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H I G H L I G H T S

• Introduces TNT-Net, a novel AI model for improved diagnosis of small thyroid nodules (<1 cm).
• Provides radiologists with a standardized tool for more consistent nodule assessments.
• Utilizes AI technology to help avoid unnecessary thyroid nodule biopsies and overtreatment.
• Offers more objective risk evaluation to optimize patient management.
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A B S T R A C T

Objective: To develop a ultrasound images based dual-channel deep learning model to achieve accurate early 
diagnosis of thyroid nodules less than 1 cm.
Methods: A dual-channel deep learning model called thyroid nodule transformer network (TNT-Net) was pro
posed. The model has two input channels for transverse and longitudinal ultrasound images of thyroid nodules, 
respectively. A total of 9649 nodules from 8455 patients across five hospitals were retrospectively collected. The 
data were divided into a training set (8453 nodules, 7369 patients), an internal test set (565 nodules, 512 pa
tients), and an external test set (631 nodules, 574 patients).
Results: TNT-Net achieved an area under the curve (AUC) of 0.953 (95 % confidence interval (CI): 0.934, 0.969) 
on the internal test set and 0.941 (95 % CI: 0.921, 0.957) on the external test set, significantly outperforming 
traditional deep convolutional neural network models and single-channel swin transformer model, whose AUCs 
ranged from 0.800 (95 % CI: 0.759, 0.837) to 0.856 (95 % CI: 0.819, 0.881). Furthermore, feature heatmap 
visualization showed that TNT-Net could extract richer and more energetic malignant nodule patterns.
Conclusion: The proposed TNT-Net model significantly improved the recognition capability for thyroid nodules 
with size less than 1 cm. This model has the potential to reduce overdiagnosis and overtreatment of such nodules, 
providing essential support for precise management of thyroid nodules while complementing fine-needle aspi
ration biopsy.
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1. Introduction

Thyroid nodules are a common endocrine disorder, with the latest 
epidemiological studies showing that the prevalence of thyroid nodules 
in adults can reach up to 68 %, and the incidence rate in females is three 
times higher than in males [1–4]. Most of these nodules are benign, with 
only approximately 7–15 % being malignant [3,4]. Therefore, early and 
accurate diagnosis of the nature of thyroid nodules is crucial for clinical 
decision-making and management of this disease.

Currently, the diagnosis of thyroid nodules, especially those smaller 
than 1 cm, poses significant challenges. Conventional ultrasound ex
amination relies heavily on the experience of radiologists, leading to 
potential inconsistencies and subjectivity in diagnosis[5–9]. Moreover, 
fine-needle aspiration biopsy (FNAB), while considered the gold stan
dard, is invasive and not suitable for large-scale screening [7,10–12]. 
This situation highlights the need for more objective, non-invasive, and 
efficient diagnostic methods.

To address this issue, many studies have begun to explore the inte
gration of AI technologies to develop computer-aided diagnosis (CAD) 
models based on ultrasound images and deep learning techniques, such 
as ThyNet, RedImageNet, and DeepThyNet [13–19]. In general, these 
models are typically trained on a large amount of ultrasound image data 
to extract latent image features that are difficult for the human eye to 
perceive, enabling the identification of malignant patterns in thyroid 
nodules. These ultrasound image-based CAD models have improved the 
diagnostic accuracy of thyroid nodules to a certain extent.

Although previous studies have explored various deep convolutional 
neural network (DCNN) models for the intelligent diagnosis of thyroid 
nodules [20–24], their classification performance often proved unsat
isfactory when dealing with smaller thyroid nodules, particularly those 
with a size less than 1 cm [21,23]. As smaller thyroid nodules occupy a 
smaller area in ultrasound images, the limited ability of traditional 
DCNN convolutional kernels to handle smaller targets often leads to an 
insufficient capture of effective features, resulting in a relatively low 
accuracy in assessing the malignancy risk of such nodules. How to 
construct a model that can effectively extract subtle features from ul
trasound images that characterize the properties of small thyroid nod
ules and accurately assess the malignancy risk remains a challenging 
problem.

Recently, with the development of multimodal large models like 
ChatGPT, a new class of deep learning models based on the Transformer 
architecture has emerged [25–29]. Transformer significantly improve 
the ability of deep learning models to capture image features, especially 
those of small targets, using the self-attention mechanism [29]. Unlike 
traditional DCNN networks, the Transformer architecture overcomes the 
limitations of convolutional kernels and can directly establish mappings 
between arbitrary pixels or pixel blocks [30–32]. Compared to DCNN, 
this feature of the Transformer architecture offers a significant advan
tage in handling small nodules and capturing subtle features. This 
characteristic also presents new opportunities for addressing the 
computer-aided diagnosis problem of small thyroid nodules.

Therefore, based on the aforementioned techniques, this study pro
poses a dual-channel swin transformer (ST) model called the Thyroid 
Nodule Transformer Network (TNT-Net). The newly proposed model has 
two input interfaces for inputting transverse and longitudinal ultrasound 
images of the nodule. The model first thoroughly exploits the detailed 
information in the transverse and longitudinal ultrasound images of the 
nodule through two independent self-attention mechanism branch net
works. It then fuses the features from the branch networks using sparse 
constraints and sends the fused features to the fully connected network 
at the backend of the model to perform recognition. Experimental results 
show that compared to traditional DCNN models, our model demon
strates better performance in evaluating nodules with size less than 
1 cm.

This study is an extension of our previous work [21,22], and to the 
best of our knowledge, it is also the first exploration of utilizing a 

Transformer to simultaneously extract features from transverse and 
longitudinal ultrasound images to assess the risk of thyroid nodules. We 
not only constructed a classification model based on the visual Trans
former but also performed comparative experiments with mainstream 
DCNN models to comprehensively evaluate the performance of both 
types of models on this task. This study aims to develop and evaluate a 
novel dual-channel deep learning model, TNT-Net, for improved diag
nosis of thyroid nodules less than 1 cm. The goal is to assess whether this 
new architecture can enhance classification accuracy and robustness 
compared to traditional DCNN models, potentially offering a valuable 
reference for future applications of Transformer-based architectures in 
medical imaging tasks.

2. Materials and methods

2.1. Patients

This was a retrospective, multicenter diagnostic study that utilized 
thyroid nodule ultrasound imaging data from October 2019 to October 
2022, collected from five hospitals in China. The study was approved by 
the ethics committees of all participating hospitals, and due to the 
retrospective nature of the study, informed consent was waived. All data 
were anonymized, and the model was trained and tested solely within 
the hospitals’ artificial intelligence infrastructure. The hospitals 
participating in this multicenter study and their ethics committee 
approval numbers are as follows: Zhejiang Cancer Hospital (IRB- 
2020–287), Taizhou Cancer Hospital (IRB-2023001), Zhejiang Provin
cial Hospital of Traditional Chinese Medicine (IRB-2023-QS-010–02), 
Shaoxing People’s Hospital (IRB-2022–083-Y-01), and Dongyang Peo
ple’s Hospital (IRB-2023-YX-355). Table 1 provides an overview of all 
the data. The study included a total of 9649 nodules from 8455 
individuals.

2.2. Inclusion and exclusion criteria

Fig. 1 illustrates the overall inclusion and exclusion of data, as well as 
the division of the training and test sets. The specific data inclusion 
criteria were: (1) Patient age greater than or equal to 18 years. (2) Pa
tients underwent preoperative thyroid ultrasound examination, and 
nodule images were preserved. (3) Patients had a definitive pathological 
result (underwent total or partial thyroidectomy, or the FNAB result of 
the affected side was Bethesda class II or VI). (4) Nodule size was less 
than 1 cm. The

specific data exclusion criteria were: (1) Preoperative thyroid ul
trasound examination lacked clear ultrasound images, such as missing 
either the transverse or longitudinal ultrasound image of the nodule. (2) 
The patient received other treatments (such as radiation therapy) before 
surgery. (3) Patients had incomplete clinical information, such as un
known prior treatment records. The biopsy criteria adopted by multi- 
center hospitals are based on guidelines from the American Thyroid 
Association (ATA) [33]. For the majority of nodules smaller than 1 cm, 
particularly those without suspicious characteristics, regular ultrasound 
follow-up is generally recommended rather than immediate FNAB. 
However, radiologists also conduct comprehensive assessments consid
ering patient-specific factors. For instance, FNAB may be recommended 
even for nodules smaller than 1 cm in cases where: abnormal cervical 
lymph nodes are detected during follow-up ultrasonography; there is a 
history of childhood neck radiation exposure or radiation contamina
tion; a family history of thyroid cancer or thyroid cancer syndrome is 
present; 18F-FDG PET imaging yields positive results; or there is an 
abnormal elevation in serum calcitonin levels.

2.3. Model design

The overall architecture of the deep learning model is shown in 
Fig. 2, and the model code has been made publicly available (see 

N. Feng et al.                                                                                                                                                                                                                                    European Journal of Radiology Open 13 (2024) 100609 

2 



Supplementary Material Section 1). As illustrated in Fig. 2, we collected 
transverse and longitudinal images of thyroid nodules and annotated the 
nodule regions in the images. To address the challenge of capturing 
features from the relatively small targets of thyroid nodules, we 
designed a dual-channel network model called TNT-Net.

The model consists of three main parts: image patching, backbone 
module, and feature fusion module. In the backbone part, we designed 
two independent feature extraction channels. The first channel takes the 
transverse ultrasound image of the nodule as input, while the other 
channel takes the longitudinal ultrasound image of the nodule as input. 
Considering the outstanding ability of Transformers in extracting fea
tures from small targets, we chose the Swin Transformer as the backbone 
network for each channel. To better fuse the features from different 
channels, we proposed a dual-channel joint sparse attention mechanism 
in the fully connected (FC) layer, thereby enhancing the fusion of 
transverse and longitudinal features extracted by the two channels of the 

model. The specific feature constraint method and formulas
are provided in Supplementary Material Section 2. For better 

training and testing of the model, we established a training set, an in
ternal test set, and an external test set, with none of the test data being 
involved in model training. The training set included 8453 nodules from 
7369 patients, the internal test set included 565 nodules from 512 pa
tients, and the external test set included 631 nodules from 574 patients.

2.4. Data acquisition

During ultrasound image acquisition, patients were placed in a su
pine position and asked to extend their neck and temporarily stop 
swallowing to fully expose the neck area. Ultrasound imaging equip
ment included GE, Siemens, Toshiba, and Mindray (see Supplementary 
Material Section 3 for details). During image acquisition, the nodule was 
positioned at the center of the image as much as possible to ensure clear 

Table 1 
Statistics of multicenter data. SD: Standard Deviation; Center 1: Zhejiang Cancer Hospital; Center 2: Taizhou Cancer Hospital; Center 3: Zhejiang Provincial Hospital of 
Traditional Chinese Medicine; Center 4: Shaoxing People’s Hospital; Center 5: Dongyang People’s Hospital.

Categories Center 1 Center 2 Center 3 Center 4 Center 5

Number of patients 5650 1216 1015 263 311
Number of nodules 6402 1367 1249 308 323
Number of images 12804 2734 2498 616 646
Age, mean (SD) 49 (13) 50 (11) 47 (12) 52 (13) 49 (11)
Sex ​ ​ ​ ​ ​ 
Female 4184 920 770 195 232
Male 1466 296 245 68 79
Size, mm (SD) 6.5 (1.7) 6.3 (2.1) 6.6 (1.9) 6.2 (1.6) 6.3 (1.9)
Pathological results ​ ​ ​ ​ ​ 
Benign 3227 766 655 162 164
Malignant 3175 601 594 146 159

Fig. 1. Multicenter data collection and establishment of training and test sets.
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visibility and optimal image quality. The acquired images were stored in 
DICOM or BMP format. In addition to the raw image data, relevant 
clinical information for each nodule, such as patient age, gender, and 
nodule size, was recorded. All included data underwent quality control 
by at least one radiologist.

2.5. Data statistics

We used various metrics to evaluate the model’s performance, 
including receiver operating characteristic (ROC), area under the curve 

(AUC), true positive rate (TPR), true negative rate (TNR), positive pre
dictive value (PPV), negative predictive value (NPV), and F1 score. 
Furthermore, we calculated the p-values between our proposed TNT-Net 
and traditional methods. The DeLong method was used to calculate the 
95 % confidence intervals (CIs) for the metrics [34]. All model and 
statistical computations were performed using the Python programming 
language, utilizing libraries such as PyTorch, Matplotlib, NumPy, and 
Scikit-learn.

Fig. 2. Model framework and training and testing pipeline of TNT-Net.
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3. Results

We evaluated and compared the performance of ResNet50, Dense
Net121, Inception V3, ST and TNT-Net. Fig. 3 shows the ROC curves and 
corresponding AUC values of different models on the internal test set. As 
can be seen from Fig. 3(a), our TNT-Net achieved the best diagnostic 
performance. Table 2 provides a detailed comparison of the diagnostic 
abilities of different CAD models on the internal test set. As shown in 
Table 2, the AUCs of the DCNN network models ResNet50, Dense
Net121, and Inception V3 ranged from 0.800 (95 % CI: 0.759, 0.837) to 
0.833 (95 % CI: 0.793, 0.868). The single-channel ST model had an AUC 
of 0.856 (95 % CI: 0.819, 0.881), slightly outperforming the DCNN 
networks. Our proposed TNT-Net model achieved the best recognition 
performance, with an AUC of 0.953 (95 % CI: 0.934, 0.969) on the in
ternal test set, significantly better than the best DCNN (P < 0.001). 
Similarly, on the external test set, TNT-Net achieved an AUC of 0.941 
(95 % CI: 0.921, 0.957), outperforming both the ST model and DCNN 
models (Fig. 3(b)). The similar ROC performance on the internal and 
external test sets also cross-validated the reliability of the model. Table 1
further provides the TNR, TPR, PPV, NPV, ACC, and F1 scores, along 
with their 95 % CIs, for the different models.

As shown in Tables 2 and 3, TNT-Net achieved a sensitivity of 0.912 
(95 % CI: 0.885, 0.932) and a specificity of 0.925 (95 % CI: 0.887, 
0.951) on the internal test set. On the external independent test set, the 
classification sensitivity and specificity were slightly lower than those 
on the internal test set, at 0.905 (95 % CI: 0.867, 0.933) and 0.911 (95 % 
CI: 0.875, 0.937), respectively. The comparisons in Tables 2 and 3 show 
that the overall performance of TNT-Net was significantly better than 
that of traditional DCNN models and the ST model (p < 0.001).

To better illustrate the model’s discrimination results, Fig. 4 also 
compares the feature heatmaps of TNT-Net, ST, and a representative 
DCNN model (Inception V3). The high-heat regions of the feature 
heatmaps intuitively show the malignancy risk-related feature patterns 
extracted by the deep learning models. In Fig. 4, columns 1–4 represent 
malignant nodule images, and columns 5–8 represent benign nodule 
samples. Each sample includes the transverse (column 1 for each sam
ple) and longitudinal (column 2 for each sample) images of the nodule. 
From the comparison of the feature heatmaps, we can observe that TNT- 
Net exhibited stronger feature discrimination ability compared to the ST 
model and DCNN networks. For malignant samples, our proposed TNT- 
Net extracted more energetic and richer features, while for benign 
nodules, our model yielded more consistent low-energy feature 

heatmaps. In contrast, the malignant features extracted by the ST model 
and Inception V3 had relatively weaker energy and discrimination, and 
the feature heatmaps for benign nodules exhibited noticeable interfer
ence. For example, the feature heatmap of benign sample 1 extracted by 
the ST model and Inception V3 model, and the longitudinal feature 
heatmap of benign sample 2 extracted by the Inception V3 model 
showed interference. These comparisons suggest that TNT-Net does not 
simply accumulate the energy of the nodule feature heatmaps but rather 
enhances the overall ability of the model to extract subtle nodule fea
tures through joint training on the transverse and longitudinal ultra
sound images of the nodules.

4. Discussion

This study proposed a new Transformer-based dual-channel deep 
learning model, TNT-Net, for diagnosing the malignancy of thyroid 
nodules with size less than 1 cm. The model can simultaneously utilize 
the transverse and longitudinal ultrasound images of the nodule, 
capturing its features through the self-attention mechanism, signifi
cantly improving the recognition capability. On multicenter test data
sets, TNT-Net consistently outperformed traditional DCNN models in 
terms of diagnostic performance, achieving better results in AUC, clas
sification accuracy, and feature extraction ability.

The superior performance of the TNT-Net model is mainly attributed 
to the introduction of the dual-channel structure. By simultaneously 
inputting the transverse and longitudinal ultrasound images of the 
nodule, TNT-Net can comprehensively acquire the nodule’s multi- 
dimensional information, thereby better extracting the internal 
morphological and structural features of the nodule. In contrast, tradi
tional DCNN models such as ThyNet, DeepThyNet, RedimageNet typi
cally utilize images from a single viewpoint, potentially overlooking 
some effective information [13,14,16]. Moreover, the Transformer ar
chitecture can directly establish long-range dependencies between any 
two pixel blocks in the image, better capturing the detailed features of 
small nodules [29]. This advantage gives TNT-Net a distinct advantage 
in handling smaller nodules. Furthermore, through the design of the 
feature fusion module, TNT-Net can effectively integrate feature infor
mation from the two channels, further enhancing the model’s discrim
ination ability. This module adopts a constraint optimization method, 
avoiding the redundancy caused by simple concatenation. The training 
and testing on a dataset containing 9649 nodules from five hospitals also 
provided reliable data support for evaluating the model’s performance.

Fig. 3. Comparison of ROC curves and AUC values of TNT-Net, ST model, and traditional DCNN models on the internal test set and external test set. The left panel 
shows the results for the internal test set. The right panel shows the results for the external test set. TNT-Net achieved the best performance on both the internal and 
external test sets, with the red curve representing the ROC curve of TNT-Net.
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TNT-Net can be easily integrated into clinical practice and early 
screening for thyroid cancer. Since many thyroid nodules detected 
during early screening are small in size, and studies have shown that 
radiologists have relatively lower diagnostic concordance rates for 
smaller thyroid nodules [2,9,10]. As a standardized AI-assisted diag
nostic tool, TNT-Net can provide more objective and consistent refer
ences for clinical decision-making, helping to avoid overdiagnosis and 
overtreatment caused by relying solely on subjective judgments, 
particularly for junior radiologists. For instance, in an actual screening 
environment, when the diagnosis of a junior radiologist conflicts with 
the model-assisted diagnosis, they could consider referring to the 
model’s prediction probability and the feature heatmaps for transverse 
and longitudinal images. If a significant discrepancy is observed be
tween the model’s prediction probability, heatmaps, and the radiolo
gist’s assessment, a re-examination of the nodule or consultation with a 
more experienced radiologist could be considered to mitigate the risk of 
false positives and false negatives.

Furthermore, our analysis showed that the TNT-Net model per
formed consistently across both male and female patients. The model 
achieved an AUC of 0.942 (95 % CI: 0.919, 0.966) for female patients 

and 0.939 (95 % CI: 0.917, 0.962) for male patients on the external test 
set. This suggests that the model’s performance is not significantly 
affected by gender, which is crucial for ensuring equitable diagnostic 
capabilities across patient demographics.

The study has some limitations. First, although we attempted to 
provide some comparisons and interpretability analysis through feature 
heatmaps, the "black box" nature of deep learning models and the dif
ficulty in explaining features remain pressing issues that need to be 
addressed. Second, to obtain the pathological gold standard, we had to 
select cases that underwent surgery or biopsy and had definitive path
ological results, which introduces a certain selection bias. Third, in 
clinical practice, radiologists can obtain dynamic information when 
interpreting images, whereas our study only utilized two static images, 
which to some extent results in the loss of some nodule information.

5. Conclusions

In conclusion, our study demonstrates that the new generation of 
Transformer deep learning models based on the self-attention mecha
nism shows promising application prospects in assisting the diagnosis of 

Table 2 
Comparison of the classification performance of TNT-Net, ST model, and traditional DCNN models on the internal test set.

Model TPR (95 % CI) TNR (95 % CI) PPV (95 % CI) NPV (95 % CI) ACC (95 % CI) F1

TNT-Net 0.912 (0.885,0.932) 0.925 (0.887,0.951) 0.899 (0.860,0.929) 0.881 (0.835,0.915) 0.937 (0.905,0.959) 0.908
ST 0.828 (0.795,0.857) 0.816 (0.766,0.858) 0.839 (0.793,0.876) 0.803 (0.749,0.847) 0.851 (0.808,0.885) 0.818
Inception V3 0.793 (0.758,0.824) 0.772 (0.718,0.818) 0.812 (0.764,0.852) 0.767 (0.711,0.816) 0.816 (0.770,0.854) 0.779
DenseNet121 0.789 (0.754,0.821) 0.779 (0.726,0.825) 0.799 (0.749,0.840) 0.756 (0.700,0.805) 0.818 (0.772,0.857) 0.778
ResNet50 0.786 (0.750,0.818) 0.775 (0.722,0.821) 0.795 (0.746,0.837) 0.753 (0.696,0.802) 0.815 (0.769,0.854) 0.774

Table 3 
Comparison of the classification performance of TNT-Net, ST model, and traditional DCNN models on the external test set.

Model TPR （（95 % CI）） TNR （（95 % CI）） PPV （（95 % CI）） NPV （（95 % CI）） ACC （（95 % CI）） F1

TNT-Net 0.905 (0.867,0.933) 0.911 (0.875,0.937) 0.899 (0.859,0.929) 0.916 (0.882,0.941) 0.908 (0.883,0.928) 0.905
ST 0.826 (0.780,0.865) 0.819 (0.774,0.857) 0.800 (0.751,0.841) 0.843 (0.801,0.878) 0.823 (0.791,0.850) 0.819
Inception V3 0.777 (0.727,0.820) 0.791 (0.744,0.832) 0.765 (0.714,0.810) 0.802 (0.757,0.841) 0.784 (0.751,0.815) 0.777
DenseNet121 0.784 (0.734,0.826) 0.798 (0.751,0.838) 0.772 (0.721,0.816) 0.808 (0.763,0.846) 0.791 (0.757,0.821) 0.784
ResNet50 0.764 (0.713,0.808) 0.788 (0.741,0.829) 0.760 (0.707,0.805) 0.792 (0.746,0.832) 0.777 (0.742,0.807) 0.768

Fig. 4. Comparison of feature heatmaps between TNT-Net, ST model, and traditional Inception V3 model. High-heat regions correspond to features with higher 
malignancy risk. For each sample, the left side shows the transverse image and feature heatmap, while the right side shows the longitudinal image and feature 
heatmap. For TNT-Net, the calculation involves inputting both transverse and longitudinal images, resulting in two feature heatmaps. For other models, a single 
image is inputted to calculate the corresponding feature heatmap.
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thyroid nodules smaller than 1 cm. These models have the potential to 
reduce unnecessary biopsies and overtreatment while supporting pre
cise disease management. In future research, we plan to incorporate 
dynamic ultrasound data and integrate clinical information with imag
ing features to provide a more comprehensive risk assessment. Addi
tionally, we aim to conduct prospective studies to validate the model’s 
performance in real-time clinical settings and investigate its interpret
ability to offer deeper insights into the decision-making process.
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