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Abstract: Over the past decades, a number of novel compounds, which are produced in the
marine environment, have been found to exhibit the anticancer effects. This review focuses on
molecular targets of marine-derived anticancer candidates in clinical and preclinical studies. They are
kinases, transcription factors, histone deacetylase, the ubiquitin-proteasome system, and so on.
Specific emphasis of this review paper is to provide information on the optimization of new target
compounds for future research and development of anticancer drugs, based on the identification of
structures of these target molecules and parallel compounds.
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1. Introduction

According to the latest published cancer statistics by the American Cancer Society [1,2], despite the
fact that the overall cancer incidence rate declines year by year due to rapid development of novel
anticancer agents, cancer remains an impending public health problem and leads to a huge burden
around the world.

Due to the harsh and competitive conditions in the marine environment, the compounds produced
by marine organism exhibit unique structural scaffolds [3]. Especially, it is noticeable that marine active
natural products can form complex and elaborate three-dimensional structures during the process of
biosynthesis and bind with the receptor molecules of the drug in the form of reticular non-covalent
interaction [4]. Meanwhile, highly active functional groups in the molecular structure, such as epoxy
group, lactone ring, lactam, sulfate, etc., can bind to different molecular targets in the form of a covalent
linkage and exert various biological functions [5].

Over the past decades, a large number of marine-derived compounds have been screened, and a
wide range of activities, such as antiviral, antibacterial, antitumor, antidiabetic, and anti-inflammatory,
have been reported [6]. According to the data of National Institutes of Health, the anti-tumor activity
rate of marine compounds is far greater than that of terrestrial compounds [7]. To our best knowledge,
seven marine-derived drugs have been approved by the Food and Drug Administration (FDA) so far,
and four of them are antitumor agents [8]. As shown in Figure 1, they are the cytarabine (Ara-C) [9]
(No. 1), trabectedin (ET-743) [10] (No. 2), eribulin mesylate [11] (No. 3), and brentuximab vedotin
(SGN-35) [12] (No. 4).
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Figure 1. Marine-derived anticancer drugs approved by the FDA. 

Previous reports on the anti-tumor mechanisms of marine-derived compounds mostly focused 
on the incorporation of these compounds into DNA and prevention of DNA synthesis (such as 
trabectedin), inhibition of DNA topoisomerase (such as cytarabine), affection of microtubule 
polymerization (such as eribulin mesylate), etc. Such compounds have cytotoxic effects and interfere 
with all rapidly divided cells with poor selectivity and a high-risk of toxic side effects. In recent years, 
as the interest of cancer research has shifted from the traditional cytotoxic drugs to molecule targeted 
antitumor drugs, an increasing number of leading compounds targeting abnormal molecules within 
tumor cells has been identified. These abnormal molecules are overexpressed or are mutant in the 
progression of cancer, including kinases, transcription factors, histone deacetylase, the ubiquitin-
proteasome system, and so on. 

This review focuses on molecular targets that have been reported to directly interact with 
marine-derived anticancer candidates in preclinical and clinical studies. It is expected to provide 
useful information on the identification of newly targeted compounds and their molecule 
optimization in the future, based on the identification of the structures of these compounds. 

2. Molecular Targets of Marine-Derived Anticancer Candidates 

2.1. Targeting the Kinases Related to Cell Survival and Proliferation Signaling Pathway 

It is always a promising strategy to target relevant oncogene kinases of signaling pathways that 
are related to tumorigenesis and tumor progression. Increasing number of marine-derived 
compounds, which target the kinases, have been enrolled as anticancer candidates in vitro or in vivo 
models [13].  

2.1.1. Protein kinase C (PKC) 

For a long time, many studies have considered that protein kinase C (PKC) is an oncogene that 
promotes cancer progression. Therefore, many PKC inhibitors have been developed to counteract 
PKC kinase [14]. However, the latest research completely overthrows our previous understanding, 
and points out that PKC family, including cPKC (α, β, γ), nPKC (δ, ε, η), and aPKC (ζ) isozymes, 
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Previous reports on the anti-tumor mechanisms of marine-derived compounds mostly focused
on the incorporation of these compounds into DNA and prevention of DNA synthesis (such
as trabectedin), inhibition of DNA topoisomerase (such as cytarabine), affection of microtubule
polymerization (such as eribulin mesylate), etc. Such compounds have cytotoxic effects and
interfere with all rapidly divided cells with poor selectivity and a high-risk of toxic side effects.
In recent years, as the interest of cancer research has shifted from the traditional cytotoxic drugs to
molecule targeted antitumor drugs, an increasing number of leading compounds targeting abnormal
molecules within tumor cells has been identified. These abnormal molecules are overexpressed or
are mutant in the progression of cancer, including kinases, transcription factors, histone deacetylase,
the ubiquitin-proteasome system, and so on.

This review focuses on molecular targets that have been reported to directly interact with
marine-derived anticancer candidates in preclinical and clinical studies. It is expected to provide
useful information on the identification of newly targeted compounds and their molecule optimization
in the future, based on the identification of the structures of these compounds.

2. Molecular Targets of Marine-Derived Anticancer Candidates

2.1. Targeting the Kinases Related to Cell Survival and Proliferation Signaling Pathway

It is always a promising strategy to target relevant oncogene kinases of signaling pathways that
are related to tumorigenesis and tumor progression. Increasing number of marine-derived compounds,
which target the kinases, have been enrolled as anticancer candidates in vitro or in vivo models [13].

2.1.1. Protein Kinase C (PKC)

For a long time, many studies have considered that protein kinase C (PKC) is an oncogene that
promotes cancer progression. Therefore, many PKC inhibitors have been developed to counteract
PKC kinase [14]. However, the latest research completely overthrows our previous understanding,
and points out that PKC family, including cPKC (α, β, γ), nPKC (δ, ε, η), and aPKC (ζ) isozymes,
function as tumor suppressors. This indicates that it is beneficial to search for the compounds that
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can activate PKC isozymes [15]. Bryostatin-1 (No. 5) (Figure 2), a highly-oxygenated macrolide with a
unique polyacetate backbone, was originally isolated from marine bryozoan Bugula neritina. It was
reported that bryostatin-1 activated PKC isozymes, specifically PKCα and PKCε at sub-nanomolar
concentrations [16]. Wender et al. [17] proposed that bryostatin macrolactones exhibited high affinities
for PKC isozymes, because they could compete with phorbol ester for the binding site on PKC and
stimulate kinase activity in vitro and in vivo. Furthermore, in the past ten years, more than 20 clinical
trials have been conducted with bryostatin-1 in monotherapy or in combination with cytotoxic drugs
against various cancer types such as sarcoma, melanoma, ovaria, cervical, neck and head carcinoma,
esophageal, gastric, pancreatic, and renal cell carcinoma, as well as leukemia, etc. [18]. Aplysiatoxin
(ATX) [19] (No.6) (Figure 2), which was isolated from sea hare and cyanobacteria, was found to bind to
activate protein kinase C (PKC) isozymes and lead to anti-proliferative activity against human cancer
cell lines, suggesting that it could be used as a leading compound for development of anticancer drugs.
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2.1.2. Insulin-Like Growth Factor-1 Receptor (IGF-1R)

The insulin-like growth factor-1 receptor (IGF-1R) has become a potential therapeutic target for
cancer [20]. IGF-1R signaling is transduced through two main pathways: (1) the RAS/RAF/MAP
kinase pathway and (2) the phosphoinositide-3 kinase (PI3K)/Akt pathway. They are involved in
tumor cell proliferation, survival, and invasion [21]. Several inhibitors of IGF-1R, including monoclonal
antibodies and small molecule tyrosine kinase inhibitors, have entered clinical development for the
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treatment of solid tumors, including non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC),
and ovarian carcinoma (OC) [22]. Zovko et al. [23] recently characterized two acetylene alcohols:
(3R)-icos-(4E)-en-1-yn-3-ol (No. 7) and (3R)-14-methyldocos-(4E)-en-1-yn-3-ol (No. 8) (Figure 2),
which were isolated from the marine sponge Cribrochalina vasculum as the IGF-1R inhibitors in a
tumor type selective manner. Silico docking and cellular thermal shift assay (CETSA) confirmed that
compound 7 was bound to the kinase domain of IGF-1Rβ in NSCLC cells. Both compounds 7 and 8
impaired IGF-1Rβ phosphorylation and caused IGF-1Rβ degradation, and thereby led to activation of
the intrinsic apoptotic pathway [24].

2.1.3. Cyclin-Dependent Kinases (CDKs)

The cyclin-dependent kinases (CDKs) belong to a family of serine-threonine protein kinases
whose activities are required for the cell cycle, and which are misregulated in 60–70% of human
cancers [25]. Hymenialdisine and debromohymenialdisine (No. 9) (Figure 2), isolated from the marine
sponge Stylotella aurantium, could inhibit cyclin-dependent kinases through competitive inhibition
at the ATP-binding site. These two compounds were known to be active in a wide range of CDKs,
particularly CDK1, CDK2, and CDK5. Hence, they were characterized by poor selectivity [26,27].
Another marine natural product, fascaplysin (No. 10) (Figure 2), isolated from the marine sponge, was
a selective inhibitor of CDK4 with IC50 value of 0.35 µM. Fascaplysin was proved to selectively inhibit
CDK4 by performing kinase activity assay using purified CDK-cyclin complexes. Molecular modelling
suggested that fascaplysin inhibited CDK4 by binding to the ATP pocket of the kinase. Fascaplysin
could inhibit the proliferation of endothelial cells and prevent angiogenesis, which suggested that it
could be a leading compound for development of anticancer drug in the future [25,28]. Meridianins
A–G (No. 11) (Figure 2), a group of marine indole alkaloids consisting of an indole framework
connected to an aminopyrimidine ring, were isolated from marine tunicate Aplidium meridianum and
found to potently and selectively inhibit CDK1, CDK5, and other various protein kinases involved
in cancer and Alzheimer’s disease [29]. Computer-aided drug discovery design (CADD) techniques
showed that meridianins A–G were bound to the ATP binding site of protein kinases, and acted as
ATP competitive inhibitors [29,30].

2.1.4. Glycogen Synthase Kinase-3 Beta (GSK-3β)

Glycogen synthase kinase-3 beta (GSK-3β), a serine/threonine protein kinase that has been
extensively implicated in critical cell biology processes, is a promising multipurpose kinase for cancer
therapeutic target [31]. Bidon-Chanal et al. [32] characterized a marine natural sesquiterpene palinurin
(No. 12) (Figure 3) as an ATP non-competitive GSK-3β inhibitor. Molecular modelling techniques
proposed an unconventional binding mode through binding to the allosteric site of GSK-3β. It was the
first compound to target this allosteric site, offering a new opportunity for designing and developing
selective inhibitors with novel mechanisms of action. Manzamine A (No. 13) (Figure 3), a complex
alkaloid isolated from a common Indonesian sponge Acanthostrongylophora, was shown to be a specific
non-competitive inhibitor of ATP with binding to GSK-3β at IC50 value of 10.2 µM [33,34]. Studies of
structure-activity relationship revealed that manzamine A was constituted of a promising scaffold for
more potent and selective GSK-3β inhibitors. Additionally, molecular modeling study showed that
phenylmethylene hydantoin (PMH-1) and the synthetic (Z)-5-(4-(ethylthio) benzylidene)-hydantoin
(PMH-2) (No. 14) (Figure 3) from the Red Sea sponge Hemimycale arabica could be successfully docked
into the binding pocket of GSK-3β. PMH reduced breast tumor growth and suppressed Ki-67, CD31,
p-Brk, and p-FAK expression in tumor samples. Thus, it is a potential anticancer compound for
the control of invasive breast malignancies [35]. Wiese et al. [36] reported that pannorin (No. 15),
alternariol, and alternariol-9-methylether (No. 16) (Figure 3) were promising inhibitors of the isoform
GSK-3βwith nanomolar IC50 values, and had a highly oxygenated benzocoumarin core structure in
common. Their study provided a new structural feature for efficient GSK-3β inhibition.
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2.1.5. Multi-Target Inhibitors of Receptor Tyrosine Kinases

Cancer is a heterogeneous disease driven by many aberrant oncoproteins related to multiple
pathways of signal transduction. Thus, development of multi-target agents is an urgent quest for the
treatment of cancer. We recently found that ZWM026 (No. 17) (Figure 4), an indolocarbazole analogue
derived from mangroves in coastal marine wetland, exhibited selectivity against T790M mutant (which
is related to drug acquired resistance) over wild-type EGFR in NSCLC cells, and simultaneously
inhibited activities of ErbB2, ErbB3, ErbB4, and RET, which were detected by kinase activity assay.
Molecular docking experiment showed that the indolocarbazole rings of ZWM026 had hydrophobic
interactions with the Leu718, Val726, Ala743, Met790, Glu791, Met793, and Leu844 of T790M mutant
EGFR. ZWM026 more potently and selectively inhibited the growth of EGFR T790M mutant cells than
wild-type EGFR cells, indicating that ZWM026 was a promising compound that could overcome drug
acquired resistance [37]. Pachycladins, a group of diterpenoids, isolated from the Red Sea soft oral
Cladiella species, significantly inhibited the drug-resistant T790M mutant EGFR and protein kinase
C (PKC) [38]. However, pachycladin A (No. 18) (Figure 4) simultaneously inhibited the activity of
wild-type EGFR. Molecular modeling assay elucidated that the oxabicycloundecane ring of pachycladin
A could bind at the ATP pocket of EGFR kinase, either wild-type EGFR or mutant EGFR. Therefore,
pachycladin A is not selective for wild-type EGFR and mutant EGFR, resulting in greater toxic side
effects and a narrow therapeutic window, so it is necessary for the further structural modifications
of this compound. Wätjen et al. [39] investigated antitumor effects of the anthraquinone derivatives
1′-deoxyrhodoptilometrin (SE11) (No. 19) and S-rhodoptilometrin (SE16) (No. 20) (Figure 4) in glioma
and colon carcinoma cell lines, which were isolated from the marine echinoderm Comanthus sp. Results
of kinase activity assay showed that these two compounds were potent inhibitors of IGF-1R, FAK,
EGFR, ErbB2, and ErbB4. Wang et al. [40] reported that BDDPM (No. 21) (Figure 4), a bromophenol
isolated from marine red alga Rhodomelaceae confervoides, was a potent multi-target receptor tyrosine
kinase (RTK) inhibitor. Kinase activity assay revealed that BDDPM inhibited the activities of FGFR2,
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FGFR3, VEGFR2, and PDGFRα. It also down-regulated the phosphorylation of PKB/Akt and eNOS,
as well as NO production. All these results indicated that BDDPM could be exploited as a novel
multi-target RTK inhibitor [41].

Mar. Drugs 2018, 16, x  6 of 22 

 

marine echinoderm Comanthus sp. Results of kinase activity assay showed that these two compounds 
were potent inhibitors of IGF-1R, FAK, EGFR, ErbB2, and ErbB4. Wang et al. [40] reported that 
BDDPM (No. 21) (Figure 4), a bromophenol isolated from marine red alga Rhodomelaceae confervoides, 
was a potent multi-target receptor tyrosine kinase (RTK) inhibitor. Kinase activity assay revealed that 
BDDPM inhibited the activities of FGFR2, FGFR3, VEGFR2, and PDGFRα. It also down-regulated the 
phosphorylation of PKB/Akt and eNOS, as well as NO production. All these results indicated that 
BDDPM could be exploited as a novel multi-target RTK inhibitor [41].  

  

Figure 4. Compounds of multi-target receptor tyrosine kinases. 

2.2. Targeting Transcription Factors Related to Cancer Gene Expression 

Transcription factor is a protein that binds to specific DNA sequence and regulates gene 
expression by promoting or suppressing transcription, which plays an important role in the 
occurrence, development, infiltration, and metastasis of tumor. 

Hypoxia-inducible factor 1 (HIF-1), which is generally regarded as a tumor prospective factor 
related to tumor cell proliferation, apoptosis, metabolism, and angiogenesis, is one of the most 
compelling targets for treating cancers [42]. Choi et al. [43] identified a compound, diacetoxyscirpenol 
(DAS) (No. 22) (Figure 5), which originated from a marine bacterium living on red alga, contained 
the 12, 13-epoxytrichothecene group of sesquiterpenes as the core structure, and inhibited HIF-1 
expression and its transcriptional activity in cancer cells exposed to hypoxia. Luciferase reporter 
assay showed that DAS inhibited de novo synthesis of HIF-1α protein by blocking the 5′-UTR-
mediated translation of HIF-1α mRNA. Furthermore, DAS interfered with the dimerization of HIF-
1α and ARNT (aryl hydrocarbon receptor nuclear translocator), which might be attributed to impair 
nuclear translocation of HIF-1α. Animal experiments demonstrated that DAS inhibited the growth 
of lung carcinoma xenografts in mice. Pyrroloiminoquinone alkaloids (No. 23) (Figure 5) from the 
marine sponge Latrunculia sp., which were identified as novel HIF-1α/p300 inhibitors, interrupted 
the protein-protein interaction between HIF-1α and p300 [44], and potently inhibited the growth of 
HCT 116 and prostatic carcinoma cell lines in vitro models. 

Figure 4. Compounds of multi-target receptor tyrosine kinases.

2.2. Targeting Transcription Factors Related to Cancer Gene Expression

Transcription factor is a protein that binds to specific DNA sequence and regulates gene
expression by promoting or suppressing transcription, which plays an important role in the occurrence,
development, infiltration, and metastasis of tumor.

Hypoxia-inducible factor 1 (HIF-1), which is generally regarded as a tumor prospective factor
related to tumor cell proliferation, apoptosis, metabolism, and angiogenesis, is one of the most
compelling targets for treating cancers [42]. Choi et al. [43] identified a compound, diacetoxyscirpenol
(DAS) (No. 22) (Figure 5), which originated from a marine bacterium living on red alga, contained the
12, 13-epoxytrichothecene group of sesquiterpenes as the core structure, and inhibited HIF-1 expression
and its transcriptional activity in cancer cells exposed to hypoxia. Luciferase reporter assay showed
that DAS inhibited de novo synthesis of HIF-1α protein by blocking the 5′-UTR-mediated translation
of HIF-1α mRNA. Furthermore, DAS interfered with the dimerization of HIF-1α and ARNT (aryl
hydrocarbon receptor nuclear translocator), which might be attributed to impair nuclear translocation
of HIF-1α. Animal experiments demonstrated that DAS inhibited the growth of lung carcinoma
xenografts in mice. Pyrroloiminoquinone alkaloids (No. 23) (Figure 5) from the marine sponge
Latrunculia sp., which were identified as novel HIF-1α/p300 inhibitors, interrupted the protein-protein
interaction between HIF-1α and p300 [44], and potently inhibited the growth of HCT 116 and prostatic
carcinoma cell lines in vitro models.
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A lot of evidence shows that MDM2 is an oncogene, and it can bind to p53 and inhibit the functions
of p53 [45]. Thus, disruption of any of these regulatory functions by MDM2 is a viable strategy to
reactivate p53, especially through inhibition of the p53/MDM2 binding interaction. Hoiamide D
(No. 24) (Figure 5), a marine cyanobacteria-derived polyketide compound that featured two consecutive
thiazolines (thiazoles and isoleucine residues), displayed inhibitory activity against p53/MDM2
interaction [46]. The inducible transcription factor, NF-κB, plays an important role in the regulation
of immune, inflammatory, and carcinogenic responses, and has become a major molecular target in
drug discovery. NF-κB is a dimer of proteins belonging to the Rel family, which includes RelA (p65),
RelB, c-Rel, p50 (NF-κB1), and p52. One strategy is to interfere with the binding of NF-κB to DNA.
Such a compound as gallic acid, for example, can inhibit NF-κB activation by impeding the binding
of p50 to DNA specifically [47]. Folmer et al. [48] purified and characterized many compounds from
different marine sponges and soft corals, and found that stellettin A (No. 25) and stellettin B (No. 26)
(Figure 5) had potent inhibition to NF-κB by inhibiting the binding of p50/p65 to DNA. These two
compounds possessed lactone rings with α, β-unsaturated carbonyl groups that played a major role in
the inhibition activity. Both compounds inhibited activation of NF-κB by inducing an overexpression
of IKKβ, which resulted in a cytotoxic effect on the human leukemia cell line K562.

2.3. Targeting Histone Deacetylases Related to Epigenetic Regulation of Cancer

Histone deacetylases (HDACs) are a class of enzymes that remove acetyl groups from an N-acetyl
lysine amino acid on a histone and allow the histones to wrap the DNA more tightly. The dysregulation
of DNA methylation and acetylation of the lysine residues on histone tails generally result in genomic
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instability of tumor [49]. Psammaplin A (No. 27) (Figure 6), which was isolated from several marine
sponges including Pseudoceratina purpurea, was reported to be a potent inhibitor of HDAC [50,51].
The results of fluorogenic histone deacetylase assay demonstrated that psammaplin A had high isoform
selectivity and 360-folds selective for HDAC1 (IC50 is 0.9 nM) over HDAC6. Psammaplin A could
release a free thiol function as a zinc binding group, and the studies of structure-activity relationship
suggested the requirement of a free oxime for potent HDAC1 inhibition. The computational docking
studies and molecular dynamics simulations illustrated that psammaplin A could form three hydrogen
bridges to Y303, D99, and the protonated H141. Largazole (No. 28) (Figure 6) was originally discovered
from the Floridian marine cyanobacterium Symploca sp. and produced a novel cyclic depsipeptide
that was a potent HDAC inhibitor. Largazole was a prodrug and generated largazole thiol that could
interact with the zinc ion in the active site of HDACs. Molecular docking studies showed that largazole
thiol, as well as analogs of largazole thiol, docked into a homology model of HDAC1. Largazole
thiol was more active against recombinant HDAC1 than any other marine-derived HDAC inhibitor;
for example, psammaplin A. Largazole inhibited HDACs in tumor tissue of a human HCT116 xenograft
mouse [52].

Mar. Drugs 2018, 16, x  8 of 22 

 

from several marine sponges including Pseudoceratina purpurea, was reported to be a potent inhibitor 
of HDAC [50,51]. The results of fluorogenic histone deacetylase assay demonstrated that psammaplin 
A had high isoform selectivity and 360-folds selective for HDAC1 (IC50 is 0.9 nM) over HDAC6. 
Psammaplin A could release a free thiol function as a zinc binding group, and the studies of structure-
activity relationship suggested the requirement of a free oxime for potent HDAC1 inhibition. The 
computational docking studies and molecular dynamics simulations illustrated that psammaplin A 
could form three hydrogen bridges to Y303, D99, and the protonated H141. Largazole (No. 28) (Figure 
6) was originally discovered from the Floridian marine cyanobacterium Symploca sp. and produced 
a novel cyclic depsipeptide that was a potent HDAC inhibitor. Largazole was a prodrug and 
generated largazole thiol that could interact with the zinc ion in the active site of HDACs. Molecular 
docking studies showed that largazole thiol, as well as analogs of largazole thiol, docked into a 
homology model of HDAC1. Largazole thiol was more active against recombinant HDAC1 than any 
other marine-derived HDAC inhibitor; for example, psammaplin A. Largazole inhibited HDACs in 
tumor tissue of a human HCT116 xenograft mouse [52].  

  

Figure 6. Compounds targeting HDACs. 

Chromopeptide A (No. 29) (Figure 6), a depsipeptide isolated from the marine sediment-derived 
bacterium, was identified as a novel HDAC inhibitor. HDAC enzyme selectivity and kinetic analysis 
showed that chromopeptide A selectively inhibited HDAC1, 2, 3, and 8 in a non-competitive manner. 
Cellular experiments demonstrated that it dose-dependently suppressed the proliferation and the 
migration of human prostate cancer cell lines PC3, caused cell cycle arrest, and induced cell apoptosis. 
Moreover, chromopeptide A significantly suppressed the tumor growth in mice bearing PC3 prostate 
cancer xenografts [53]. Halenaquinone (HQ) (No. 30) (Figure 6), a marine polycyclic quinone-type 
metabolite, acted as an HDAC and topoisomerase inhibitor. HQ inhibited deacetylation of HDAC 
activity through a cell-free HDAC colorimetric acetylated lysine side chain assay using an enzyme-
mediated deacetylation. The results of western blotting indicated that HQ could inhibit the 
expression of anti-apoptotic proteins p-Akt, NF-κB, and Bcl-2 [54,55]. As the structure of 
halenaquinone (HQ) does not contain sulfur moiety, it is speculated that the mechanism of HDAC 
inhibition was different from those of the three compounds mentioned above. 
  

Figure 6. Compounds targeting HDACs.

Chromopeptide A (No. 29) (Figure 6), a depsipeptide isolated from the marine sediment-derived
bacterium, was identified as a novel HDAC inhibitor. HDAC enzyme selectivity and kinetic analysis
showed that chromopeptide A selectively inhibited HDAC1, 2, 3, and 8 in a non-competitive
manner. Cellular experiments demonstrated that it dose-dependently suppressed the proliferation
and the migration of human prostate cancer cell lines PC3, caused cell cycle arrest, and induced cell
apoptosis. Moreover, chromopeptide A significantly suppressed the tumor growth in mice bearing
PC3 prostate cancer xenografts [53]. Halenaquinone (HQ) (No. 30) (Figure 6), a marine polycyclic
quinone-type metabolite, acted as an HDAC and topoisomerase inhibitor. HQ inhibited deacetylation
of HDAC activity through a cell-free HDAC colorimetric acetylated lysine side chain assay using an
enzyme-mediated deacetylation. The results of western blotting indicated that HQ could inhibit the
expression of anti-apoptotic proteins p-Akt, NF-κB, and Bcl-2 [54,55]. As the structure of halenaquinone
(HQ) does not contain sulfur moiety, it is speculated that the mechanism of HDAC inhibition was
different from those of the three compounds mentioned above.
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2.4. Targeting Proteasome and Deubiquitylating Enzymes Related to Oncoprotein Degradation

In the ubiquitin-proteasome system, a majority of cellular proteins are degraded by the proteasome
pathway related to three enzymes: ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme
(E2), and ubiquitin-protein ligase (E3) [56]. Given that many proteins in the ubiquitin-proteasome
system are involved in the regulation of important processes of carcinogenesis, targeting the
ubiquitin-proteasome system has been a therapeutic strategy in clinical treatment of cancer.

To date, a great deal of effort has been devoted to searching proteasome inhibitors for the
treatment of cancer. It has been established that the first generation of proteasome inhibitor bortezomib
is effective as monotherapy treatment of hematologic malignancies such as multiple myeloma [57,58].
Salinosporamide A (marizomib) (No. 31) (Figure 1), isolated from a new marine actinomycete bacteria
Salinispora tropica in ocean sediments, was widely reported as a novel 20S proteasome inhibitor for
treatment of cancer [59,60]. Salinosporamide A possessed a densely functionalized γ-lactam-β-lactone
bicyclic core, which was responsible for its irreversible binding to its target, the β| subunit of the
20S proteasome. Salinosporamide| A has entered into phase I clinical trials as monotherapy for the
treatment of multiple myeloma, as well as other solid tumor and hematologic malignancies [61,62].
Further studies suggested that salinosporamide A in combination with chemotherapeutics, such
as vorinostat, enhanced the curative efficiency against some refractory melanoma, pancreatic
carcinoma, and NSCLC. Recently, it was reported that carmaphycin A and carmaphycin B (No. 32)
(Figure 7), which were isolated from a Curaçao collection of marine cyanobacteria Symploca sp.,
had potent anti-proteasome properties as potential therapeutic agents for treatment of cancer [63].
Carmaphycins feature a leucine-derived α, β-epoxyketone warhead that is directly connected to either
methionine sulfoxide or methionine sulfone. Simulations of molecular dynamics demonstrated that the
sulfoxide/sulfone moieties in the methionine-derived residues could bind to the NH group of Gly23
with the hydrogen bond, proposing a new distinctive binding mode for these inhibitors. In addition,
metal-based 2, 3-indolinedione derivatives (No. 33) (Figure 7), which existed in marine organisms, were
reported to inhibit proteasome activity and induce apoptosis in certain human cancer cells. These novel
metal-based complexes with derivatives of 2,3-indolinedione inhibited the chymotrypsin-like activity
of the human cancer cellular 26S proteasome and promoted the accumulation of the proteasome target
protein Bax due to their unique structures [64]. The studies of structure-activity relationship revealed
that the aromatic ring with electron-attracting capabilities could transport metal into cancer cells more
easily by changing the electron density and nucleophilic attack.

The ubiquitylation of protein is reversed by deubiquitylating enzymes (DUBs), and leads to
deconjugation of the ubiquitin chain [65]. To date, nearly 100 species of human DUBs have been
found, including ubiquitin specific peptidase 7 (USP7), which affects the stability and degradation
of cellular proteins [66]. USP7 is an emerging oncology target, because it involves the oncogenic
stabilization of the tumor suppressor protein, p53 [67]. USP7 can deubiquitylate Hdm2 and
consequently degrade p53. Hence, inhibiting USP7 stabilizes p53 in cells through degradation
of Hdm2 and subsequently results in the suppression of cancer [68]. Spongiacidin C (No. 34)
(Figure 7), a pyrrole alkaloid, was isolated from the marine sponge Stylissa massa and identified
as the first USP7 inhibitor [69]. Compared to some previously described USP7 inhibitors derived
from synthetic sources, spongiacidin C exhibited a higher potent inhibition activity of USP7 with an
IC50 of 3.8 µM. In addition, three new furanosesterterpene tetronic acids, sulawesins A–C (No. 35)
(Figure 7) from marine sponge Psammocinia sp., which possessed a new carbon skeleton with a
5-(furan-3-yl)-4-hydroxycyclopent-2-enone moiety, were found to inhibit USP7 with IC50 values in the
range of 2.7–4.6 µM [70].
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2.5. Targeting the Heat Shock Protein (Hsp90) Related to Cancer Oncoprotein Maturity

Heat shock protein 90 (Hsp90) functions as an evolutionarily conserved molecular chaperone
and plays an essential role in cell survival, proliferation, apoptosis, and cellular homeostasis [71].
A growing body of evidence indicates that Hsp90 is frequently unregulated in many solid
tumors, including lung cancer, breast cancer, colorectal cancer, and hematological malignancy.
Consequently, Hsp90 has been recognized as a crucial target in cancer treatment, and increasing
number of small molecule inhibitors of Hsp90 have been identified. Lai et al. [72] reported that
three terpenoids, 12β-(3′β-hydroxybutanoyloxy)-20, 24-dimethyl-24-oxo-scalara-16-en-25-al (No. 36)
(Figure 8), which were isolated from the sponge Carteriospongia sp., induced apoptosis via dual
inhibitory effects on Hsp90 and topoisomerase II against leukemia cells. Molecular docking analysis
showed that the compound was bound to N-terminal ATP-binding pocket of Hsp90 protein and
promoted degradation of Hsp90 client proteins such as Akt, Raf-1, CDK4, Cyclin D3, HIF 1, and HSF1.
HDN-1 (No. 37) (Figure 8), an epipolythiopiperazine-2, 5-diones (ETPs) compound, was isolated
from the Antarctic fungus Oidiodendron truncatum GW3-13 and identified as a new Hsp90 inhibitor.
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Surface plasmon resonance and molecular docking experiments revealed that HDN-1 was bound
directly to C-terminus of Hsp90α, and led to the potent inhibition of cell survival and proliferation by
downregulating various protein expressions [71]. Additionally, an oxazoline analogue of apratoxin A
(oz-apraA) (No. 38) (Figure 8), structurally characterized by cyclodepsipeptide, was isolated from a
marine cyanobacterium and promoted the degradation of Hsp90 clients through chaperone-mediated
autophagy [73]. Apratoxin A inhibited Hsp90 function by stabilizing the interaction of Hsp90 client
proteins with Hsc70/Hsp70 and thus prevented their interactions with Hsp90.
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2.6. Targeting P-gp, Patched, and PXR Related to the Cancer Multidrug Resistance

P-glycoprotein (P-gp) is known as multidrug resistance 1 (MDR1) or ATP-binding cassette
sub-family B member 1 (ABCB1), and belongs to ABC transporter family. This family also includes
ABCG2/breast cancer resistance protein (BCRP), which is associated with multidrug resistance
(MDR) [74]. Therefore, exploitation of anticancer leading compounds, which could inhibit these ABC
transporter proteins, is an effective approach to reverse resistance and further improve therapeutic
efficacy. Abraham et al. [75] summarized several marine natural products with reversal effects on
multidrug resistance in cancer. Sipholane triterpenoids (No. 39) (Figure 8), which were derived from the
Red Sea sponge Callyspongia siphonella, represented potential reversal agents for the treatment of MDR
in P-gp-overexpressed tumors [76]. These sipholane triterpenoids efficiently inhibited the function
of P-gp through direct interaction rather than alteration of the expression of P-gp. Aller et al. [77]
identified three binding sites in the crystallographic structure of P-gp, which were QZ59-RRR,
QZ59-SSS, and verapamil binding sites. Molecular docking techniques showed that these compounds
were docked at each binding sites. Sipholenone E showed a hydrogen bonding interaction of C-10
hydroxyl group with the Gln 721 which may explain its higher binding score [76]. Other marine
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natural products, such as agosterol A, ET-743, bryostatin 1, welwitindolinones, philinopside A,
and philinopside E, also inhibited drug efflux through targeting P-gp and MRP1 and thus reversed the
resistance [75,76].

Several studies have shown that Hh receptor Patched has activity to mediate drug efflux and
participates in chemotherapy resistance, indicating that it is a new target for anti-cancer therapy [78].
Consequently, compounds that inhibit the drug efflux against Patched can increase the efficiency of
chemotherapy and reduce the possibilities of recurrence of cancer. Based on discovery of a class of
natural compounds from Mediterranean sponge Haliclona (Soestella) mucosa, Fiorini et al. [79] found
that panicein A hydroquinone (No. 40) (Figure 8) inhibited the multidrug resistance activity of Patched
and increased chemotherapy efficiency on melanoma cells. Molecular docking model showed that
panicein A hydroquinone presented a strong docking cluster close to the doxorubicin binding site of
Patched, suggesting that panicein A hydroquinone and doxorubicin competed the similar binding
sites in Patched. Therefore, the compound appeared to be the first antagonist of Patched to block drug
efflux. Patched efflux inhibitors can be used by combining with classic chemotherapy to represent a
new way to reduce tumor resistance, relapse, and metastasis [79].

The pregnane X receptor (PXR) regulates the expression of efflux ATP-binding cassette (ABC)
drug transporters such as P-gp, MRP1, and BCRP, indicating the importance of PXR as a drug target
for countering multidrug resistance in cancer treatments. ET-743 (No. 2) (Figure 1), previously
mentioned as a potent antineoplastic agent, was reported as the first PXR antagonist that could
suppress paclitaxel-induced PXR activation [80]. Later, Hodnik et al. [81] discovered that bazedoxifene
scaffold-based compounds, inspired by the marine sulphated steroids solomonsterols A and B,
were novel PXR antagonists. PXR antagonists 20 and 24 (No. 41) (Figure 8) were found to inhibit
PXR-mediated drug metabolism by inhibiting PXR expression. Molecular docking experiments showed
that these compounds could interact with the ligand-binding site of PXR. Interestingly, swinhosterol
B (No. 42) (Figure 8) from Theonella swinhoei sponge was reported as a natural PXR agonist and an
FXR antagonist. The molecular docking results showed that this compound also interacted with PXR
ligand binding pocket by hydrogen and van der Waals bonds [82].

2.7. Compounds Targeting Other Cancer Related Molecules

Except for those target molecules mentioned above, we also reviewed other novel molecular
targets of marine-derived compounds that were studied in preclinical trial, including ion channel,
RNA helicase eIF4A, ribosome, TRPM 7, and so on.

Morita et al. [83] reported that Biselyngbyaside (BLSs-1) (No. 43) (Figure 9), a macrolide from
a marine cyanobacterium, was a high affinity (the affinity constant Ki was 10 nM) inhibitor of Ca2+

pumps with a unique binding mode. The crystal structures and activity measurement of BLSs-1
showed that BLSs-1 was bound to the pump near the cytoplasmic surface of the transmembrane region
and displayed potent cytotoxicity against a variety of human cancer cells.

DEAD box RNA helicase eIF4A is an ATP-dependent helicase involved in RNA metabolism.
It is a potential therapeutic target for a variety of malignancies [84]. Tillotson et al. [84] reported that
marine-derived natural products such as elisabatin A (No. 44) and allolaurinterol (No. 45) (Figure 9)
potently inhibited eIF4A in an ATP competitive manner, which was detected by enzymological analyses.
These two compounds were most likely bound to the ATP-binding pocket at the interface between the
N-terminal and C-terminal domains. Cellular evaluations showed their potent cytotoxicity against
A549 and MDA-MA-468 cell lines. Both compounds potently inhibited eIF4A ATPase activity, but only
allolaurinterol showed potent inhibition of helicase activity.
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Mycalamide A (No. 46) (Figure 9), a marine natural compound isolated from sponges of the genus
Mycale, was known as a protein synthesis inhibitor with potent antitumor activity. This compound
inhibited transcriptional activity of the oncogenic nuclear factors AP-1 and NF-κB and induced the
phosphorylation of the kinases MAPK p38, JNK, and ERK, indicating a promising potential for both
cancer-prevention and cytotoxic therapy [85]. Binding experiments demonstrated that mycalamide A
could bind to the large ribosomal subunit and inhibit translation of RNA into protein [86].

Zierler et al. [87] identified waixenicin A (No. 47) (Figure 9) from the soft coral Sarcothelia
edmondsoni as the first potent and relatively specific inhibitor of TRPM7 ion channels. Potential transient
receptor melastatin 7 (TRPM7) channel, a bifunctional membrane protein with ion channel and kinase
activity, represents the major magnesium-uptake mechanism in mammalian cells and is a key regulator
of cell growth and proliferation [88]. Mutational analysis involving the channel kinase domain revealed
that waixenicin A could be bound to TRPM7 outside of the kinase domain with high affinity and
independently blocked the channel of Mg2+, which was responsible for the relatively specificity of
TRPM7 [87].

Marine-derived compounds that can modulate the activity of molecular targets involved in
tumorigenesis, and their molecular targets enrolled in this article, are shown in Table 1.
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Table 1. List of marine-derived compounds that have exhibited potential as cancer therapies.

No. Compound Name Marine Organism Chemical Class Molecular Target Cancer Type/Cell lines Refs.

5 Bryostatin-1 bryozoan oxygenated macrolide PKC activator
sarcoma, melanoma, ovaria, cervical, neck and head
carcinoma, esophageal, gastric, pancreatic, renal cell

carcinoma, leukemia cells
[16–18]

6 Aplysiatoxin (ATX) sea hare and
cyanobacteria polyacetate PKC activator Leukemia cell, breast cancer cell [19]

7,8 (3R)-icos-(4E)-en-1-yn-3-ol and
(3R)-14-methyldocos-(4E)-en-1-yn-3-ol marine sponge acetylene alcohols IGF-1Rβ NSCLC cells [23,24]

9 Hymenialdisine and
Debromohymenialdisine marine sponge pyrrole-2-aminoimidazole

alkaloids CDK1, CDK2, CDK5, colon carcinoma cell lines LoVo and Caco-2 [26,27]

10 Fascaplysin marine sponge carboline class alkaloid CDK4 osteosarcoma U2OS, colon carcinoma cell HCT116 [25,28]

11 Meridianin A-G marine tunicate indole alkaloids CDK1, CDK5 / [29,30]

12 Palinurin marine sponge linear furanosesquiterpene GSK-3β human neuroblastoma cells SH-SY5Y [32]

13 Manzamine A marine sponge alkaloid GSK-3β pancreatic cancer cell [33,34]

14 PMH-1 and PMH-2 marine sponge cyclic imide hydantoins GSK-3β prostate cancer cell [35]

15 Pannorin marine fungi oxygenated
benzocoumarin core GSK-3β / [36]

16 Alternariol, and
Alternariol-9-methylether marine fungi oxygenated

benzocoumarin core GSK-3β / [36]

17 ZWM026 mangrove indolocarbazoles EGFR-T790M, ErbB2,
ErbB3, ErbB4, and RET lung cancer cells [37]

18 Pachycladin A Red Sea soft coral diterpenoids EGFR and PKC breast cancer cell lines, cervical cancer HeLa cells [38]

19,20 1’-deoxyrhodoptilometrin (SE11) and
(S)-(−)-rhodoptilometrin (SE16) marine echinoderm anthraquinone IGF-1R, FAK, EGFR,

ErbB2, and ErbB4 glioma and colon carcinoma [39]

21 BDDPM marine red alga bromophenol FGFR2,3,VEGFR2,PDGFRα,
PKB/Akt,eNOS hepatoma carcinoma cell [40,41]

22 Diacetoxyscirpenol (DAS) marine red alga
bacterium enol HIF-1α lung cancer cell lines A549 [43]

23 Pyrroloiminoquinone alkaloids marine sponge alkaloids HIF-1α/p300 colon and prostatic carcinoma [44]

24 Hoiamide D marine cyanobacteria polyketide p53/MDM2 lung cell lines H460 [46]

25,26 Stellettin A and Stellettin B marine sponge triterpenoids p50/p65 Leukemia cell line K562 [48]

27 Psammaplin A marine sponge indole HDAC1 lung, breast cancer cell lines [50,51]

28 Largazole marine
cyanobacterium cyclic depsipeptide HDAC1 colon cancer cell lines HCT116 [52]
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Table 1. Cont.

No. Compound Name Marine Organism Chemical Class Molecular Target Cancer Type/Cell lines Refs.

29 Chromopeptide A marine bacterium depsipeptide HDAC1,2,3,8 prostate cancer cell lines PC3 [53]

30 Halenaquinone (HQ) marine sponge polycyclic quinone-type HDACs Molt 4, K562, MDA-MB-231, and DLD-1 cell lines [54,55]

31 Salinosporamide A marine actinomycete
bacteria

γ-lactam-β-lactone bicyclic
core 20S proteasome melanoma, pancreatic carcinoma, or NSCLC [59–62]

32 Carmaphycin A and carmaphycin B marine cyanobacteria leucine-derived
α,β-epoxyketone proteasome lung and colon cancer cell lines [63]

33 Metal-based 2, 3-indolinedione marine organisms
metal-based complexes

with derivatives of
2,3-indolinedione

26S proteasome breast cancer cell lines MDA-MB-231 and prostate
cancer cell lines LNCaP and PC-3 [64]

34 Spongiacidin C marine sponge pyrrole alkaloid USP7 / [69]

35 Sulawesins A–C marine sponge furanosesterterpene
tetronic acids USP7 / [70]

36 12β-(3′β-hydroxybutanoyloxy)-20,
24-dimethyl-24-oxo-scalara-16-en-25-al marine sponge sesterterpenoids Hsp90 Leukemia cell lines [72]

37 HDN-1 antarctic fungus epipolythiopiperazine-2,
5-diones (ETPs) Hsp90 lung cancer cell lines [71]

38 Apratoxin A (oz-apraA) marine
cyanobacterium cyclodepsipeptide Hsp90 A549, MDA-MB-453, HEK293, SKoV3, and H4 cells [73]

39 Sipholane triterpenoids marine sponge perhydrobenzoxepine ring
and a bicyclodecane system P-gp human oral epidermoid carcinoma cell line KB-C2

and KB-V1 [75,76]

40 Panicein A hydroquinone marine sponge hydroquinone Patched melanoma cells [79]

41 PXR antagonists 20 and 24 sponges and
echinoderms Sulfated steroids PXR agonist HepG2 cells [81]

42 Swinhosterol B marine sponge 4-methylenesterols PXR agonist HepG2 cell [82]

43 Biselyngbyaside (BLSs-1) marine
cyanobacterium macrolides calcium channel HeLa cells [83]

44 Elisabatin A Indian gorgonian
octocoral polyketone eIF4A ATPase activity A549 and MDA-MA-468 cell lines [84]

45 Allolaurinterol marine red alga benzene derivative eIF4A ATPase activity A549 and MDA-MA-468 cell lines [84]

46 Mycalamide A marine sponge lactones protein synthesis inhibitor JB6 Cl 41 P+, HeLa cell line [85,86]

47 Waixenicin A soft coral polyketone TRPM7 Jurkat and RBL cells [87]
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3. Conclusions

Although the past decades have witnessed intensive efforts to exploit leading compounds with
anticancer activities from marine microorganisms, many molecular targets of these candidates remain
elusive. Illumination of molecular targets of leading compounds will contribute to mechanism
clarification, as well as improvement of drug ability.

In recent years, more new technologies such as biochips technology, chemical proteomics
approaches, and CRISPR/Cas9 high-throughput screening technology have been used to identify
targets of a number of new compounds. In addition, drug-target prediction with silico technology
can quickly predict potential molecular targets based on a database containing a large number of
potential targets and bioactive compounds with definite molecule structures using molecular docking.
The computer-aided drug discovery design (CADD) technique has been applied to provide precise
information regarding the binding mode against molecular targets, which may contribute to the
development of antitumor drugs in the future.

This paper reviews marine-derived compounds that can modulate the activity of molecular
targets involved in tumorigenesis. We hope the review could provide help for target identification of
new compounds in the future. Of course, on account of their novel structures and unconventional
anticancer molecular mechanisms, these marine candidates are undoubtedly attractive as leading
compounds. Therefore, the development of anticancer drugs needs further investigation.

We believe that an increasing number of molecular targets will be clarified in the near future
with the advance in drug screening and identification techniques. Thus, it is certain that the future
chemotherapeutic clinical pipeline will be fed with marine-derived agents, which paves the way for
curing cancer and benefiting human health.
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