in sediments could lead to biases in the estimation of 
microbial diversity and abundance75.

In the present study, the relative abundances of taxa and genes were observed and sketchily predicted using 
16S rRNA gene amplicon sequencing and PICRUSt, respectively, without the quantitative estimation of specific 
taxa and accurate functional genes in an absolute framework. Therefore, these preliminary results should be con-
firmed and extensively investigated in future studies to better link taxonomy and biogeochemical functions via 
sufficient geochemical analyses such as concentrations of sulfur species, availability and composition of organic 
matter, and methane emissions coupled with more quantitative and reliable microbiological analyses such as 
fluorescent in situ hybridization (FISH) for taxon abundance, as well as internal standard added quantitative PCR 
(qPCR)/metagenomic sequencing and reverse transcription-qPCR/metatranscriptomic sequencing to examine 
the abundance and expression of functional genes, respectively.

Conclusion
The findings of the present study provide insights into the regional variations in diversity and predicted met-
abolic potential of benthic prokaryotic communities in one of the most important coastal areas of China. The 
results demonstrated the relative importance of geographic distance and environmental drivers in shaping the 
taxonomic composition of benthic prokaryotes in an interconnected coastal marine ecosystem and generally 
predicted a regional pattern of metabolic gene family composition, suggesting future hypotheses for more quan-
titative and reliable studies focusing on the specific taxa and functional genes of interest.
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