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Accurate determination of CRISPR-mediated gene
fitness in transplantable tumours
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Assessing tumour gene fitness in physiologically-relevant model systems is challenging due
to biological features of in vivo tumour regeneration, including extreme variations in single
cell lineage progeny. Here we develop a reproducible, quantitative approach to pooled genetic
perturbation in patient-derived xenografts (PDXs), by encoding single cell output from
transplanted CRISPR-transduced cells in combination with a Bayesian hierarchical model. We
apply this to 181 PDX transplants from 21 breast cancer patients. We show that uncertainty in
fitness estimates depends critically on the number of transplant cell clones and the variability
in clone sizes. We use a pathway-directed allelic series to characterize Notch signaling, and
quantify TP53 / MDM?2 drug-gene conditional fitness in outlier patients. We show that fitness
outlier identification can be mirrored by pharmacological perturbation. Overall, we demon-
strate that the gene fitness landscape in breast PDXs is dominated by inter-patient
differences.

TDepartment of Molecular Oncology, BC Cancer, Vancouver, BC, Canada. 2 Computational Oncology, Department of Epidemiology and Biostatistics,
Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. 3 Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada. 4 Department
of Diagnostic Radiology, BC Cancer, Vancouver, BC, Canada. > Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver,
BC, Canada. © Department of Computer Science, University of British Columbia, Vancouver, BC, Canada. 7 Department of Statistics, University of British
Columbia, Vancouver, BC, Canada. 8Present address: AbCellera Biologics Inc., Vancouver, BC, Canada. “Present address: British Columbia Institute of
Technology, Vancouver, BC, Canada. ®email: bouchard@stat.ubc.ca; saparicio@bccre.ca

| (2022)13:4534 | https://doi.org/10.1038/s41467-022-31830-2 | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31830-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31830-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31830-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31830-2&domain=pdf
http://orcid.org/0000-0002-5370-4592
http://orcid.org/0000-0002-5370-4592
http://orcid.org/0000-0002-5370-4592
http://orcid.org/0000-0002-5370-4592
http://orcid.org/0000-0002-5370-4592
http://orcid.org/0000-0002-1611-0867
http://orcid.org/0000-0002-1611-0867
http://orcid.org/0000-0002-1611-0867
http://orcid.org/0000-0002-1611-0867
http://orcid.org/0000-0002-1611-0867
http://orcid.org/0000-0002-1315-4311
http://orcid.org/0000-0002-1315-4311
http://orcid.org/0000-0002-1315-4311
http://orcid.org/0000-0002-1315-4311
http://orcid.org/0000-0002-1315-4311
http://orcid.org/0000-0001-9203-6323
http://orcid.org/0000-0001-9203-6323
http://orcid.org/0000-0001-9203-6323
http://orcid.org/0000-0001-9203-6323
http://orcid.org/0000-0001-9203-6323
http://orcid.org/0000-0001-6819-7071
http://orcid.org/0000-0001-6819-7071
http://orcid.org/0000-0001-6819-7071
http://orcid.org/0000-0001-6819-7071
http://orcid.org/0000-0001-6819-7071
http://orcid.org/0000-0003-1612-5644
http://orcid.org/0000-0003-1612-5644
http://orcid.org/0000-0003-1612-5644
http://orcid.org/0000-0003-1612-5644
http://orcid.org/0000-0003-1612-5644
http://orcid.org/0000-0001-6402-523X
http://orcid.org/0000-0001-6402-523X
http://orcid.org/0000-0001-6402-523X
http://orcid.org/0000-0001-6402-523X
http://orcid.org/0000-0001-6402-523X
http://orcid.org/0000-0003-3422-8823
http://orcid.org/0000-0003-3422-8823
http://orcid.org/0000-0003-3422-8823
http://orcid.org/0000-0003-3422-8823
http://orcid.org/0000-0003-3422-8823
http://orcid.org/0000-0002-0487-9599
http://orcid.org/0000-0002-0487-9599
http://orcid.org/0000-0002-0487-9599
http://orcid.org/0000-0002-0487-9599
http://orcid.org/0000-0002-0487-9599
mailto:bouchard@stat.ubc.ca
mailto:saparicio@bccrc.ca
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

riple negative breast cancers (TNBC) are a heterogenous

group of diseases, defined by the absence of detectable

estrogen and progesterone receptors (ESRI, PGR), non-
amplified/normally expressed Her2 receptor (ERBB2), and char-
acterized by aggressive clinical behaviour and poor prognosis.
Somatic mutations, cell of origin and germline variation con-
tribute to the as yet poorly defined phenotypic variation of
TNBCL. Large-scale sequencing studies have provided the basis
for molecular approaches to identify TNBC subsets with similar
underlying biology. These include subsets defined by transcript
profile, including a basal expression subtype?>, by the activity of
recurrently dysregulated signaling pathways, by activity and
deficiency in DNA repair pathways (notably double strand break
repair)%, by combined expression and copy number profile>°, by
clonal diversity and kinetics’, and by immune and stromal fea-
tures in the tumour environment$. Insights from these classifi-
cation approaches are already guiding patient stratification for
treatment with novel targeted agents®. Nonetheless, the hetero-
geneity of patient response highlights the need for more direct
and quantitative approaches to understand the fitness of genes
within the complex genomic and epigenomic backgrounds that
characterize these cancers.

Gene fitness estimates can be made at medium to high
throughput by quantification of cellular growth phenotypes under
defined perturbations, for example treatment with drug panels,
transcript inhibition through RNA interference!? or gene tar-
geting by CRISPR-KO or CRISPRi!'l. In CRISPR-based approa-
ches, integration of a vector including a single guide RNA
(sgRNA) delivers both a targeted genetic perturbation in trans
and a heritable genetic marker that can be used to identify the
perturbation in the cell’s progeny. This underlies pooled library
screening approaches, in which cell populations transduced with
diverse libraries of CRISPR guides are jointly propagated under
competitive conditions, and the relative growth of subsets bearing
each perturbation quantified by next generation sequencing. This
approach has been widely applied to cancer cell lines propagated
in vitro, identifying genes broadly essential for cell growth and
survival, genes with differential fitness in lines of particular origin
or mutational background, and combinatorial gene-gene and/or
gene-drug interactions!?13.

Extending these approaches to in vivo models such as patient-
derived xenografts (PDX) offers the potential to characterize gene
fitness in physiologically-relevant settings and in mutationally
and clonally complex tumour backgrounds. However, aspects of
xenograft biology pose notable challenges. Firstly, tissue trans-
plantation introduces a cellular survival bottleneck, with tumours
representing the clonal progeny of limited numbers of input
cells'®15, This affects statistical strength by putting a ceiling on
the number of independent datapoints (clonally-expanding cell
populations) sampled. Secondly, there is considerable hetero-
geneity in the cellular output of transplanted cells that success-
fully propagate to the final tumour, with relative clone sizes
spanning 3-4 orders of magnitude in breast cancer PDX
models'®17. This can add considerable noise when assaying sig-
nals from introduced perturbations, since final clone populations
sizes compound their effects with the cellular growth potential of
each transplanted cell.

A strategy to address heterogeneity of cellular output is to
incorporate degenerate cellular barcodes (unique molecular
identifiers, UMIs) into experimental vectors. Each transduced
starting cell then receives both a functional perturbation via the
sgRNA and a genetic marker via the UMI, which are passed to the
cell’s clonal progeny!®19. Statistical approaches informed by joint
sgRNA-UMI counts can improve signal detection in the screen,
for example by reducing confounding effects of clones of outlying
size. The approach has been applied to pooled screens in 3D

organoid culture?’ and mouse tumour models?1-23, which are
characterized by heterogenous cellular output.

Extending this concept, we develop here joint UMI and
sgRNA-encoding vectors and use these in conjunction with a
Bayesian statistical model informed by clone size distribution to
make quantitative inference of gene fitness in PDXs. We
demonstrate statistical power to resolve in vivo gene fitness dif-
ferences and driving pathway mechanisms in a diverse set of 181
CRISPR-transduced tissue xenotransplants from 21 different
breast PDX lines.

Results

Factors influencing quantitative gene fitness measurements
in vivo. We sought to develop a rigorous quantitative approach to
estimation of fitness via in vivo population competition experi-
ments. It is well known that the total progeny arising from in vivo
proliferation of single tumour cells in primary human transplant
experiments is highly variable!®17. The resulting distributions of
clone sizes have a heavy tailed form, in which small numbers of
cells may contribute disproportionately to the total population of
cells as the system evolves in time. In experiments which rely on
sampling from clonal populations of this form, the accuracy and
precision of estimates is strongly related to the numbers of clones
sampled, with loss of precision when sampling is sparse.

The strength of these effects was evident from a simulation in
which clones were randomly sampled repeatedly from a
published breast cancer PDX data set!® (Fig. 1a, left panel). As
the sample size falls below ~500-1000 clones, the heavy-tailed
size distribution results in increasingly greater uncertainty over
the mean clone size (Fig. la, right panel, 90% credible interval
(CI) of mean estimate). The effects of sparse sampling can be
partially offset by re-scaling the extreme outliers (winsorization,
Fig. 1a, right panel), however the general form persists.

We thus reasoned that rigorous quantification of fitness requires
(i) a method of estimating clone size for each perturbation in the
population (in this case, for each sgRNA molecule introduced into
a single cell during tumour transplantation); (ii) appropriate sizing
of the sgRNA library, given the clone numbers and variability in
clone size in the tissues/tumours being sampled; (iii) minimizing
distortion of clone number and size during experimental
manipulation; and (iv) a statistical model for estimating fitness
and variance from multiple measurements of a sample population,
accounting for the form of the clone size distribution.

Population size encoding of CRISPR-transduced transplant
cell progeny through UMI tags. First, to measure sgRNA clone
sizes, we introduced a degenerate barcode sequence (unique
molecular identifier, UMI)** into a Cas9-containing lenti-
CRISPRv2 vector (Figs. 1b and Sla, b). In this arrangement, each
vector molecule is coded with a unique sgRNA-UMI sequence
that can be read through as a single molecule in sequencing. We
verified the compatibility of UMI encoding with CRISPR-sgRNA
function. Plasmids containing a 27 nucleotide UMI sequence
insert either upstream or downstream of an sgRNA targeting
enhanced green fluorescent protein (eGFP) demonstrated com-
parable silencing efficiency of the target protein as the unmodified
vector when transfected into an eGFP-expressing cell line
(Fig. Slc). Downstream UMI-containing plasmid packaged effi-
ciently into lentiviruses (typical functional titres 0.5 x 108-3 x 108
infectious units/mL). Pooled CRISPR competitive growth assays
with the modified vector carried out in 2D culture in breast cell
lines (luminal-type MCF7 and normal-derived 184htert TP537/~
BRCA27/-) showed expected depletion of sgRNAs targeting
known essential and growth-promoting genes (e.g. PLK1, PLK4,
CHEKI1, MTOR, MYC) (Fig. S1d). Together, these indicate that
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Fig. 1 Quantitative assessment of gene fitness in vivo. a Sampling from a heavy-tailed clone distribution. Left panels show the size distribution (upper)
and cumulative size distribution (lower) of clones in a barcoded PDX tumour. Right panel shows the decrease in uncertainty in the sampled population
mean clone size when clones are sampled in increasing numbers. Solid line = arithmetic mean, dashed lines = winsorized mean. b Experiment schematic.
PDX cells are transduced ex vivo with a CAS9-sgRNA-UMI lentiviral library, and transplanted into recipient mice. Resulting tumours are harvested, and
joint sgRNA-UMI identities determined by targeted amplicon sequencing of bulk DNA. Schematic lower panel highlights that many initially transplanted
cells are not represented in the final tumour, and those transplanted cells that do are represented with heterogenous numbers of clonal progeny. Source

data are provided as Source Data files.

the addition of the UMI sequence is compatible with normal
function of the lentivirally-delivered CRISPR-Cas9 system.

Second, a key initial factor to avoid biased starting conditions is
the size of the sgRNA library relative to the number of clones and
variability in clone size. We estimated that transplants of
1x10%-1x 107 cells would yield tumours of ~1x 10%-1 x 10°
clones, given reported breast PDX clone-initiating frequencies of
1 per 1x101-1x10* cells!®17. This suggests that screens
employing libraries of ~10-1000 different guides can be
adequately powered to achieve clone numbers of 500-1000
per guide.

Based on this, we cloned a library of sgRNAs targeting growth
factor receptors, hormone receptors, key members of PI3-kinase,
integrin, DNA damage, RAS-MAPK, cell-cycle control, Notch,
Wnt, Hedgehog, Hippo, hypoxia and autophagy pathways
(168 sgRNAs targeting 56 genes in triplicate plus 24 non-
targeting sgRNAs, 192 sgRNAs total, Table S1) into the vector.
Targeted amplicon sequencing confirmed a broad joint distribu-
tion of sgRNAs and UMIs in the library (Fig. Sle, f).

Details of transduction and PCR sequencing of libraries are in
Methods. Briefly, PDX tissue was disaggregated quickly to small
organoids, avoiding lengthy enzymatic dissociation processes that
can reduce viable cell numbers. Following transduction with virus
for four hours ex vivo, tissue was transplanted into recipient mice,
allowed to grow tumours of at least 0.1 cm? in size over a period
of weeks, then harvested for DNA extraction (Fig. 1b). For most
experiments we used a viral dose of 8-10 x 10¢ infectious units
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per transplant (range 2.8-24.6 x 10° infectious units in entire
study, Table S2). A PCR amplicon spanning both sgRNA and
UMI was sequenced (Illumina MiSeq or NextSeq) to a depth of
~2x 106 reads per tumour. sgRNA and UMIs were extracted
from sequence data, filtered for sequence quality, with all reads
with matched sgRNA and UMI vector sequences considered as
individual clones of an sgRNA-UMI introduced into a cell. To
reduce PCR and sequencing error inflation of sgRNA-UMI clone
measurements, a round of in silico clone aggregation was carried
out using the UMI-Tools Directional algorithm?>.

Heterogeneity of clone size in sgRNA-UMI PDX transplants.
To explore the clonal features of transduced PDX tumours, we
first enumerated the number of unique sgRNA-UMI clones
measured in transplants from breast cancer PDX lines derived
from 21 different patients (Fig. S2). We observed a wide range of
clone numbers in individual transplants (90% range:
0.006-0.424 x 10° clones per million reads; 33-2210 per sgRNA).
This equated to a greater than 10-fold range in the median in
different breast PDX lines (Fig. 2a), consistent with variability
found in previous analyses of clone initiation in breast PDX!6:17,

Comparison of replicate transplants further indicated that
sgRNA-UMI clone number is a reproducible property of PDX
lines (Fig. 2a). Within our panel of PDX lines, TNBCs and
hormone receptor positive subsets included medium and high
clone number examples, whereas clone number was low (fewer
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that 10° sgRNA-UMIs per 10° reads) in the three hormone
receptor negative Her2 positive lines (Fig. 2a).

We reasoned that low sgRNA-UMI clone number in certain
PDX lines could reflect heavy-tailed clone size distributions, with
sizeable proportions of total tumour cell mass represented by
small proportions of transplant clones. We therefore compared
sgRNA-UMI clone number with two different measures of
diversity; Shannon diversity index (SDI), a composite entropy

Normalized enrichment score

measure of evenness of clone size distribution and total clone
number; and the area under the Lorenz curve plot of cumulative
reads against cumulative clones, a function of clone size
distribution alone (Fig. 2b, ¢, Supplementary Methods 1.2). We
found clone number to be positively correlated with SDI and with
homogeneity in clone size (Fig. 2b), with tumour composition
ranging from extremes of large numbers of more evenly-sized
clones (high entropy) to small numbers of more heterogeneously-
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Fig. 2 Transplant clone diversity in breast cancer PDXs. a Numbers of unique sgRNA-UMI clones per million reads in transduced tumours grown in 21
PDX lines (bars show mean + /— SEM for each PDX line, individual tumour datapoints overlaid). b Diversity measures in transduced PDX tumours. Panels
compare sgRNA-UMI clone number with two measures of diversity; the Shannon diversity index and the area under a Lorenz curve plot of cumulative
sequence reads against cumulative clone numbers. All measures are evaluated per million sequence reads. Lower clone numbers per tumour are strongly
associated with a greater heterogeneity in clone sizes. ¢ Lorenz curves of cumulative sequence reads against cumulative clone numbers, illustrating clone
size heterogeneity in sample tumours from six PDX lines, and in the initiating sgRNA-UMI library plasmid (black). Solid and dotted lines show data from
control and gene-targeting guide subsets. A greater deviation from the x =y diagonal indicates a greater unevenness in clone sizes. d Reduced diversity
with passaging time. Panels show clone numbers (left) and Shannon diversity index (right) for replicate transplants from two PDX lines harvested at

variable timepoints after transplantation. e Transplant clone diversity is not associated with genomic clonal diversity. Panels show clone numbers (left) and
Shannon diversity index (right) against the number of genomic clonal clusters inferred from bulk WGS by population structure model PyClone-VIin 21 PDX
lines (sequence from one PDX tumour analyzed per line). Boxplot lines at 25th, 50th and 75th centiles, vertical lines extend to furthest datapoint within 1.5
interquartile range distance of box limits. f GSEA pathway enrichment graph derived from RNAseq transcriptomes from the six highest compared with six
lowest sgRNA-UMI diversity PDX lines. Node size indicates the number of genes in curated pathways, from Reactome Hallmark pathway set. Edge line
width indicates numbers of genes shared between pathways. High sgRNA-UMI diversity PDX lines show differential activity in cell-cycle pathways, low

sgRNA-UMI diversity lines in immune pathways. Source data are provided as Source Data files.

sized clones (low entropy). We did not observe outcomes with
large numbers of evenly-sized clones. These relationships were
maintained independent of whether cells received a neutral
sgRNA or a gene-targeting sgRNA (Fig. 2¢), indicating that clone
number and size distribution are intrinsic properties of the PDX
transplant cellular regenerative process, not solely consequences
of introduced gene perturbations.

We found that extended propagation time in vivo led to a
decrease in overall diversity (Fig. 2d). To maintain favourable
sampling diversity, we therefore harvested tumours at relatively
small size (~0.1-0.15 cm3, typically, 3-8 weeks’ growth in vivo) in
subsequent competitive fitness experiments. Transplant clone
diversity did not show a correlation with the extent of genomic
clonal diversity within PDXs, as measured by the number of
mutational clusters inferred from bulk WGS by Bayesian
population model PyClone-VI?® (Fig. 2e).

Finally, to examine biological features contributing to sgRNA-
UMI clone diversity, we used gene set enrichment analysis2” on
bulk RNAseq to identify pathways with differential activity in
PDX lines with higher compared with lower SDI. Within the
Reactome Hallmark pathway set (www.reactome.org), PDX lines
with higher diversity were characterized by elevated activation of
cell cycle-related pathways, notably G2M checkpoint and E2F
targets (Fig. 2f). In contrast, PDX lines with lower diversity
showed elevated activation of allograft rejection and inflamma-
tory pathways, notably interleukins and interferons (Fig. 2f). This
suggests interaction between transplanted tumour cells and the
host innate immune system as a possible mechanism to explain
the lower number of engrafting transplant clones in these PDX
lines. Elevated cytokine response might also reflect response to
endogenous DNA damage in the low sgRNA-UMI diversity
subset. However, we did not find a correlation between sgRNA-
UMI diversity and the overall burden of somatic single nucleotide
variants in PDX lines to support this interpretation (Fig. S3a).
Similarly, we did not observe strong correlation with genome-
wide mutational signatures?8, with only the SBS8 signature?’
showing a significantly non-zero regression slope coefficient
(p=0.008) with sgRNA UMI diversity but with low overall
coefficient of determination (r2=0.33) (Fig. S3b). Thus, mea-
sured clone diversity in library transplant experiments appears to
be driven by a number of biological features, including
proliferating-cell content of the transplanted material and activity
of immune-pathway cytokines in tumour cells.

Taken together the key elements required for population fitness
measurements were identified as, appropriately scaled perturba-
tion library size; short transduction times with minimal tumour
manipulation; early harvesting of tumour transplants; and
evaluation of intrinsic clone diversity capacity of each PDX.

Fitness inference informed by UMI distributions and a Baye-
sian hierarchical mixture model. We anticipated that PDX line
differences in cellular regeneration properties would translate into
differences in the statistical power of pooled CRISPR screens,
notably a reduction in power in PDX lines generating tumours
comprising fewer clones. To control for PDX specific effects we
developed a modeling approach using jointly measured sgRNA-
UMI data to infer the fitness impact of sgRNA perturbations
introduced synchronously into a PDX. We developed a hier-
archical Bayesian model to jointly analyze the observed UMI and
sgRNA read count data, which allowed us to quantify the
uncertainty in fitness estimates via credible intervals obtained
from the posterior distribution (Fig. 3a, Supplementary Meth-
ods 1.5). To account for differences in the prevalence of sgRNAs
within each library (Fig. S1f), sequence read count data from
tumours propagated in mice (termed final counts, DY) are
modelled along with read counts from the plasmid vector library
used for packaging into lentivirus used to transfect (termed initial
counts, I;). To increase statistical power, we included the ability to
jointly analyze multiple replicates within the modeling frame-
work. Winsorization (which here revalues the top 2% of the
posterior distribution to the 98th centile point) was used to
produce robust estimators that reduce the impact of clones of
outlying size (Fig. S4c). The model returns the posterior dis-
tribution of the winsorized mean of cellular output as the sgRNA
fitness estimator (Fig. 3b, left 3 panels represent replicate trans-
plants from a high diversity PDX line, right panel shows the
grouped analysis, Supplementary Data 1). Fitness in this model-
ing approach is thus a measure of the relative expected cellular
output of cells transduced with different guides, after lowering of
the impact of outlying large clones through winsorization.

We used a Bayesian goodness of fit procedure to evaluate the
performance of different generative functions modeling distribu-
tions of this type (Supplementary Methods 1.5.6). The procedure
measures the percentage of sgRNAs for which observed mean
clone size falls within the modeled 90% posterior credible interval
(expected to be close to 90% of the sgRNAs if the fit is good).
Likelihoods based on mixture models (e.g. sum of two negative
binomial distributions with different means and dispersions)
resulted in improved goodness-of-fit when applied to datasets
representing a range of sgRNA-clone diversity (Figs. 3c and S4a).
In contrast, likelihoods based on a single distribution functions
(e.g. Poisson, negative binomial, beta negative binomial, Yule-
Simon) had lower flexibility to fit to the form of empirical
distributions, resulting in lower coverage of observed means
within modeled credible intervals. While goodness-of-fit and
marginal likelihoods varied with the use of different generative
functions (Supplementary Methods 1.5.6), we note that the
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median Bayesian fitness estimates were broadly similar, with the
exception of the poorly-fitting Poisson model (Fig. S4b). For
subsequent analysis, we chose the mix-NB model (mixture of two
negative binomial distributions). This distribution has defined
moments, making model interpretation more straightforward,
and also has faster execution time compared with mix-BNB,
which has slightly higher marginal likelihood and overall

goodness-of-fit. We also note that the better fit of mixture
models is consistent with the presence of more than one
biologically distinct cell type in the initiating transplants.

For comparison, we also generated sgRNA-UMI-informed
fitness estimates and confidence intervals using a frequentist
methodology based on a ratio statistic and the Delta method
(Supplementary Methods 1.4). While Bayesian and frequentist
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Fig. 3 Bayesian model for UMI-informed fitness inference in pooled screens. a Bayesian probabilistic graphical model schematic. b Posterior distributions
of guide fitness for three biological replicate transplants from C1368 transduced with a 192-guide library targeting 56 signaling genes. Right hand panel
displays posterior distributions for a group inference run using data from the three replicates. Mix-NB model is used. Figures above each panel indicate
mean sgRNA-UMI clones per guide. Guide distributions coloured red (low fitness) and blue (high fitness) indicate estimates that differ from neutrality
(fitness = 1) with false discovery rate <0.05 (Benjamini-Hochberg method). € Bayesian goodness of fit test for different count likelihood models. Improved
fit is obtained using mixtures of two distributions. (YS = Yule Simon, NB = negative binomial, BNB = beta negative binomial, mix = weighted linear mix of 2
distributions of the same model type with same mixture weight for all sgRNAs in each sample, except mix-BNB local in which a separate mixture parameter
is used for each sgRNA.) d Higher sgRNA-UMI diversity is associated with screens with narrower credible intervals and closer correlation between

biological replicates. Left panel shows the median fitness credible interval width against Shannon diversity. Right panel shows Spearman rank correlation of
guides against mean Shannon diversity in pairwise comparisons between biological replicates. e Effect on screen resolution of reducing sgRNA-UMI

numbers through in silico clone subsampling (unfilled circles), or increasing numbers by combining biological replicate datasets (triangles). Data shown for
starting datasets from 5 different PDX lines (solid circles). f Effect on the number of guide pairs with differentially resolved fitness, as sgRNA-UMI numbers
are varied by in silico clone subsampling (unfilled circles) or combining biological replicate datasets (triangles). Resolved pairs are Hasse plot edges

connecting guide pairs with non-overlapping 95% credible intervals (fitness a < b, and no ¢ such that a<c<b). As fewer sgRNA-UMIs are sampled, the
power to resolve fitness pairwise differences between guides decreases. Data shown for starting datasets from 3 different PDX lines (solid circles). Source

data are provided as Source Data files.

methodologies generated broadly similar rankings of guide fitness
in single data set analyses (Fig. S4b, right panels), the Bayesian
approach was better suited to leveraging of replicates in grouped
analyses in which data and a subset of the model parameters were
shared between multiple data sets from biological replicate
transplants (Fig. 3b, right panel; note the narrower posterior
distributions compared with single data set distribution in three
left panels).

While our modeling approach assumes that each transduced
cell receives a single viral integration, it is known that
transduction of cell populations with viruses results in a subset
of cells receiving two or more integration events. Multiple
integration events may lead to some overestimation of clone
number, since sequences from the progeny of these cells are
counted in more than one clone. Nonetheless, this effect should
affect guides uniformly and thus be neutral for relative fitness
estimates. We investigated this with a model version in which
initial cell transduction frequency is assumed to follow a Poisson
distribution (Supplementary Methods 1.5.4). This model showed
a negligible increase in marginal likelihood in our data sets
relative to the single infection mix-NB model (Supplementary
Methods 1.5.7), implying that a multiple infection model does not
bring significant benefits in fitting the data. We also carried out
transduction experiments in which parallel transplants received
viral doses varying over a four-fold range. Fitness estimates were
well correlated (12 0.766-0.808, Fig. S5a), and only small variation
in credible interval width was observed over the viral dosing
range (median 95% interval 0.219, 0.209, 0.208 at doses of 5, 10,
20 x 109 infectious units). For simplicity, we therefore settled on
the single infection model version for subsequent analyses.

We used variants of the signaling library that included negative
control guides that are non-genome targeting (no matching
sequence in human genome) or non-gene-targeting (matching
sequence in the human genome, at least 5 kbp distant from any
coding region). Comparison of these offers an estimate of the
magnitude of non-target-specific growth inhibition from Cas9-
induced genome cutting, since the latter but not the former
controls are expected to target any locus. Consistent with this,
non-genome-targeting control guides registered higher fitness
compared with non-gene-targeting controls (Fig. 5a, ctl and ctl,,
respectively), with a mean difference in net growth of 0.30. A
copy number dependent non-gene-specific negative effect on
cellular proliferation on CRISPR cutting has been previously
documented in cell line studies!?.

We next examined the relationship between clonal diversity in
PDX tumours and the power to resolve fitness differences
between sgRNA targets. Using the mean 95% Bayesian credible

interval width as a proxy for the resolution of a pooled PDX
screen, we observed a strong inverse correlation between clonal
diversity and resolution (Fig. 3d, left panel). This was also
reflected in a greater reproducibility of fitness ranking between
replicate transplants from higher diversity compared with lower
sgRNA-UMI diversity tumours (Fig. 3d, right panel). The inverse
relationship between clone diversity and screen resolution was
also seen when reducing UMI numbers by sub-sampling clones
from single datasets, or by increasing number by combining
biological replicate datasets (Fig. 3e). As a graphical representa-
tion of fitness differences resolved at significance between
sgRNAs, we generated partially ordered sets (posets), visualized
using Hasse diagrams, which show minimal sets of edges
connecting sgRNA nodes with non-overlapping 95% Bayesian
credible intervals (fitness a < b, and such that there are no ¢ such
that a < ¢ < b) (Fig. S6). Here, sampling of fewer clones resulted in
progressively simpler graphs resolving fitness differences between
fewer sgRNA pairs (Figs. 3f and S6).

Overall, these observations demonstrate that the power to
resolve in vivo fitness differences between genes is critically
dependent on clone diversity, derived from the number of
transplant clones in a regenerated tumour and the heterogeneity
in their sizes. These are biological properties of PDXs, varying
considerably between lines derived from different patient
tumours.

Intrinsic between-patient variation dominates primary breast
cancer gene fitness in vivo. Having established Bayesian fitness
measures from sgRNA-UMI clones in vivo, we set out to examine
sources of variation of single gene fitness among different patient
tumours for the functions of PI3-kinase, integrin, DNA damage,
RAS-MAPK, cell-cycle control, Notch, Wnt, Hedgehog, Hippo,
hypoxia and autophagy pathways represented in the sgRNA
library. We conducted multiple technical replicate transplant
experiments (n=3-6) for 15 patients (10 TNBCs) from the 21
patient series (6 excluded due to low sgRNA-UMI diversity),
contrasting different passages and anatomical sites of transplant
of individual patient tumours.

First, to assess gene fitness in different transplant sites, we
compared replicate transplants from 6 different PDX lines grown
in separate groups of mice in subcutaneous or inguinal mammary
fat pad sites (Fig. 4a). To facilitate comparison between
experiments and sgRNA libraries, fitness values were normalized
within each dataset such that the 70th centile value among gene-
targeting guides was set to a neutral level of 1 (Supplementary
Methods 1.6). We applied a stringent set of criteria to identify
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Fig. 4 Between-patient variation dominates in vivo gene fitness. a Two examples comparing guide fitness measurements (median, bars = 95% CI)
between transplants of the same TNBC PDX material into subcutaneous (SQ) or mammary fat pad (MFP) sites. Red, blue: guide outliers between the two
conditions satisfying criteria related to both fitness and rank difference, and with more than one outlying guide targeting the same gene (Supplementary
Methods). Orange: non-targeting control guides, shown in fitness plots. (PDX tumours: C2271 n=2, 1 for MFP, SQ; C1368 n= 2, 1 for MFP, SQ.) b Two
examples comparing guide fitness measurements (median, bars = 95% CI) between transplants of an early and late passage from the same TNBC PDX
line. Criteria for identifying outlying guides as in a. (PDX tumours: C2271 n =3, 3 for early, late; C1368 n =3, 2 for early, late.) € Two examples comparing
guide fitness measurements (median, bars = 95% CI) between transplants of PDX lines from different patients. Criteria for identifying outlying guides as in
a. (PDX tumours: n=3, 3, 4, 3 for C2271, C1368, C2191, CO331.) d Left panel shows the percentage of guides satisfying outlying criteria for all pairs of
datasets that represent biological replicates; site comparisions; early vs late passage comparisons; and comparisions between different patient PDX lines.
Right panel shows the Spearman rank correlation of guide fitness for the same sets of comparisons. Bars display mean + /— SEM (p < 0.001 two-sided for
all pairs, except for Replicate-Site, in both panels). Both metrics show greatest dissimilarity in fitness for comparisons involving different patients. (n = 249,
30, 496 and 4624 pairwise comparisons for replicate, site, passage, patient). Source data are provided as Source Data files.
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targeting guides showing statistical and biological significant
difference between sites, namely: fitness differential that is non-
zero (by 95% posterior credible interval); targeting guides that
show statistically significant fitness differential relative to the
variability in neutral guides; rank differential that is non-zero (by
95% posterior credible interval); and at least two guides targeting
the same gene satisfying these three criteria (Supplementary
Methods 1.8). Representative comparison examples are shown in
fitness and rank space, with guides satisfying the difference
criteria highlighted (Fig. 4a). We did not observe strong site-
specific fitness differences, although in four of six patients EGFR
exhibited modestly lower fitness (~0.4) in the mammary fat pad
site than subcutaneous site (Figs. 4a, left two panels and S7).
Related pathway ERBB family receptors exhibited overall neutral
differential fitness, with one patient each exhibiting a growth
effect for ERBB2 and ERBB3 (Fig. S7). Thus, for all but EGFR, site
of transplant had little or no effect on the measured fitness ranks.

Polyclonal primary breast cancers evolve in patients and in
PDX transplants®0. To assess the variation in fitness with serial
transplant passaging, we compared an early passage (2nd-3rd
mouse generation since initiating transplant from patient) with a
later passage (6-12th) for three PDX lines (intervening time 15,
18 and 23 months in vivo). We observed relative stability in the
rank ordering of guides, implying that biological drivers at early
passages remain functional over significant periods of time
in vivo (Figs. 4b and S8). Notable outliers included TP53 in
C1368, a TNBC line in which the all three TP53-targeting guides
showed positive fitness at passage 2 (consistent with wild-type
TP53 status in this line) and neutral fitness at passage 10 (Fig. 4b,
right two panels). We examined mutation status and copy
number in pseudobulk clonally merged genomes derived from
DLP + scWGS3! sequenced at the early and late passages. In spite
of passage-related copy number clonal evolution, we did not find
somatic mutations in or closely related genes to explain this
functional shift. We also noted that guide fitness profiles were
well correlated between transplants of the same tumour material
harvested after varying propagation periods in vivo
(2 0.759-0.892, Fig. S5b), indicating that time-dependent fitness
within a passage generation was not a strong feature in these
experiments.

In contrast with the relative stability in fitness profiles between
technical replicates, or variations in site and passage, we observed
considerably greater fitness variation when comparing PDX lines
originating from different patients (Fig. 4c). These comparisons
indicated different functional drivers within the TNBC subset of
lines, as well as showing the expected differences in hormonal
signaling in ER + lines compared with TNBC (Fig. S9). Quantify-
ing the proportion of genes satisfying the multiple difference
criteria across the entire data set (5399 pairwise comparisons)
showed a progression of increasing fitness variability from
technical replicates or site comparisons to passage comparisons
to inter-patient comparisons (Fig. 4d, left panel, Supplementary
Methods 1.8). A similar ordering was seen using the Spearman
rank correlation of guide fitness in the comparisons (Fig. 4d, right
panel), with between-patient variation dominating the fitness
landscape. Taken together, by far the greatest source of variation
in fitness among genes assessed in vivo arises from intrinsic
differences between primary breast cancers.

We next assessed the variation in gene and patient fitness of
core genes from PI3-kinase, integrin, DNA damage, RAS-MAPK,
cell-cycle control, Notch, Wnt, Hedgehog, Hippo, hypoxia and
autophagy pathways. In all series, guides targeting genes with
known essential biological function (e.g. PLK1, PLK4, CHEKI)
registered overall negative fitness (i.e. lower net growth when
targeted with CRISPR), though the extent varied between PDX
series (Fig. 5a, upper panel). A similar fitness pattern was

observed in strong growth-promoting genes such as MYC, MTOR
and CDKI2. The fitness of these large effect size genes was
concordant with those identified as broadly essential in breast
cancer cell lines propagated in vitro (Fig. 5a, middle panel shows
gene-sensitive proportion of 25 breast cell lines from Cancer
DepMap data set??, Fig. S10). Among moderate effect size genes
we observed differences in fitness ranks between in vivo (PDX)
and in vitro (DepMap) datasets for PDK1 (oxidative phosphor-
ylation), RAF1, CA9 (hypoxia), ALK, SRC, LEF1 (Wnt), YAPI
(Hippo) and FLT1 (VEGF pathway) (Fig. 5a, lower panel).
BRCA2, which has near neutral fitness in cell lines, exhibits a
more pronounced negative fitness in primary PDXs. Taken
together, these indicate functional differences between cell lines
(many derived from metastatic and/or post chemotherapy treated
tissues) and primary breast cancers grown in vivo.

Beyond high and moderate fitness genes, many other signaling
genes were characterized by neutral fitness in many series,
however with notably outlying non-neutral fitness (negative or
positive) in specific series. Series-specific gene outliers included
MET in C3278 and C1471; PARPI in C0331; PIK3CA / PIK3CB /
PIK3RI in C1383 and C1471; FGF receptors in C1368, C3037 and
C1373; and EGFR/ERBB family receptors in C1379, C1383,
C1392 and C1373 (Fig. S9). Among RAS-MAPK pathway genes
tested, RAFI sensitivity was observed in around half of PDX
series. We did not observe strong fitness outliers in RAS genes
(KRAS, HRAS, NRAS) (Figs. 5a and S9) in primary PDX, however
cell lines exhibited greater median RAS pathway negative fitness
overall, indicating potential constitutive differences between
primary PDX and cell lines in RAS signaling. RAS genes typically
gain oncogenic function through hotspot base substitution
mutations, which are rare in breast cancer and absent in our
PDX panel, though frequent in tumours types such as colon, lung
and pancreatic ductal adenocarcinoma.

To exclude large expression or copy number effects on fitness,
we next compared fitness measures with transcript expression
level and genomic copy number of the targeted genes (Fig. 5b, c).
These data were derived from bulk RNAseq and WGS from
additional tumours in the same patient PDX series. We noted a
number of genes in which fitness outliers occurred in series with
highest levels of transcript expression or copy number. These
included ESRI and ERBB2, which are established single gene
biomarkers predictive for response to anti-estrogen or HER2-
targeting therapy. Furthermore, MDM?2 fitness was most negative
in series C2553, in which copy number amplification is associated
with elevated expression (see section below). For the majority of
genes, though, fitness did not show a clear correlation with either
transcript expression or copy number. Cell signaling pathways are
complex, with regulatory characteristics including functional
degeneracy, thresholding, feedback and cross-pathway interac-
tion. It is not surprising therefore that functional readouts such as
gene fitness do not in general reduce to simple measures of state,
highlighting the utility of making such measurements empirically.

Validation of fitness outliers with allelic series pathway map-
ping and pharmacological inhibition. To illustrate the repro-
ducibility and validation of primary in vivo fitness measures we
adopted the standard approach of constructing a de-novo allelic
series, in which a series of guides target multiple gene regions and
also different genes within a pathway. In our initial transplant
experiments, we observed several PDX lines with sensitivity to
APHIA (Fig. 6a). This gene is a member of the gamma-secretase
complex required for proteolytic cleavage of Notch receptor. We
therefore selected two negative fitness (C0331, C1368) and one
neutral (C2271) line for detailed fitness mapping on the Notch
pathway. The Notch pathway has been implicated in breast
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cancer, but defining the fitness of Notch pathway genes requires
phenotypic assays of cell-cell contacts in 3D or in vivo. Genome
sequencing revealed that the APHIA-sensitive TNBC line C1368
contains a somatic translocation between NOTCH3 and
MEMOIP4, resulting in a NOTCH3 transcript missing the PEST
domain-containing C-terminus exon (Fig. 6b). The PEST domain
of Notch normally negatively self-regulates survival through

10

targeting the Notch receptor protein for degradation. PEST
domain deletion or mutation extends the duration of Notch
signaling and has been observed in several cancer types33. We
constructed a 128-sgRNA library targeting 26 Notch pathway
genes, including 4 sgRNAs targeting the NOTCH3 PEST domain
and 4 sgRNAs targeting other exons in the gene (Fig. 6b, c,
Table S1). Consistent with the genomic aberration, C1368 was
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Fig. 5 Inter-patient differences dominates the variability in fitness in PDXs. a Range of gene fitness for 15 PDX lines. Upper panel: circles show the
median fitness for all guides targeting a gene in all experiments carried out with each PDX line (n =135 PDX tumours total). Points are alpha-weighted by
the standard error of the mean of fitness values for that guide/PDX line (higher standard error points more transparent). ctl and ctl_t indicate non-targeting
controls and non-gene targeting controls respectively. Middle panel: percentage of Cancer DepMap breast cancer cell lines (n = 25) reported with in vitro
CRISPR-assayed essentiality for the gene. Lower panel: difference between the gene fitness rank order in PDX lines in vivo and DepMap breast cell lines
in vitro (of n=156 genes). b Relationship between guide fitness (median, bars =95% Cl) and transcript expression, shown for 12 guides in biological
replicate series from 16 PDX series (n =61 PDX tumours total). Transcript expressions are from RNAseq on a tumour from the same PDX line as the
fitness measurements. Statistics shown are regression r squared and the p-value testing for zero slope coefficient (highlighted where p < 0.05, two-sided
significant within panel: known single-gene breast cancer biomarkers ESRT and ERBB2; also MDM?2). ¢ Relationship between guide fitness (median,

bars = 95% Cl) and local copy number, shown for 12 guides in biological replicate series from 16 PDX series (n = 61 PDX tumours total). Copy number is
derived using TITAN, on WGS from a tumour from the same PDX line as the fitness measurements. Regression statistics as in b (highlighted where

p <0.05: APHTA and MDM?2). Source data are provided as Source Data files.

highly sensitive in vivo to sgRNAs targeting non-PEST 5’ regions
of NOTCH3, whereas sgRNAs targeting the PEST3 domain were
functionally neutral (Fig. 6d, e). Sensitivity to APHIA was mir-
rored in negative fitness values for multiple other members of the
gamma-secretase (NCST, PSEN2, PSENEN) and the ADAM10/17
cleavage complexes (Fig. 6d). Negative fitness was observed to
Notch downstream signaling transcription factors HES and HEY
and co-activators MAMLI and MAML?2, in conjunction with
positive fitness in transcriptional co-repressor NCOR2 (Fig. 6d).
sgRNAs targeting extra-cellular Notch ligands DLL1/4, DTXI and
JAGI1/2 showed neutral fitness (Fig. 6d). These results are con-
sistent with a dominant, cell-autonomous activation from the
fusion gene. Comparison with the fitness landscapes in C2271
and C0331 confirmed the heightened relative sensitivity of C1368
to NOTCH3, as well as to the downstream pathway effector HES!
(Fig. 6f, left and middle panels). In contrast the fitness landscapes
of C2271 and C0331 differed mostly in extracellular signaling
ligands DLLI and JAGI/2, as well as transcriptional coactivator
MAML?2 (Fig. 6f, right panel). Taken together, the allelic and
pathway fitness measurements reflect qualitative and quantitative
differences in Notch signaling, with ligand mediated effects in
wild type tumours contrasting with the PEST-domain-lacking
NOTCH3-MEMOIP4 translocation product, which dominantly
activates pathway signaling in C1368.

In a second validation approach, we set out to test whether
fitness phenotypes in our pooled screens are predictive of drug
sensitivity in specific patient backgrounds. We thus performed
short-term toxicity assays using cells dissociated from nine
different PDX lines and propagated ex vivo as 3D organoids. We
used a panel of seven compounds, targeting MDM2, MTOR/PI3K,
FGR receptor signaling and MYC pathways. Drug-response
curves were obtained over a 0.01-100 mM concentration range
(Fig. 7a). Drug treatments differ considerably in biophysical
mechanism of functional inhibition compared with sgRNA/
CRISPR. Nevertheless, in spite of differences in time frame (96 h
vs 3-10 weeks), system (in vitro culture vs in vivo xenograft) and
perturbation modality (drug vs gene editing), we found several
examples in which PDX line specific gene fitness outliers in the
pooled CRISPR setting (Fig. S9) correspond with drug sensitivity
in the organoid drug assays (Fig. 7a, PDX with fitness outliers in
the drug target shown as solid dose-response curves in upper
panel; labeled in comparisons with half-inhibitory drug dose in
lower panel). Notable examples are MDM2 gene fitness with
sensitivity to inhibitors Nutlin-3a and Idasanutlin in PDX line
C2553, MTOR with inhibitors Rapamycin and Everolimus in
C1379, FGFR2 with FGF receptor tyrosine kinase inhibitors
Erdafitinib and Infigratinib in C1368 and MYC with BET
inhibitor JQ-1 in C1379 (Fig. 7a).

To further demonstrate that in vivo fitness measurements have
quantitative value, we probed pharmacologically an MDM?2
fitness outlier. The PDX line most sensitive to in vitro

pharmacological MDM?2 inhibition (C2553) previously showed
outlying fitness in MDM2 and close to neutral fitness in TP53 in
the in vivo CRISPR screens (Fig. 7b). This TP53 wild-type
ER +PDX line contains a 6-copy amplification in MDM2
(Fig. 7c), resulting in the highest transcript expression of this
gene among our PDX series (Fig. 5b, rightmost bar in MDM2
panel). MDM?2 is a negative regulator of TP53, shortening its
survival by targeting for proteasomal degradation. The CRISPR
and pharmacological sensitivities are consistent with attenuated
TP53 activity resulting from inhibitions by MDM2. We
hypothesized that pharmacological MDM?2 inhibition would
reactivate wildtype TP53, and so cause a shift from neutral to
positive fitness in TP53. To test this, we carried out in vivo assays
using the signaling library with mice randomized to receive
100 mg/kg Idasanutlin or vehicle control for 14 days, starting
from a small tumour size of ~0.05cm3. As predicted, all three
sgRNAs targeting TP53 exhibited a shift towards positive fitness
in Idasanutlin-treated compared with vehicle-treated mice, with
all three guides satisfying the multiple difference criteria (mean
fitness difference 0.27) (Fig. 7d). We also noted a shift under drug
treatment towards negative fitness in sgRNAs targeting
autophagy-promoting gene ATG4B (two of three guides, mean
fitness difference —0.40), consistent with reports that nutlin class
drugs can upregulate the autophagy pathway*. Furthermore,
hedgehog pathway receptor SMO showed a shift towards lower
fitness on drug treatment (two of three guides, mean fitness
difference —0.26), consistent with reports that this pathway can
up-regulate MDM?2 expression3>. Together these data provide
additional evidence for an epistatic relationship between TP53
and MDM?2 in primary breast cancers, and highlight that complex
conditional drug-gene interactions can be dissected in PDX using
the UMI-encoded fitness approach.

Discussion

Measurements of gene fitness in replicating cells have proven to
be a powerful means to understand biological functions in cancer
model systems. However, understanding of the parameters that
make robust quantification of fitness possible in physiologically
growing tumours has been lacking. Importantly, PDXs allow
functional study of an extended range of patient genotypes in
many tumour types, including breast, where the study of gene
fitness has been limited by the difficulty of cell line and long-term
organoid generation. This is an especially acute issue for primary
breast cancers, the majority of studies having been conducted
with metastatic cell lines in vitro. Here we show how UMI-
encoded sgRNA perturbation libraries can be used to quantify
gene fitness in vivo in breast PDXs. By modeling the number and
size distribution of sgRNA-UMI clones in PDX in a hierarchical
Bayesian mixture framework, matching library size and length of
tumour growth, reproducible estimates of gene fitness can be
obtained.
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Bayesian modeling of clone size distributions, in combination
with winsorization of the distribution tail, has the benefit of
reducing potentially confounding influences on fitness estimates
of outlying large clones. This is of particular relevance to PDX
models, in which the clone size distribution has a heavy-tailed
form. Even in less clone-size heterogenous datasets generated
from cell line culture, the use of median clone depletion measures
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has been shown to improve signal in CRISPR screens!®1°. Our
modeling approach could also be applied to quantify fitness in
organoid cultures, in which clone size heterogeneity along with
more limited biomass present a challenge to the library size that
can be used quantitatively?3-36-38, The approach is also applicable
to other pooled perturbation modalities, such as screening with
libraries of RNA interference constructs. In common with many
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Fig. 6 Notch pathway allelic series highlights driver mechanism in a NOTCH3-rearranged PDX line. a Fitness posterior distribution of guides targeting
gamma secretase complex component APHTA in 15 PDX lines. PDX lines C0331, C1368 and C2271, further assayed in vivo (d-f), shown in colour. b Exon
diagram of NOTCH3, showing position of translocation breakpoint with MEMOTP4 in PDX line C1368. Arrows show position of 4 guides targeting NOTCH3
body, and 4 guides targeting the PEST3 domain not present in the translocation, labeled with the in vivo fitness of each guide. ¢ Canonical Notch signaling
pathway. The genes shown are included in a Notch-focused sgRNA library, and coloured by functional group. d Fitness of in vivo Notch pathway and
NOTCHS allelic series in C1368 (4 PDX tumours). Guide distributions coloured red (low fitness) and blue (high fitness) indicate estimates that differ from
neutrality (fitness =1) with false discovery rate <0.05 (Benjamini-Hochberg method). The driving function of the NOTCH3 translocation is illustrated by
reduced fitness with guides targeting NOTCH3 body but not the missing NOTCH3 PEST domain. Reduced fitness is also seen in multiple cleavage complex
components, Notch pathway transcription factors and coactivators. e Fitness (mean + /— SEM) of four guides targeting 5 NOTCH3 regions other than the
PEST domain and four guides targeting the PEST domain. C1368 shows differential sensitivity to NOTCH3 targeting outside the PEST domain, which is
missing in this PDX line due to translocation. (PDX tumours: C1368 4, C2271 4, C0331 4.) f Pairwise comparison of guide fitness (median, bars =95% CI)
in C1368 and two other TNBC lines, C0331and C2271. C1368 shows lower fitness in NOTCH3 compared with both other TNBCs, as well as in the canonical
transcription factor HEST. C2271 and C0331 show differential fitness in Notch ligands DLLT and JAGT/2, and transcriptional coactivator MAML2. (PDX
tumours: C1368 4, C2271 4, CO331 4.) Source data are provided as Source Data files.

CRISPR approaches which measure net proliferative output, the
fitness estimates principally reflect cell-autonomous effects of
gene perturbation. There may in addition be contributions from
cell-cell interaction and from inter-clone competition for limiting
resources, which would require additional experimental and
modeling approaches to disentangle.

We find that the resolution with which gene fitness can be
ascertained is critically dependent on features of the regenerative
process underlying xenograft tumour growth, encoded in UMI
distributions. Notably, statistical strength is increased in PDX
lines in which larger numbers of transplanted cells contribute to
xenografts, and in which there is lower heterogeneity in the clonal
cellular contribution of these cells. Moreover, we find that these
are reproducible properties of individual PDX lines. In practical
terms, we can assess sgRNA panels at medium throughput
(~100-200 guides in parallel), resolving in vivo gene fitness dif-
ferences of moderate size (~0.2-0.5) in PDX lines which exhibit
medium to high sgRNA-UMI diversity (typically, >500 UMIs per
guide, SDI > 9). This level of throughput makes it feasible to carry
out unbiased studies, screening several thousand genes spread
over a number of libraries, to search for genes with fitness effects
in a specific patient tumour genotype. In lower sgRNA-UMI
diversity PDX lines, we are powered to detect fitness differences
where the gene perturbation phenotype is strong (e.g. known
essential genes). In all cases, resolution may be improved by
pooling of biological replicates, a key feature of the Bayesian
model. Importantly, in many PDX lines this allows addressing
biological questions through negative or positive selection
approaches. Positive selection, in which the perturbed phenotype
can be orders of magnitude greater than neutral, has been suc-
cessfully applied to in vivo model systems, to uncover novel
tumour suppressor mechanisms?1:223%. In contrast, negative
selection phenotypes, such as the reduced growth when a driver
gene is inhibited, or conditionally lower gene fitness under drug
treatment, have been more challenging to quantify at medium
throughput in vivo. The UMI-informed Bayesian framework
provides internal measures to assess interpretability and guide the
design of suitable powered studies. At the library level, a relatively
even representation of sgRNAs is desirable, to avoid wider sta-
tistical uncertainty in fitness estimates in low prevalence guides.
Modeling of UMI distributions also lowers the potentially con-
founding impact of clones of outlying size, which may reflect
developmental potential of rare cells within tumours, or chance
combinatorial phenotypes in cells transduced by more than one
guide. The size of gene libraries that can be screened is thus a
product of line-intrinsic single cell output and transplant bio-
mass, modified by transfection conditions and length of time
in vivo. This approach would feasibly allow screens of most cel-
lular core modules for example, by constructing libraries of ~1000

core genes*? and utilizing high diversity lines, with pooling from
replicate transplants.

Transcriptome analysis suggests a variety of biological path-
ways underlie the differential clonal composition. These include
elevated activity of cell cycle pathways in high sgRNA-UMI
diversity lines, which may be indicative of a progenitor rather
than highly differentiated developmental phenotype. In addition,
interleukin and interferon cytokine pathways were elevated in low
sgRNA-UMI diversity PDX lines, suggestive of a cellular bottle-
neck related to interaction between certain xenografted tumours
and the host innate immune system (which, unlike adaptive
immunity, is intact in the NRG/NSG strains used). Alternatively,
elevated cytokine expression may reflect endogenous response to
high rates of DNA damage, though we did not observe a corre-
lation between sgRNA-UMI diversity and overall mutational
burden, nor with genome-wide signatures of DNA damage?3, to
support this interpretation.

The quantitative assessment of gene fitness in vivo admitted
detailed assessment of oncogenic driver mechanisms via allele
series and drug-gene fitness. We observed outlying sensitivity to
gamma secretase cleavage component APHIA in C1368, a line
bearing a NOTCH3-MEMOIP4 translocation resulting in the loss
of the auto-regulatory PEST domain. Secondary screening with a
Notch pathway-focused library confirmed growth dependence on
the canonical Notch pathway, with this translocated Notch pro-
duct rather than alternative Notch ligands as principal driver.
This contrasted with two tumours that differ in ligand mediated
Notch pathway signaling. We also observed outlying sensitivity to
MDM?2 in C2553, a PDX line amplified at this locus. MDM2 is a
negative regulator of TP53, with amplification observed in ~4% of
human tumours*!. Consistent with this regulatory interaction, we
showed that treatment of mice xenografted with this PDX with
MDM?2 inhibitor Idasanutlin induced a shift to positive TP53
fitness, indicating a reversion towards growth-inhibitory TP53
function. This illustrates the utility of the approach to probe
drug-gene interactions in specific tumour genotypes. Further-
more, quantification of gene fitness shifts conditional on drug
treatment offers a means to screen for evolutionary double bind
steering opportunities, in which phenotypic adaptation to an
initial therapy results in collateral sensitivity to a second mode of
intervention#>43.

Notably, the main source of gene fitness variation in the 181
transplant experiments described arises not from biological
replicates, variations in site of transplant or differences between
passages of tumour, but rather the intrinsic differences between
patients. Although site transplants were largely neutral, fitness
measurements of EGFR nevertheless exhibited a modest site-of-
transplant effect, with greater negative fitness in the mammary fat
pad, indicating greater dependence on EGFR signaling in the
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RG7388-treated fitness

mammary microenviroment. Among patients, even for high
negative fitness genes such as MYC, PLK1, CDK12, CHEK1, the
variation in measured gene fitness can be as high as 7-10 fold
between patients. The high clinical variability in responses and
phenotypes in breast cancer patients is well known, and our
results emphasize that intrinsic differences between patients
demand the study of gene fitness in many patient tumour

14

RG7388-treated rank

backgrounds to identify breast cancer sub-type fitness landscapes
for any gene or pathway.

We assessed the gene and patient fitness variation of core genes
from PI3-kinase, integrin, DNA damage, RAS-MAPK, cell-cycle
control, Notch, Wnt, Hedgehog, Hippo, hypoxia and autophagy
pathways. While the relative fitness of large effect size genes such as
MYC, CHEK1, PLK1 was conserved with that described in recent
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Fig. 7 Conditional TP53 fitness in an MDM2-amplified PDX line. a Upper panels show dose-response curves for nine PDX lines treated ex vivo with seven
drugs in short-term organoid culture. Curves are shown as solid lines for PDXs that showed outlying fitness sensitivity to the drug-targeted gene(s) in the
pooled in vivo CRISPR experiments. Lower panels show the median in vivo fitness of the indicated targeted gene against the half-maximal effective drug
concentration (EC50). b Fitness measures for TP53 (guide TP53_3) and MDM2 (guide MDM2_1) (median, bars =95% Cl) in 17 PDX lines (60 PDX

tumours total). PDX line C2553 is very sensitive to MDM?2 targeting, while close to neutral fitness for TP53, consistent with MDM?2 acting as a negative
TP53 regulator. € Chromosome 12 copy number profile for PDX line C2553, inferred by TITAN from whole genome sequence data. Copy number amplicon
including MDM2 gene is indicated. d Comparison of in vivo fitness and rank measurements for C2553 treated with MDM2 inhibitor Idasanutlin or vehicle
control (median, bars =95% CI. PDX tumours: drug-treated 2, vehicle 1.) TP53 shows a shift to positive fitness under drug treatment compared with

control, consistent with a model in which pharmacological MDM?2 inhibition causes reversion to a TP53 wild-type phenotype. Source data are provided as

Source Data files.

metastatic cell line CRISPR screens, some differences were observed
in moderate effect size genes, notably PDKI (oxidative phosphor-
ylation), BRCA2, RAFI1, CA9 (hypoxia), ALK, SRC, LEFI (Wnt),
YAPI (Hippo) and FLT1 (VEGF pathway).

Taken together, we present a method and resource for
assessment of tumour gene fitness in vivo, that will be applicable
to other tumour types and transplant models, enhancing the
understanding of tumour biology and drug responses.

Methods

Biospecimen collection and ethical approval. De-identified tumour tissues from
women aged 35-86 undergoing surgery or diagnostic core biopsy were collected
with direct informed written consent for inclusion with University of British
Columbia (UBC) Research Ethics Board (REB) under approved study protocols:
REB-H16-01625 titled B-PRECISE Biobank, REB-H11-01887 titled Predictive
models of drug action in breast cancer, REB-H20-00170 titled Linking clonal
genomes to tumour evolution and therapeutics, Animal Care certificate REB-
A07-0524, Biohazard Approval Certificate B11-0043, McGill University Health
Centre (MUHC) REB -SUR99-780% and accordance to Tri-Council Policy
Statement: Ethical Conduct for Research Involving Humans-TCPS2. Respect for
persons, concern for welfare and justice of all participants have been upheld.
Participants did not receive compensation. De-identified tumour tissue is defined
as biological material with direct patient identifiers removed and replaced with a
code (https://ethics.research.ubc.ca/). Only privacy guardians have a level of
access linking any participant’s code to their personal information and maintain
the ethical duty of confidentiality. The number of patient-derived xenograft lines
used in the study (n=21) was chosen to ensure coverage of initiating patient
tumours with a variety of histological subtypes (HR+, HR + Her2 +, Her2 +,
TNBC), site (breast or metastatic) and including treatment-naive and previously
therapy-treated at the time of biopsy. Only tumours that successfully engrafted in
mice were used, which represents some bias in favour of more aggressive tumours
within each histological subtype.

Tissue processing. Primary surgical and core biopsy tissue samples were trans-
ported from the operating room on ice in cold 1:1 v/v Dulbecco’s Modified Eagle
Medium/Ham’s F12 Medium (DMEM-F12, Corning, NY, USA). Fat was trimmed
away using scalpels. A small piece of tumour tissue was removed using scalpels and
fixed in 10% formalin buffered saline (Fisher Scientific, Kalamazoo, MI, USA) for
histological analysis. Additional small fragments from different portions of the
tissue were collected together, flash frozen in liquid nitrogen and stored at —80 °C
for nucleic acid extraction. The remaining tissue was minced finely with scalpels,
then mechanically disaggregated for one minute using a Stomacher 80 Biomaster
(Seward Limited, Worthing, UK) in 1-2 mL cold DMEM-F12. Aliquots from the
resulting suspension of cells and organoids were used for xenotransplants.

For routine passaging, xenograft-bearing mice were euthanized when the size of
the tumours approached 1 mL in volume, adding together the sizes of individual
growths when more than one was present. The tumour material was excised
aseptically, then processed as described for primary tissue. Serially transplanted
aliquots represented 0.1-0.3 % of the xenograft tumour volume.

For in vivo screen endpoints, tumours grown from lenti-CRISPR-transduced
PDX material were harvested at a volume of 0.1-0.2 mL. The excised tumours were
weighed, then chopped with scalpels. An aliquot weighing 0.05-0.06 g was flash
frozen in liquid nitrogen or on dry ice, then stored at —80 °C to be used for nucleic
acid extraction. The remaining tissue was frozen in a 47:47:6 v/v mixture of
Dulbecco’s Modified Eagle Medium (DMEM, Corning): fetal calf serum (FCS,
Sigma, St Louis, MO, USA): dimethyl sulfoxide (DMSO, Sigma).

Xenografting

Animals. Female immuno-compromised, NOD/SCID/IL2r/~ (NSG) and NOD/
Ragl*/ ~I12r~/= (NRG) mice were bred and housed at the Animal Resource Centre
at the British Columbia Cancer Research Centre. Housing was maintained in a
18-25°C temperature range and 20-70% humidity range, with a 12 hour daylight
cycle (on at 6:00am, off at 6:00 pm). Surgery was carried out on mice between the

ages of 5-12 weeks. All experimental procedures were approved by the University of
British Columbia Animal Care Committee (protocol numbers A15-0248 and A19-
0298).

Subcutaneous transplants. Disaggregated cells and organoids were resuspended in
100-200 mL of a 1:1 v/v mixture of ice-cold DMEM: Matrigel (BD Biosciences, San
Jose, CA, USA) and kept on ice until transplantation. Mice were lightly anesthe-
tized with isoflurane, then the cell/organoid suspension was injected under the skin
on the flank using a pre-cooled 1 mL syringe and 21 gauge needle.

Mammary fat pad transplants. Mice were anesthetized using isoflurane, and
administered Meloxicam non-steroidal anti-inflammatory drug (5 mg/kg). The
skin in the flank close to one of the #4 inguinal fat pads was shaved, cleaned with
70% isopropyl alcohol and Hibitaine soap, and a line block of 0.25% bupivacaine
hydrochloride (Marcaine, AstraZeneca, Cambridge, UK) applied. The skin was
opened by making a 3-5 mm skin incision in the blocked area. The fat pad was
eased from the skin using blunt dissection, then exteriorized with forceps. Innocula
of organoids suspended in 60-70 uL of a 50:40:10 v/v mixture of cold Matrigel:
DMEM: trypan blue (Sigma) were injected into the fat pads using a pre-cooled

1 mL syringe and 21 gauge needle. The blue dye in the medium was used for visual
verification that the injected bolus was contained within the fat. The fat pad was
returned and the incision closed with 1 or 2 absorbable sutures.

Propagation of CRISPR-transduced tissue. Following transplantation, mice were
monitored regularly for the appearance of palpable tumours. Once palpable,
tumours were measured three times per week using calipers, and the size estimated
using the formula 0.52 x length x width?. The animals were euthanized when
tumours reached target size of 0.1- 0.2 mL. The institutionally-approved humane
endpoint tumour size of 1 mL was not exceeded in any experiment. The tumours
were excised aseptically, and transferred to Falcon tubes containing 5 mL ice-cold
Hanks Balanced Salt Solution (Corning) supplemented with 2% FCS (HF) before
tissue processing.

Generation and use of dual sgRNA-barcode lenti-CRISPR viral vector

Design of barcode and sgRNA pools: Barcode design used a partially degenerate
DNA sequence NNATCNNGATSSAAANNGGTNNAACNN, where N = A/C/T/
G, S =C/G, randomly incorporated during oligo synthesis (>4 x 106
permutations)?4. Forward (NNATCNNGATSSAAANNGGTNNAACNN) and
reverse (NNGTTNNACCNNTTTSSATCNNGATNN) barcode sequence oligos
pools flanked by EcoRI and Nhel restriction sequences were ordered from Inte-
grated DNA Technologies (IDT, Coralville, IA, USA), and mixed together. A
second pair of forward and reverse barcode sequence oligo pools flanked by Pacl
and Kpnl restriction sequences was ordered (IDT) and mixed together.

20 nucleotide sgRNA sequences were designed using the CHOPCHOP web tool
(version 3, https://chopchop.cbu.uib.no/)*> specifying the PAM motif NGG, or
selected from the published Avana and Brunello libraries!246, Three different
sgRNAs were chosen per targeted gene, based on predicted efficiency score®, and
where possible targeting exons present in all common splice variants. Preference
was also given to sgRNAs with 40-70% G-C content, and those previously
identified as generating hits in cell lines screens (genomeCRISPR.org). sgRNA
libraries also included a set of 20-25 non-targeting controls; either “non-targeting”,
with no matching sequences in the human genome (from previously published
lists!3), or “non-gene targeting”, with matching sequences in presumed non-coding
regions at least 5k base pairs distant from the nearest gene encoding region. The
sgRNA sequences were obtained as complementary forward and reverse oligos
from Integrated DNA Technologies, flanked by overhangs for cloning (forward:
CACCG preceding sgRNA sequence; reverse: AAAC preceding and C following
complementary sgRNA sequence). Individual forward and reverse oligos were
mixed, then pooled as libraries for cloning.

Generation of dual barcode-sgRNA lentiCRISPR vector: The lentiCRISPRv2
plasmid (Addgene plasmid # 52961, a gift from Dr Feng Zhang) was initially
modified by replacing the puromycin resistance gene with a dsRed-Express2
reporter gene, to enable integration detection by flow cytometry. Barcode and
sgRNA pools were then incorporated in successive steps.
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To facilitate efficient barcode insertion, we inserted a 60-bp random sequence
filler between a pair of restriction sites either closely upstream (PacI/Kpnl) or
downstream (EcoRI/Nhel) of the sgRNA locus in the plasmid. The plasmid was
digested with one of the restriction enzymes (Pacl or EcoRI), run through an
agarose gel and gel purified using Monarch Gel Extraction kit (New England
Biolabs, Ipswich, MA, USA) to isolate the digested plasmid backbone. The filler
sequence was ligated into the plasmid with T4 ligase. The plasmid was amplified by
heat-shock transformation into Stbl3 bacteria, and transformants cultured on
Luria-Bertani-ampicillin-agar (LB-amp-agar) solid medium overnight. A single
colony was picked and further cultured with LB-amp liquid medium, and plasmid
extracted using Monarch Miniprep Kit (New England Biolabs). Presence of the
filler was verified with Sanger sequencing. For barcode pool insertion, filler-
containing lentiCRISPRv2 plasmids were digested with a restriction enzyme pair
(PacI/KpnI or EcoRI/Nhel), gel purified, and ligated with a pool of generate
dsDNA oligonucleotides containing the barcode pool. Barcoded plasmids were
electroporated into ElectroMAX DHI10B T1R bacteria according to the
manufacturer’s instructions and cultured overnight in 200 ml LB-amp. The
barcode-containing plasmid was extracted using PureLink HiPure Plasmid Filter
Maxiprep Kit (Thermo Fisher Scientific, Waltham, MA, USA), and frozen for
future use as recipient for sgRNA pools.

Pooled sgRNA oligonucleotides were incorporated into BsmBI/Esp3I (Thermo
Fisher Scientific) digested lentiCRISPRv2 plasmids at 3:1 insert-to-vector molar
ratio with Quick Ligase (New England Bio labs). Ligated vectors were purified with
NEB Monarch PCR & DNA Cleanup Kit (New England Biolabs) and subsequently
transformed into electrocompetent ElectroMAX DH10B TIR E. coli (Thermo
Fisher Scientific) using a 1 mm cuvette in a BioRad GenePulser Xcell System at
1800V, 25 pF and 200 ohms. Electroporated cells were incubated overnight in
200 mL of BD Difco LB broth Miller (Thermo Fisher Scientific) with ampicillin at
37°C. Overnight culture was collected by spinning in a Beckman Coulter Avanti
JXN-26 high-speed centrifuge at 6000 rpm for 10 min and the plasmids were
extracted using a PureLink HiPure Plasmid Filter Maxiprep Kit (Thermo Fisher
Scientific). Purified vectors were validated by targeted sequencing of guide inserts
on Illumina MiSeq 2 x 150bp runs.

Sequence diversity of sgRNA and barcodes was validated by targeted sequencing
of a PCR amplicon containing both sgRNA and barcode (as described below in
Sequencing Library Preparation). This showed 90th/10th centile guide count ratio
of 3.94, 5.27 and 3.01 for libraries Signalingl, Signaling2 and Notch respectively,
which are in the expected range for pooled cloning.

Testing for any impact of UMI incorporation on efficacy of CRISPR-mediated
knockdown was carried out by cloning an sgRNA targeting eGFP into the
lentiCRISPRv2 vector. Then eGFP-expressing HEK293T cells (a clonal line derived
from parental HEK293T cells) were transduced with plasmid vector using TransIT-
Lenti Transfection Reagent (Mirus Bio, Madison WI, USA) following
manufacturer’s instructions. After 8 days’ culture, cells were harvested with trypsin/
EDTA and incubated with propidium iodide (Sigma) for identification of viable
cells. The knockdown proportion (eGFP low) was determined by flow cytometry
(LSRFortessa, BD Biosciences, San Jose, CA, USA) using Flow]Jo software version
10.7.1 (Beckton Dickinson).

Lentiviral packaging and titration: HEK293T packaging cells (ATCC) were trans-
fected using TransIT-Lenti Transfection Reagent following manufacturer’s instructions.
Briefly, 3 plasmids containing sgRNA-barcoded lentiviral vector (20 pg), PAX2 (15 ug)
and VSV-G (10 pg) were dissolved in 4.5 mL Opti-MEM Reduced Serum Medium
(Thermo Fisher Scientific), and 135 uL transfection reagent added. After 30 minutes the
mixture was added dropwise to HEK293T cells at 70-90% confluent culture in a

150 mm dish. Cells were cultured in DMEM supplemented with 10% FCS and 10 mM
Hepes (STEMCELL Technologies), with a change to fresh medium the following
morning. Virus-containing supernatant was harvested four times, between 24 and 72 h
following transduction. Harvests were pooled and pelleted by ultracentrifugation
(Beckman Coulter Optima XE-90, spun at 107,000 x g for 90 min), and resuspended in
DMEM (~1.2 mL final volume per 6 x 150 mm plates’ culture). Functional viral titre
was determined by transducing a limiting dilution series of viral doses into 184hTERT-
L9 cells (a clonal line derived from parental 184hTERT cells, a gift from Martha
Stampfer, University of Berkeley, CA, USA). Cells were harvested 3 days following
transduction, and the proportion of dsRed-expressing cells determined by flow cyto-
metry (LSRFortessa) using FloJo software version 10.7.1. Titre was calculated using
Poisson statistics for those dilutions that resulted in 5-25% dsRed+ cells. Typical
functional titres of 0.5-3 x 108 infectious units per ml were obtained, comparable with
non-UMI-containing vectors.

Ex-vivo lentiviral transduction of PDX-derived cells: Mice were euthanized, then
PDX tumours were removed aseptically. The tissue was minced with scalpels and
mechanically disaggregated with a Seward Stomacher 80 paddle blender (Seward,
Worthing, UK) for 1 minute in cold DMEM. A suspension of small organoids and
cells was separated from larger tissue fragments by drawing into a P1000 pipette
tip, then transferred to an Eppendorf tube. After centrifugation (5 minutes at
1200 rpm), the size of the pellet was estimated visually from the Eppendorf tube
volume scale. The material was then divided into aliquots of suitable size for
transplantation into individual mice (each ~0.025-0.030 cm? pellet volume, typi-
cally 3-6 aliquots per originating 1 cm? excised tumour volume). Red blood cell

lysis was performed by incubating in ice-cold 0.8% w/v ammonium chloride
solution (STEMCELL Technologies) for 10 minutes and washing with HF. Each
aliquot was resuspended in 0.25 ml pre-warmed DMEM supplemented with 5%
FCS and lentivirus at the desired dose (typically, 7-10 x 10 infectious units,
Table S2). Aliquots were transferred to individual wells of a pre-warmed 24-well
non-tissue-culture treated plate and incubated at 37 °C for 4 hours. Following
incubation, well contents were transferred to Eppendorf tubes and residual virus
removed by washing 3 times with cold HF. Aliquots intended for subcutaneous
transplantation were resuspended in 150 pL ice-cold 1:1 v/v mixture of Matrigel:
DMEM. Aliquots intended for mammary fat transplantation were resuspended in
65 pL ice-cold 0.45: 0.45: 0.1 v/v mixture of matrigel: DMEM: trypan blue. The
aliquots were kept on ice for up to 2 hours awaiting transplantation into mice.
Transduction efficiency was estimated by flow cytometry following in vitro
culture. Wells of a 24-well plate were coated by incubating at 37 °C for 1 hour with
a 1:60 dilution of collagen I (Sigma) in PBS. Aliquots of virally-transduced tissue
were added to coated wells in 1 mL DMEM supplemented with 5% FCS. After
3 days, single cell suspensions were prepared by incubating in trypsin/EDTA
(Sigma), then dispase (STEMCELL Technologies) supplemented with DNasel
(Sigma), then passing through a 40 micron filter. Cell pellets were resuspended in
ice-cold HF supplemented with 4,6-diamidino-2-phenylindole (DAPI, Sigma).
Transduced cell proportions were determined by flow cytometry (LSRFortessa) as
the fraction of dsRed+ cells within a viable (DAPI-) gate.

Drug assays

Ex vivo cytotoxicity assays in organoid culture. Freshly harvested PDX tissue was
dissociated to single cells using a gentleMACS dissociator with human dissociation
kit (Miltenyi Biotec, Germany) and incubated at 37 °C with constant agitation. Red
blood cells were lysed using ice-cold 0.8% w/v ammonium chloride solution
(STEMCELL Technologies). Cells were filtered through a 70 micron filter before
being resuspended in 1:1 mix of Matrigel: breast cancer organoid media (com-
position as specified in#7). 3000 cells per 20 pL were seeded into each well in a
white 384 well plate (Corning) using an Integra Assist Plus automated pipettor.
Plates were incubated at 37 °C for 15 minutes to allow Matrigel to solidify before an
additional 10 pL breast cancer organoid culture medium was added to each well.
60 uL PBS was added to surrounding wells to minimize evaporation artifacts.
Organoids were allowed to form for 3 days, after which 10 puL of 3x concentrated
drug diluted in culture medium to account for the cell: Matrigel mix. Organoids
were incubated with drugs for 96 hours before being lysed, and viability measured
using CellTitreGlo 3D Viability Assay (Promega, Madison, WI, USA) following
manufacturer’s instructions, with luminescence measured by microplate reader
(SpectraMax 3, Molecular Devices, Sunnyvale, CA, USA). Drug response curves
and EC50 concentrations were fitted with the R tidydrc package (a wrapper for the
drc package), using four parameter log-logistic function LL.4 (https://cran.r-
project.org/web/packages/drc/drc). Organoid PDX-drug assay data were filtered to
remove a minority that failed to fit with the LL.4 model (1/63 assays), fit with
positive slope (fit parameter b <0, 1/63 assays), or where the dose-response fit
covered a lower than 20% range over the drug doses tested (4/63 assays).

Drugs used were Idasanutlin (Medkoo Biosciences, Morrisville, NC, USA),
Nutlin-3a (MedChemExpress, Monmouth Junction, NJ, USA), Infigratinib
(MedChemExpress), Erdafitinib (MedChemExpress), JQ-1 (MedChemExpress),
Rapamycin (Selleck Chemicals, Houston, TX, USA) and Everolimus (Selleck
Chemicals).

In vivo drug administration. Vehicle was prepared by dissolving 20 mg/ml Klucel
hydroxypropyl cellulose average Mw 100,000 (Sigma), 1 mg/ml Tween-80 (Sigma),
0.9 mg/ml methylparaben (Sigma) and 0.1 mg/ml propylparaben (Sigma) in sterile
water, and kept refrigerated. Mice bearing replicate PDX tumours were randomized
into control and drug-treated groups when the average tumour size was ~0.05 ml.
For 14 consecutive days mice received a dose by oral gavage either of vehicle alone
(control group) or 100 mg/kg Idasanutlin (MedKoo Biosciences) suspended in
vehicle (drug-treated group). Mice were euthanized on the day of the final drug
dose, four hours after drug dosing, and tumours were harvested for processing.

CRISPR screen sequence generation

Sequencing library preparation: Flash frozen xenograft tumour samples were defrosted.
Genomic DNA was extracted using the QTAAmp DNA Mini kit (Qiagen), following
manufacturer’s protocol for extraction from tissues, with the exception that double the
volume of reagents was used prior to loading onto DNA columns (buffers AL and ATL,
proteinase K, ethanol). DNA yield was quantified using QUBIT fluorometer and
dsDNA BR Assay Kit (Thermo Fisher Scientific). Aliquots containing 8-10 mg DNA
were set aside for sequencing library preparation.

Nextera adaptor sequences were appended to the 5’ end of the sgRNA region
primers with the addition of single nucleotides to allow downstream barcoded
adaptor attachment by PCR. Multiplex PCR was performed using a T100 Thermal
Cycler and Platinum Multiplex PCR Master Mix (Bio-Rad Laboratories, Hercules,
CA, USA). Enzymatic cleanup of the PCR product was carried out using ExoSAP-
IT PCR Product Cleanup Reagent (Thermo Fisher Scientific). Barcode PCR was
completed using T100 Thermal Cycler, Nextera XT Index Kit v2 (Bio-Rad
Laboratories), and FastStart High Fidelity PCR System (Sigma). The PCR products
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(approximately 400 bp, including adaptors) were size selected and cleaned using
SPRIselect beads (Beckman Coulter) with a 1:1.2 library:beads ratio. The DNA size
was analyzed using a High Sensitivity DNA Kit (Agilent Technologies, Santa Clara,
CA, USA) on an 2100 Bioanalyzer (Agilent Technologies) and the DNA was
quantified using dsDNA BR Assay Kit (Invitrogen, Carslbad, CA, USA) on a Qubit
4 Fluorometer (Invitrogen). Samples were normalized and pooled to create a
library and each library was denatured to 2 nM or 4 nM. Sequencing runs pooling
up to 12 sample libraries were carried out on a MiSeq benchtop sequencer
(Ilumina, San Diego, CA, USA, running Illumina Control Software, currently
version 4.0.0.1769) according to manufacturer’s protocol for 2 x 151 bp pair-end
runs using MiSeq Reagent Kits v2 300 Cycle (Illumina). Sequencing runs pooling
13-47 samples libraries were carried out on a NextSeq sequencer (Illumina)
according to manufacturer’s protocol for 2 x 151 bp pair-end runs using NextSeq
500 System Mid-Output Kit 300 Cycle (Illumina).

Extraction of sgRNA and UMI sequences: FASTQ files were first filtered to remove
paired reads for which either forward or reverse reads had a lower average phred
quality score than 30. The forward read, containing the sgRNA sequence, was
trimmed to a substring from 24 to 43 nucleotides downstream from invariant
vector sequence TCTTGTGGAAAGGACGAAACACCG. sgRNAs were identified
within the substring by exact string matching against the set of known 20
nucleotides targeting sequences in the library used, or failing that a string match
with no more than 1 nucleotide mismatch. The reverse read, containing the UMI
sequence, was trimmed to a 50 nucleotides substring down stream of invariant
vector sequence AGCCTCACTGGCCGTCGTTTTACA. UMI sequences were
identified within the substring by exact string matching to the sequence
NNGTTNNACCNNTTTSSATCNNGATNN, complementary to the UMI refer-
ence, or failing that a string match with no more than 1 nucleotide mismatch.
Stringency of FASTQ filtering was relaxed to allow for up to 3 nucleotides mis-
matches for model selection analysis. To standardize dataset depth, and reduce the
confounding effect of duplicate reads in more deeply sequenced datasets, extracted
sequences were downsampled to a maximum of 2 x 10% sgRNA-UMI reads. Reads
with the same combination of sgRNA and UMI sequence were considered a
separate clone, and the numbers of downsized reads matching that sgRNA-UMI
sequence the clone size.

Previous studies have documented deviations in UMI sequences from the
sequences originally introduced by transduction, presumed to arise through errors
in replication, PCR or optical sequence reading?’. To adjust for this, we carried out
merging of clones with closely similar sgRNA-UMI sequence, using the UMI-Tools
Directional algorithm?®. For each sgRNA in turn, UMI sequence clones are
represented as a network of nodes, with edges drawn connecting pairs of nodes
where: (i) UMI sequences differ at exactly 1 position, and (i) n, > 2n, — 1, where
n, and n,, are the larger and smaller clone sizes for the pair. Any cluster of
interconnected nodes, in which each node can be connected to any other by series
of uninterrupted edges, is then merged into a single clone. The merged clone has
size equal to the sum of constituent node clone sizes, and is assigned the UMI of
the constituent node with greatest clone size. Comparison of downstream fitness
estimates made with or without pre-processing with UMI-Tools indicated that
clone merging has a very small effect on median fitness estimates but results in
somewhat wider dispersions consistent with the implied reduction in number of
independent datapoints modeled.

Whole genome and transcriptome sequence data analysis

Sequence data generation. For each patient PDX line in the study, tissue aliquots
were collected from (i) a sample PDX tumour; (ii) the patient tumour that initiated
the PDX line; and (iii) normal tissue (saliva or blood buffy coat) from the patient.
Genomic DNA was extracted using the QiaAmp or Allprep kits (Qiagen). Library
construction and sequencing was carried out using Illumina HiSeq2500 whole
genome shotgun v4 chemistry with paired end 125 bp reads, targeting an average
genome-wide coverage of 80 for PDX and patient samples and 40 for normal
samples.

RNA was extracted from a tissue aliquot from a sample PDX tumour (from the
same PDX line but not necessarily the same tumour as used for the PDX DNA
aliquot), using the Allprep kit (Qiagen). ssRNAseq libraries were prepared and
sequenced on a HiSeq2500 sequencer, pooling 3 samples per sequencing lane.

Alignment. Reads were aligned to the hgl9 reference genome using bwa mem
v0.7.6a. Duplicates were marked with picard MarkDuplicates v2.18.14 (http://
broadinstitute.github.io/picard/). RNAseq libraries were aligned using the STAR
pipeline*® version 2.4.2a (https://github.com/alexdobin/STAR).

Bioinformatic removal of mouse reads. Whole genome and whole transcriptome
sequence libraries from PDXs were depleted for putative contaminating mouse
reads using species filter Biobloom®, retaining reads that were unambiguously
human-classified. To avoid false-positive downstream mutation calls when com-
paring with other library types, tumour and normal libraries WGS were also
processed with this filter. Human-classified reads were realigned to the hgl9
reference genome using bwa mem®’ for downstream variant calling.

Single nucleotide variant and indel calling. Somatic indels were identified using Strelka
v1.0.14°1, and both germline and somatic SNV were called using MutationSeq v4.2.0°2.
Both algorithms were applied using default parameters. GENCODE release 19 was used
to annotate variants with gene name, while the predicted effects of SNVs were anno-
tated using SnpEff 4.0e. Additionally variants were annotated with ClinVar (https://
www.ncbi.nlm.nih.gov/clinvar)>* and COSMIC (https://cancer.sanger.ac.uk/cosmic)>*
variant database entries having exact sequence matches. A subset of predicted high
impact somatic variants was selected as those with (i) mutationSeq probability > 0.85,
and (ii) variant allele frequency > 0.3, and (iii) predicted as high impact by at least one
of SnpEff (any of the terms: stop_gained, splice_donor_variant, splice_acceptor_variant,
missense_variant, stop_lost) or ClinVar (any of the terms: pathogenic, likely patho-
genic). For BRCA1 and BRCA2 genes, predicted high impact variants in the germline
were also included.

Breakpoint calling. Breakpoint prediction was conducted using deStruct® version 0.4.3
(https://github.com/amcpherson/destruct/) to generate per cell breakpoint counts.
Breakpoints were filtered for a minimum of 5 split reads, and with predicted sequences
anchored by at least 250 nucleotides on either side of the predicted breakpoint.

Copy number calling. TITAN version 1.0.10% was run on WGS data to infer logR
copy number values. 10 separate TITAN runs were made with parameters 1, 2, 3, 4
or 5 subclonal clusters and initializing ploidy of 2 or 4. The best fitting run was
selected for each dataset, based on lowest S_Dbw Validity Index score.

Single cell sequencing with DLP+. The sample genome-wide single cell copy
number profile displayed for PDX series C2553 was prepared with the Direct
Library Preparation (DLP+) protocol as described in3!.

Mutation signature analysis. We derived mutation signature probabilities using the
MMCTM method, given signatures previously inferred from a set of high grade
serous ovarian carcinomas and triple negative breast cancers2®57, The PDX sample
datasets were clustered together with the other datasets to form clusters defined
solely by signature activity using hierarchical clustering with Euclidean distance
and Ward’s linkage method.

Inference of mutational clonal clusters. We inferred the number of genomic clonal
clusters in PDXs by applying population structure model PyClone-VT (https://
github.com/Roth-Lab/pyclone-vi)?® to mutation data derived from bulk WGS.
Model inputs for single nucleotide variants were from MutationSeq v4.2.0°2.
Model inputs for major and minor allele copy number were from TITAN
version 1.0.10°%, using the best fitting run based on S_Dbw Validity Index score.

Differential pathway analysis. To identify pathways differentially active in high vs low
UMI diversity PDX lines, we first ordered PDX lines based on the average SDI per
million reads of tumours generated from those lines. We selected a group of 6 lines with
lowest diversity (C3466, C2438, C1557, C1375, C1373, C0468) and a group of 6 lines
with highest diversity (C3278, C1368, C0331, C2271, C2191 and C3037). We next
generated a set of genes differentially expressed between the two groups. For this, raw
RNAseq read counts were TMM-normalized using edgeR (https://bioconductor.org/
packages/release/bioc/html/edgeR html). Limma-voom (https://bioconductor.org/
packages/release/bioc/html/limma.html) was used to adjust for heteroskedasticity in
count data, and generate log2-fold gene expression differences and p-values by linear
modelling. A subset of genes with p-value no greater than 0.1 was passed to GSEA?” for
differential pathway analysis, using the Reactome 2016 Hallmark set of curated path-
ways (https://reactome.org/), and a false discovery rate of 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Raw data from targeted sequencing, whole genome sequencing and RNAseq have
been deposited in the NCBI Sequence Read Archive (SRA) under BioProject ID
PRJNA842677. Derived UMI-sgRNA count files have been deposited at Zenodo
https://doi.org/10.5281/zenodo.6584802. Mutation annotation was carried out using
ClinVar (https://www.ncbi.nlm.nih.gov/clinvar) and COSMIC (https://cancer.sanger.
ac.uk/cosmic). Source data are provided with this paper.

Code availability

Fitness modeling used the Blang probabilistic programming language. The model code
and sample datasets are available on Github (https://github.com/aroth85/humi_pipeline)
(10.5281/zen0do.6596290)°8. Blang code is available at https://github.com/UBC-Stat-
ML/nowellpack (https://doi.org/10.5281/zenodo.6595131)°. Pre- and post-processing of
results used custom scripts in Python and R version 3.6.3. Mutation-calling algorithms
mutationSeq, TITAN, deStruct and signature inference MMCTM are published, and
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cited in the text. The CHOPCHOP webtool (version 3, https://chopchop.cbu.uib.no) was
used for CRISPR guide design.
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