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Effects of continuous theta-burst stimulation of the
primary motor and secondary somatosensory areas
on the central processing and the perception of
trigeminal nociceptive input in healthy volunteers
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Ulf Ziemanne, Jörn Lötscha,c,*

Abstract
Noninvasive modulation of the activity of pain-related brain regions by means of transcranial magnetic stimulation promises an
innovative approach at analgesic treatments. However, heterogeneous successes in pain modulation by setting reversible “virtual
lesions” at different brain areas point at unresolved problems including the optimum stimulation site. The secondary somatosensory
cortex (S2) has been previously identified to be involved in the perception of pain-intensity differences. Therefore, impeding its activity
should impede the coding of the sensory component of pain intensity, resulting in a flattening of the relationship between pain
intensity and physical stimulus strength. This was assessed using inactivating spaced continuous theta-burst stimulation (cTBS) in
18 healthy volunteers. In addition, cTBS was applied on the primary motor cortex (M1) shown previously to yield moderate and
variable analgesic effects, whereas sham stimulation at both sites served as placebo condition. Continuous theta-burst stimulation
flattened the relationship between brain activation and stimulus strength, mainly at S2, the insular cortex, and the postcentral gyrus
(16 subjects analyzed). However, these effects were observed after inactivation of M1 while this effect was not observed after
inactivation of S2. Nevertheless, both the M1 and the S2-spaced cTBS treatment were not reflected in the ratings of the nociceptive
stimuli of different strengths (17 subjects analyzed), contrasting with the clear coding of stimulus strength by these data. Hence,
while modulating the central processing of nociceptive input, cTBS failed to produce subjectively relevant changes in pain
perception, indicating that the method in the present implementation is still unsuitable for clinical application.

Keywords: Transcranial magnet stimulation, Brain processing of pain, Experimental human pain models, Functional magnetic
resonance imaging, Analgesia, Data science

1. Introduction

Pain serves as an evolutionary highly important warning system to
avoid possible tissue damage. However, after fulfilling this
purpose, pain may become a major threat to an individual’s
health and quality of life, in particular, when developing towards
persistence. Hence, persistent pain is listed among the major
health care issues defined by the World Health Organization. Its
high prevalence12,19,22,64,65 points at insufficient treatment

options. The uncovering of the highly complex pathophysiological
processes underlying pain43 has become a major basis for the

development of novel analgesic drugs.56 However, clinical

experience and scientific evidence suggest that nonpharmaco-

logical treatments my offer alternative or additional analgesic

therapy options.
Among nonpharmacological approaches, transcranial mag-

netic stimulation (TMS) seems to be particularly suited because it

enables the direct noninvasive modulation of the function of pain-

relevant cerebral structures.17,69,89,93 Transcranial magnetic

stimulation is increasingly used in cognitive neuroscience

because of its ability to impede task-specific neuronal activities

by inducing a reversible so-called “virtual lesion.”72,78 Indeed, the

application of TMS stimulating mainly the primary motor cortex

(M1) has been shown to yield moderate and variable analgesic

effects against clinical or experimentally induced

pain,4,6,10,18,23,35,48–51,62,68,69,75,77 whereas the stimulation of

the dorsolateral prefrontal cortex mainly influenced affective and

attentional dimensions of pain.68 By contrast, stimulation of the

primary somatosensory cortex (S1) produced no effect on

pain.4,34,75 This heterogeneity in results stresses the need for

further research on the utility of TMS as an analgesic treatment.
This study was based on the hypothesis that impeding the

activity of the secondary somatosensory area (S2) should impede

the coding of the sensory component of pain intensity. This
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hypothesis is supported by the results of a functional magnetic
resonance imaging (fMRI) study showing that S2 is involved in the
decoding of quantitative changes in the physical strength of
nociceptive stimuli.71 Hence, a reduction of the function of S2
should result in a flattening of the relationship between pain
intensity, or pain stimulus–associated brain activation, and the
physical stimulus strength. The hypothesis was investigated
through an fMRI study on healthy volunteers, using a nociceptive
stimulus, ie, intranasal application of gaseous carbon dioxide
(CO2) that had previously been shown to particularly activate
S2.41

2. Methods

2.1. Subjects and study design

The study followed the Declaration of Helsinki and was approved
by the Ethics Committee of the Goethe-University Frankfurt am
Main, Germany (protocol number 250/11). Written informed
consent was obtained from each subject before participating in
the study. Effects of paired continuous theta-burst stimulation
(cTBS) on the processing and perception of nociceptive tri-
geminal input were investigated in 18 healthy right-handed
volunteers (mean age 6 SD, SD: 24.2 6 2.5 years; 7 men). All
subjects had been identified as responders to TMS in a test
session before the actual experiments, as published previously.33

The subjects’ health status was ascertained by medical history
and physical examination. Inclusion criteria were an age between
18 and 50 years and no relevant medical history, whereas
exclusion criteria comprised current diseases, drug intake during
the week preceding the experiment with the exception of oral
contraceptives, and the presence of contraindications for TMS
and fMRI. Alcohol was prohibited for a period of 24 hours before
the experiments.

The study was based on a double-blind 3-way crossover
design (Fig. 1), using either (1) cTBS of the primary motor cortex
(M1) hand representation (“M1 verum”), or (2) cTBS of the
secondary somatosensory cortex S2 (“S2 verum”), or (3) sham
stimulation as the 3 main experimental conditions. The stimula-
tion conditions were assessed at 3 different days separated by an
interval of at least 1 week to avoid carryover effects, considering
that for cTBS, cortical modulation lasted at least 50 minutes91

while in chronic pain conditions, rTMS induced a significant pain
decrease for up to 8 days.50 At each day, the stimulation coils
were placed successively at position M1 and S2, independent of
the type of stimulus, to preserve blindness. The sham coils
generated very similar clicks as the active coils, which were
sensed also on the scalp; hence, the subjects were unable to
point at which one was the sham or the verum stimulation.

2.2. Transcranial magnetic stimulation

2.2.1. Subject preselection and individual localization of M1
and S2

Subjects were selected based on their response to TMS targeted
at the right hemispheric M1 corresponding to the representation
of the first dorsal interosseous (FDI) muscle of the left hand
assessed in a separate session before the actual experiments
and as reported in all detail previously.33 In brief, the raw surface
electromyography (EMG) signal was amplified, filtered (bandpass
of 20-2000Hz; Counterpoint Mk2, Dantec Elektronik, Skovlunde,
Denmark), analog-to-digital converted at a sampling rate of 5 kHz
(CED Micro 1401; Cambridge Electronic Design, Cambridge,
United Kingdom), and stored in a computer for online visual

inspection and offline analysis. Focal TMS of the hand area of the
right M1 was performed with a figure-of-eight coil (Cool-B65;
MagVenture, Farum, Denmark, diameter of each wing 65 mm)
connected to a MagPro X100 magnetic stimulator (MagVenture)
using a monophasic current waveform to induce a posterior-
anterior current in the brain. The optimal coil position to elicit
motor evokes potentials (MEPs) in the left FDI was defined as the
site where TMS at suprathreshold stimulus intensity consistently
produced the largest MEP. This “hotspot” was marked with
a soft-tipped pen on a swimming cap on the subject’s head to
assure reproducible positioning of the coil throughout the
experiments. The coil was held tangentially to the scalp with
the handle pointing backwards and 45˚ away from the midline. The
stimulation intensity was then adjusted to evokeMEPs in the left FDI
with peak-to-peak amplitudes of 1.0 6 0.3 mV. This intensity was
used for all subsequent MEP recordings in the same subject.

2.2.2. Individual localization of M1 and S2

In addition, to obtain precise localizations of M1 and S2,
a separate fMRI session was performed. During this session,
the subjects received intranasal nociceptive stimuli (25 pulses of
gaseous CO2 at a concentration of 65% vol/vol; for details, see
below) at an interval of approximately 25 seconds. Subsequent
fMRI data analysis provided the localization of S2. Then, 2
different images were alternatingly presented to the subject on
a computer screen. In detail, a green image showing the written
command “move” instructed the subject to extend the left index
finger repeatedly at a frequency of approximately 1 Hz, whereas
an image showing the written command “hold still” instructed the
subject to rest the finger until the green image appeared again.
Subsequent fMRI data analysis provided the localization of M1.
These measurements took place at least 1 week before the main
experiments started.

2.2.3. Induction of neuronal plasticity using continuous
theta-burst stimulation

The individual localizations of M1 and S2 were transferred to the
TMS navigation system (LOCALITE GmbH, Schloss Birlinghoven
Sankt Augustin, Germany), enabling the exact alignment of the
stimulatingmagnetic field and its precise orientation towardM1 or
S2. For this purpose, the positions of the TMS coil and the
subject’s head were recorded by a camera system using
reflectors, which had been attached and displayed on top of
the previously acquired fMRI. An importantmaneuver was to drive
a pointer around the subjects’ head, which had to be detected by
the camera and to be adjusted to the anatomical MRI data for
surface registration. This allowed adjusting the TMS coil
accurately to the brain target areas. These 2 areas were marked
with a soft-tipped pen on a swimming cap on the subject’s head
to assure reproducible placement of the coils throughout the
measurements. Neuronavigation and cTBS application took
place in different rooms. To save time between cTBS and MRI
scans, cTBS was applied in the MRI area without navigation. The
navigated coil targets were marked on the swimming cap to
ensure the same coil positions for the actual cTBS application.

Continuous theta-burst stimulation was delivered by means of
a MagPro X100 magnetic stimulator connected to a 65-mm
figure-of-eight coil (Cool-B65; MagVenture) using a biphasic
current waveform (first phase: anterior-posterior–induced current
in the brain; second phase: posterior-anterior–induced current)
with the coil placed tangentially to the scalp with the handle
pointing backwards and 45˚ away from the midline. The active
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motor threshold was defined as the lowest stimulus intensity,
which elicited small MEPs ($200 mV) in at least 5 of 10
consecutive trials during a slight tonic contraction (approximately
20% of the maximal strength) of the left FDI muscle, using the
relative frequency method.32 Active motor threshold values were
rounded to the nearest 1% of maximum stimulator output (MSO).
Stimulus intensity was set at 80% of active motor threshold as
determined with the biphasic pulse configuration. The mean (6
SD) across all subjects was 34.2 6 5.9% MSO. A total of 600
pulses was delivered, using an established stimulation pattern
with 3-pulse bursts at 50 Hz, and bursts were repeated every 200
milliseconds,38 providing a total duration of cTBS of 40 seconds.
A repeat of the cTBS took place after 10minutes (spaced cTBS29)
before the subject underwent a further fMRI scan for postbase-
line. Spaced cTBS was chosen as protocol because it had
demonstrated in previous work more effective long-term
depression-like decrease of corticospinal excitability after M1
stimulation, and resistance to dedepression, when compared
with a single cTBS train.29 The coil was connected to a water
cooling system kept at a constant temperature of 19˚C. Sham
cTBS was delivered using a matched, air-cooled sham TMS coil
(MCF-P-B65 placebo-coil; MagVenture). The sham coil’s mag-
netic shield provides a field reduction of approximately 80%. The
placement of the sham coil was similar to the regular Cool-B65-
coil during active stimulation. Using the same stimulation pattern
as in the active condition ensured a replication of the look and
sound of active cTBS.

2.3. Nociceptive stimulation

For nociceptive stimulation, a chemosensory pain model47

was applied. This pain model has been successfully used for
more than 30 years in pharmacological pain studies, starting
from 1985,47 and has been described in a recent computa-
tionally aided analytical review of human pain models as one
of the best predictive models for clinical effects of analgesic
drugs.70 The model as applied in this study was based on the
application of short pulses (500 ms) of gaseous CO2 to the
subject’s right nostril by means of an olfactometer (OM/2;
Burghart Messtechnik GmbH, Wedel, Germany). The pulses
were embedded in a continuously flowing airstream of 8 L/
min at controlled temperature (36.5˚C) and humidity (80%
relative humidity) to avoid concomitant excitation of thermal
or mechanical sensors.47 In this study (Fig. 1), each subject
received intranasally 80 CO2 stimuli (20 stimuli for each of 4
different and randomly distributed strengths: 35, 50, 65, and
80% vol/vol) at long randomly spaced intervals of 13.5 to 28.2
seconds to minimize habituation effects.39 After each
stimulus, subjects rated its pain intensity by means of a visual
analog scale (VAS), displayed randomly within 3.4 to 6.6
seconds (mean: 4.9 seconds) after stimulus application and
ranging from 0 (“no pain”) to 100 (“pain experienced at
maximum”). Each session of nociceptive stimulation, in-
tensity rating, and fMRT data acquisition (see below) took
approximately 27 minutes.

Figure 1. Schematic representation of the study design. The effects of deactivating cTBS transcranial stimulation on the pain-intensity ratings of intranasal
nociceptive stimuli (500-ms pulses) of gaseous carbon dioxide (CO2) at 4 different concentrations (35, 50, 65, or 80% vol/vol) were assessed using 3 main
experimental conditions comprising either (1) cTBS of the primary motor cortex (M1) hand representation (“M1 verum”), or (2) cTBS of the secondary
somatosensory cortex S2 (“S2 verum”), or (3) sham stimulation. The experimental conditions were assessed at random order at separate days scheduled at an
interval of at least 1 week. During each study day, 2 experimental sessions with nociceptive stimulation, pain-intensity ratings, and fMRI imaging were performed.
After the baseline session, cTBS (or sham) was applied according to the respective study condition. During each session, subjects received 80 CO2 stimuli (20
stimuli for each of 4 different and randomly distributed strengths) at long randomly spaced intervals of 13.5 to 28.2 seconds. After a randomized interval of 3.4 to
6.6 seconds, the stimulus intensity is estimated on a visual analogue scale (enlarged section top left). cTBS, continuous theta-burst stimulation; fMRI, functional
magnetic resonance imaging.
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2.4. Acquisition of functional magnetic resonance
imaging data

During the session of nociceptive stimulation, an event-related
design was used for fMRI data acquisition. The blood oxygen-
ation level–dependent response to each stimulus was recorded
at a field strength of 3 T with a dedicated head scanner
(Magnetom Allegra; Siemens Medical Solutions, Erlangen,
Germany), equipped with a 4-channel transmit–receive head
coil. To reduce motion artifacts, the subject’s head was
immobilized using foam pads. For acquisition of fMRI data,
a T2*-weighted gradient-echo (GE) echo-planar imaging (EPI)
sequence with the following parameters was used: TR 5 2048
milliseconds, TE5 30milliseconds, flip angle5 90˚, echo spacing
5 420 ms, matrix size 5 643 64, and in-plane resolution 5 3 3
3 mm2. A total of 810 volumes were acquired per run, each of
which comprised 32 slices with 3-mm thickness and an interslice
gap of 1 mm, acquired in descending order; the first 5 volumes of
each scanning block were discarded to ensure steady-state
conditions. A total of 6 experimental sessions was performed for
each subject to obtain measurements before and after each of 3
stimuli (cTBS of M1, cTBS of S2, sham, at 3 separate days with 2
sessions, ie, before and after cTBs at each day).

For subsequent off-line correction of distortions in the EPI
images due to inhomogeneities of the staticmagnetic field B0,3,40

magnetic field mapping was performed through GE imaging with
identical geometric parameters, and 2 different TE values (4.89
and 7.35 ms) from which magnitude images and a phase
difference map were calculated directly on the scanner. In
addition, a T1-weighted anatomical data set with 1-mm isotropic
resolution was acquired for each subject, using a 3-dimensional
(3D) magnetization prepared rapid gradient echo (MP-RAGE)66

sequence with the following parameters: TR 5 2200
milliseconds, TE 5 3.93 milliseconds, flip angle 5 9˚, TI 5 900
milliseconds, FOV 5 256 3 256 mm2, one slab with 160 sagittal
slices of 1-mm thickness, using parallel acquisition (GeneRalized
Autocalibrating Partial Parallel Acquisition, GRAPPA31) with an
acceleration factor of 2 in phase encoding direction and aduration
of 4 minutes.

2.5. Data analysis

2.5.1. Analysis of functional magnetic resonance imaging
data

Functional MRI data could be analyzed from 16 subjects because
of data loss in the remaining 2 volunteers. Data were analyzed
using the SPM12 Matlab toolbox (http://www.fil.ion.ucl.ac.uk/
spm/software/spm12/; Wellcome Department of Imaging Neu-
roscience, London, United Kingdom24,92) on Matlab 2017b
(Mathworks, Natick, MAUS) on an Intel Core i9 computer
(operating system: Ubuntu Linux 17.10.1 64-bit). During each
session, 810 volumes were acquired, which resulted in a total of
4860 volumes for all 6 runs acquired from each subject. The
analysis of the brain activations triggered by the CO2 stimuli was
performed in 2 steps comprising (1) image preprocessing
followed by (2) first- and second-level statistical analysis for the
identification of pain stimulus–related brain activations and their
modulation by the 3 different TMS treatments (cTBS of M1, cTBS
of S2, and sham).

2.5.1.1. Functional magnetic resonance image
preprocessing

The data preprocessing pipeline integrated removal of the first 5
volumes in the scan series to avert T1 equilibration effects,

realignment of all volumes to the first volume to correct for subject
motion, and unwarping using the respective field map. Sub-
sequently, data were corrected for acquisition time (slice timing).
The high-resolution T1-weighted anatomical image was co-
registered to the mean-EPI (created during the realign and
unwarp process), segmented and normalized using 4th-degree
B-spline interpolation to obtain image voxel sizes of 2 3 2 3
2 mm3. The resulting spatial normalization parameters were
applied to the volumes of the EPI sequence that were sub-
sequently smoothed with an isotropic 9-mm full-width half-
maximum Gaussian kernel.

2.5.1.2. Functional magnetic resonance imaging data
analysis

The brain activations after administration of the nociceptive
trigeminal CO2 stimuli were analyzed by adding to the design
matrix a first-order parametric regressor modulating the stick
functions for either of the CO2 concentrations (order: 35, 50, 65,
80% vol/vol). Furthermore, the 6 rotational and translational
parameters from the rigid body transformation, obtained during
image realignment, were modeled as covariates of no interest. All
regressors were convolved with the canonical hemodynamic
response function. Low-frequency fluctuations of the MR signal
were removedwith a high-pass filter with a cutoff at 128 seconds.
Voxelwise regression coefficients for all regressors were esti-
mated using least squares within SPM12.

Aftermodel estimation, the effects of interest were tested by linear
contrasts, generating statistical parametricmaps of t-values for each
subject. The design of this analysis directly addressed the main
hypothesis of this study. Therefore, for brain activations associated
with the different strengths of the 4 CO2 stimuli, contrast images
were created separately for each experimental condition and
measurement. The contrast [-3 -1 1 3] was used, which models
a linear relationship between stimulus strength and associated brain
activations, yielding a single-contrast image per subject. These
contrast images were generated in a first-level analysis and
submitted to a group-level analysis.

The group-level analysis of the TMS effects on brain activation
followed a factorial 233 analysis of variance (ANOVA) design, testing
the influence of the factors “measurement” (baseline, post-cTBS) and
“condition” (cTBS treatment:M1verum,S2verum, sham)on the linear
relationshipbetweenstimulus strengthandassociatedbrainactivation
as found in the first-level analysis. Contrasts for main effects and the
interaction terms TMS by measurement were calculated. These
analyses were performed using the “full-factorial” design provided by
SPM12. The contrast of main interest consisted of the interaction
between the ANOVA factors. In the case of significant effects, post
hoc t-contrast was performed to specifically test the hypothesis that
cTBS treatment flattened the linear response vs stimulus strength
relationship for the M1 and S2 verum conditions against the placebo
(shamTBS) condition, using the SPM t-contrasts [1 0 -1 -1 0 1] for the
M1 verum and [0 1 -1 0 -1 1] for the S2 verum conditions. In each
case, the entries in the design matrix correspond to measurement1/
condition1, measurement1/condition2, measurement1/condition3,
measurement2/condition1, measurement2/condition2, and
measurement2/condition3, according to the factors defined above.
The statistical parametric maps (SPMt) resulting from each analysis
were interpreted with regard to the probabilistic behavior of Gaussian
random fields. Results are reported at P , 0.01 (family-wise
error-corrected) at cluster level with a cluster size threshold of 5
voxels. The localization of brain activations was aided by the anatomy
toolbox, version 2.5.2.21 Locations of significant peak activations are
reported in Montreal Neurological Institute (MNI) coordinates (mm).
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2.6. Analysis of intensity ratings of the nociceptive stimuli

Psychophysical data could be analyzed from 17 subjects
because of data loss in the remaining volunteer. A total of 8160
VAS ratings was available for data analysis (17 subjects, each of
whom received and rated 80 stimuli during each of 6 experi-
ments, 17 3 80 3 6 5 8160). Data were evaluated in 3 different
ways: (1) classical ANOVA, (2) unsupervised data exploration
using cluster analysis and Gaussian mixture modeling, and (3)
supervised machine learning using different techniques. These
analyses had 2major goals: (1) to establish the expected effect of
the CO2 concentration as a positive control for the successful
design and performance of the experiments. The results were
used to demonstrate that the data provided a suitable basis for
the second goal: (2) to assess an effect of the TMS condition.
These analyses were performed using the R software package
(version 3.4.3 for Linux; http://CRAN.R-project.org/).20

2.6.1. First evaluation: analysis of variance

The hypothesis underlying this study, ie, that cTBS treatment flattens
the linear relationship between the pain stimulus strength and the
pain response, was directly targeted by analyzing the changes in the
slopes of this relationship. Therefore, the slopes of this curve were
calculated by means of linear regression performed using the “lm”
command implemented in the base package of the R software
package. Subsequently, the slopeswere submitted to an analysis of
variance for repeated-measures ANOVA (rm-ANOVA) with the
within-subject factors “condition” (cTBS treatment: M1 verum, S2
verum, and sham) and “measurement” (baseline and post-cTBS).
The design of this analysis reflected the analysis of the fMRI data (see
above). In addition, the data were submitted to a complete rm-
ANOVA, with the within-subject factors “condition” and “measure-
ment” (see above) and “CO2 concentration” (35, 50, 65, or 80% vol/
vol). Calculations were performed using the R “aov” command
implemented in the basic R software package “grDevices.” The
a-level was set at 0.05.

2.6.2. Second evaluation: unsupervised data exploration for
subgroup identification

Data were submitted to a cluster analysis to assess whether the
pain ratings of the CO2 stimuli provided a group structure that
agreed (1) with the CO2 concentrations or (2) with the TMS
conditions. To study a cluster structure that agreed with the CO2

concentrations of the applied nociceptive stimuli, which served as
a positive control, the data were arranged into a 68 3 6-sized
matrix, ie, 17 subjects rating the pain of CO2 stimuli of 4 different
strengths (173 45 68) during 3 experimental conditions always
at baseline and after TMS stimulation (3 3 2 5 6). To study
a cluster structure that agreed with the experimental conditions
with respect to the TMS condition, the data were rearranged into
a 51 3 8 matrix, ie, 17 subjects tested under 3 experimental
conditions (51) rating the pain of CO2 stimuli at 4 different
strengths at baseline and after TMS stimulation (4 3 2 5 8).

These datamatriceswere explored for a group structure using the
Ward method88 of hierarchical clustering42 with the Euclidean
distance among the subjects’ VAS ratings. To identify the optimum
number of clusters in the data space, a cluster stability score was
computed addressing the consensus in cluster assignments across
multiple runs of the clustering algorithm on data sets created by
repeated random resampling from the original data set.63 Specifi-
cally, the stability score captures the average proportion of
observations not placed in the same cluster during repeated runs.74

Clustering, including stability assessments, was performed
using the progeny algorithm,36 which selects the optimum cluster
number that renders the most stable clustering by evaluation of
clustering stability starting with an initial clustering of the full data
set, followed by bootstrapping and repetitive clustering. During
resampling, the algorithm randomly sampled feature values with
replacement to construct new samples, so-called “progenies,”
rather than directly sampling existing samples as in more
common algorithms, which has been shown to outperform some
classical methods in discovering clinically meaningful patient
groupings in biomedical data sets.36 A number of k 5 [2…8]
clusters were tentatively chosen, using 10 progenies in 10
randomly created data sets and 100 iterations, which corre-
sponds to the defaults of the R software package “progenyClust”
(https://cran.r-project.org/package5progenyClust).37 To obtain
SDs of the stability measures, the procedures were repeated 100
times. The final number of clusters was chosen on the basis of the
stability score criterion.36 The clustering result was visually
assessed by drawing Silhouette plots that provide a graphical
interpretation and validation of data clusters76 as implemented in
the R library “cluster” (https://cran.r-project.org/
package5cluster).59

After establishment of the cluster number and cluster member-
ship of the subjects, the agreement of the cluster structurewith (1)
the CO2 stimulus intensity or (2) the TMS condition was analyzed
by submitting the cross-tabulated data (cluster membership vs
previous classification, ie, stimulus concentration or experimental
condition) to x2 statistics.73 The a-level was set at 0.05.

A further unsupervised analysis addressed possible group
structures in the steepness of the linear relationship between pain
and physical stimulus strength. Specifically, the cTBS-mediated
inhibition of S2 processing had been expected to flatten the pain
intensity vs the CO2 concentration curve.71 This analysis was
based on the slope of the respective curve obtained through
linear regression as described above. In detail, the slope
observed at baseline was subtracted from the slope observed
after cTBS application, at an individual level and separately for
each experimental condition. Thus, the expected effect of S2
inhibition would be reflected by negative values, ie, a numerically
smaller slope after cTBS application as compared to the slope
observed at baseline.

The slope differences were explored for a group structure that
was expected to (1) reflect the experimental conditions by an
over-representation of slope differences calculated for the S2
verum condition in groups with negative differences and in
addition, (2) a possible responder vs nonresponder partition of the
cohort, analogous to the observation in the preliminary experi-
ments of the present project.33 Specifically, the distribution of the
changes in the slope of the linear relationship between pain
intensity and CO2 concentration was investigated by analyzing
the probability density function (PDF) as described previ-
ously.55,84 In brief, the Pareto density estimation, ie, a kernel
density estimator particularly suited for the identification of groups
in the data,83 was used. A multimodal distribution of the slope
differences was assessed by fitting a Gaussian mixture model
(GMM) to the Pareto density estimations as
pðxÞ 5 +M

i 5 0wiNðxjmi; siÞ , where N(x|mi, si) denotes Gauss-
ian probability densities (components) with mean values mi and
SDs si. The wi denote the mixture weights indicating the relative
contribution of each Gaussian component to the overall
distribution, which add up to a value of 1. M denotes the number
of components in themixture. Gaussianmixturemodel fitting was
performed with the R software package “AdaptGauss” (https://
cran.r-project.org/package5AdaptGauss).84 To determine the
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optimum number of components, model optimization was
performed for M 5 1 to 5 components. The final model was
selected on the basis of likelihood ratio tests.80 Subject
association to the identified subgroups was obtained using the
Bayes theorem7 that provided the probability that an individual
observation belongs to mode i calculated as the posterior
probability. In the case of a relevant group structure, associations
with the experimental conditions were statistically analyzed
through x2 tests.73

2.6.3. Third evaluation: supervised machine learning to
predict group membership from pain-intensity ratings

After rotation and rearrangement of the data matrix, a classifica-
tion problem was established by the creation of the 2 matrices
described above, comprising (1) the 68 3 6-sized subject/CO2

concentration vs VAS-rating acquisitionmatrix and (2) the 513 8-
sized subject/experimental condition vs CO2 stimulus strength
rating matrix. Subsequently, the data were submitted to
supervise machine-learning analyses. The idea behind these
analyses was to train an artificial intelligence algorithm, based on
different methods of machine learning, to learn the association of
the CO2 intensity ratings with (1) the physical strength (CO2

stimulus intensity) of the rated nociceptive stimulus as a positive
control for a successful pain experiment and with (2) the TMS
condition. The goal was to find out whether this method
performed better than guessing the class association (CO2

stimulus intensity or TMS condition) and, on the basis of this
result, to decide whether the pain ratings provide information
relevant to the class association, or if they are not related to the
underlying stimulus strength or experimental condition.

In the present analysis, the mapping of the input space to the
output space was performed using different methods of
supervised machine learning: (1) random forests,11 (2) k-nearest
neighbors (kNNs),16 (3) support vector machines,15 and (4) naive

Bayesian7 classifiers. The goal was to provide an internal
validation of the results, but not to compare the performances
of different machine-learning methods. The choice of supervised
methods covers a variety of machine-learning classifiers pre-
viously used in pain research58 such as prototype-based (eg,
kNN), collective decision-based (eg, random forests), and
neuronal network-based (support vector machines) classifiers,
with the addition of a classical method based on a naive Bayesian
classifier.

Random forests creates sets of different, uncorrelated, and
often very simple decision trees11 with conditions on features as
vertices and classes as leaves. The splits of the features are
random and the classifier relates on the majority vote for class
membership provided by a large number of decision trees. In the
present analysis, 1000 decision trees were built containing sqrt(d)
features as the standard setting implemented in the R library
“randomForest” (https://cran.r-project.org/package5random-
Forest).52 The number of trees was heuristically based on visual
analysis of the relationship between the number of decision trees
and the classification accuracy, which indicated that beyond 100
trees, the classification-balanced accuracy remained stable and
a larger number merely consumed available computation time.

The kNN classification16 is a nonparametric method that
belongs to the most frequently used algorithms in data science,
although it is one of the basic methods in machine learning.
During kNN model building, the entire labeled training data set is
stored while a test case is placed in the feature space in the
vicinity of the test cases at the smallest high-dimensional
distance. The test case receives the class label according to
the majority vote of the class labels of the k training cases in its
vicinity. In the present implementation, the size of k was
established in resampling experiments with k set at 3 or 5. Even
numbers of k intuitively make a majority vote on which the class
assignment is based difficult when one of the nearest neighbors
belongs to class 1 and the other to class 2.We tested k5 3 and 5

Table 1

Clusters of brain regions showing a linear relationship between brain activation and stimulus strength,modeled at the SPM first-

level analysis as contrast [-3 -1 1 3] for the nociceptive stimuli at CO2 concentrations of 35, 50, 65, and 80% vol/vol, respectively.

Cluster # Voxels x* y* z* Label† Distance F value P (FWE)

1 1668 38 24 10 “Insula_R” 0 87.09 0.00000

54 26 14 “Rolandic_Oper_R” 0 58.67 0.00000

62 218 22 “SupraMarginal_R” 0 55.79 0.00000

2 1332 236 28 12 “Insula_L” 0 72.10 0.00000

232 14 6 “Insula_L” 0 69.70 0.00000

238 24 4 “Insula_L” 0 59.19 0.00000

3 376 24 12 48 “Supp_Motor_Area_L” 0 55.39 0.00000

10 14 40 “Cingulum_Mid_R” 0 42.90 0.00011

210 16 34 “Cingulum_Mid_L” 0 36.72 0.00081

4 112 242 272 28 “Occipital_Mid_L” 0 49.48 0.00002

5 173 24 256 8 “Precuneus_L” 0 45.33 0.00005

28 248 0 “Lingual_L” 0 38.62 0.00044

6 73 12 248 2 “Lingual_R” 0 41.61 0.00017

7 98 46 258 22 “Temporal_Sup_R” 0 39.55 0.00032

36 252 18 “Temporal_Mid_R” 4 32.56 0.00318

8 26 20 212 30 “Caudate_R” 6 36.61 0.00084

9 23 24 62 4 “Frontal_Sup_Medial_L” 0 34.76 0.00153

10 8 224 242 212 “Fusiform_L” 0 31.60 0.00439

* MNI coordinates.

† R, right; L, left.

For anatomical localization, the anatomy toolbox, version 2.5.218 was used. Significant peak activations are reported as Montreal Neurological Institute (MNI) coordinates (mm). FWE, family-wise-error.

January 2019·Volume 160·Number 1 www.painjournalonline.com 177

Copyright � 2018 by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited.

https://cran.r-project.org/package=randomForest
https://cran.r-project.org/package=randomForest
www.painjournalonline.com


as these values are often used and constitute the default in
various implementations of kNN. At k 5 3 and Euclidean
distance, the best classification accuracy was observed and
more sophisticated implementations of nearest neighbor-based
class assignment such as weighting or the use of kernel of
different shapes were tested but did not provide any improve-
ments regarding the basic version. These calculations were
performed using the R software package “class” (https://cran.r-
project.org/package5class).87

Support vectormachines are supervised learningmethods that
classify data mainly based on geometrical and statistical
approaches used for finding an optimum decision surface
(hyperplane) that can separate the data points of one class from
those belonging to another class in the high-dimensional feature
space.15 Using a kernel function, the hyperplane is frequently
selected in a way to obtain a tradeoff between minimizing the
misclassification rate and maximizing the distance of the plane to
the nearest properly classified data point. In the present analysis,

a Gaussian kernel with a radial basis was used. The analyses
were performed with the R library “kernlab” (https://cran.r-
project.org/package5kernlab).46

Bayesian classifiers were used, which provide the probability of
a data point belonging to a specific class calculated by
application of the Bayes theorem.7 In naive Bayesian classifiers,
the oversimplified assumption is included that all features are
conditionally independent of each other, which is a widely used
technique to assign class labels to the samples from the available
set of features, describing a special case of the more general
Bayesian network model. The calculations were performed with
the R package “e1071” (Meyer D, https://cran.r-project.org/
package5e1071).

The machine-learning methods were applied to the 2 original
data matrices as described above. In addition, for the pain
intensity vs CO2 concentration condition, positive and negative
control data matrices were created by rearranging the original
VAS ratings with respect to the associated CO2 stimulus class

Figure 2. Brain regions showing a linear relationship between activation and stimulus strength, modeled at the SPM first-level analysis as contrast [3 1 1 3] for the
nociceptive stimuli at CO2 concentrations of 35, 50, 65, and 80% vol/vol, respectively (glass brain, left). The activations are superimposed on axial slices of the
canonical MR template implemented in SPM12 (right). The significance at voxel level is color coded from dark red to yellow with increasing F values (Table 1).
Activations are shown at a threshold of P, 0.05 (family-wise error-corrected). The figure was created using the SPM12 Matlab toolbox (http://www.fil.ion.ucl.ac.
uk/spm/software/spm12/; Wellcome Department of Imaging Neuroscience, London, United Kingdom24,92) and the xjViewMatlab toolbox (http://www.alivelearn.
net/xjview).
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information. Specifically, a positive control data set was obtained
by sorting the original VAS rating information in descending order

such that the highest ratings were artificially associated with the

80% vol/vol CO2 condition while the lowest ratings became

associated with the 35% vol/vol CO2 stimuli. The expectation was

that with this data scenario, the association of the CO2 stimulus

classes could be almost perfectly obtained by all machine-

learning methods. In addition, a negative control data set was

obtained by random permutation of the VAS data such that the

ratings lost correlation with the CO2 stimulus concentrations. The

expectation was that, during machine learning, the association

with the stimulus classes was not better than guessing and

should be consistently outperformed by the mapping of the true

VAS ratings to the stimulus classes.
The concept of training an artificial intelligence algorithm with

information to enable it to correctly associate an individual with
a stimulus class or experimental condition requires measures
against overfitting,67 which are usually based on splitting the data
set into a training subset that is provided to the artificial
intelligence algorithm during the learning phase and a test subset
that is not accessible to the artificial intelligence algorithm during
learning but provided when the trained algorithm is used for
classification; usually, this procedure is repeated several times in
a resampling design.67 Therefore, in all data sets, the classifiers
were trained at training data subsets comprising 2/3 of the data,
and subsequently, their performance was estimated on the test
data subset consisting of the remaining 1/3 of the data. This was
repeated in 1000 cross-validation runs using Monte-Carlo30

resampling and random splits of the original data set into new
training and test data subsets, using the R library “sampling”
(https://cran.r-project.org/package5sampling).81 Classifier per-
formance was primarily assessed as balanced accuracy,13,86

which is the mean of prediction sensitivity and specificity for each
olfactory diagnosis and reflects the average of correctly classified

cases proportional to the number of class members in class.
Furthermore, secondary measures of average classification
performance across olfactory diagnoses included test sensitivity
and specificity, and negative and positive predictive values
calculated using standard equations.1,2

3. Results

All 18 subjects finished the study without experiencing any
noticeable side effect of cTBS.

3.1. Pain-related brain activations

From the 18 healthy right-handed volunteers, only 16 (mean age
6SD, SD: 23.86 2.3 years; 6men) were included in the analysis,
due to insufficient data about stimulus timing in relation to the
image acquisition for 2 subjects. In the following, the results of the
23 3 ANOVA design, which was applied to assess the influence
of the factors “measurement” (baseline, post-cTBS) and “condi-
tion” (cTBS treatment: M1 verum, S2 verum, sham) on the linear
relationship between stimulus strength and associated brain
activations addressed in the first level, will be presented.

3.1.1. Brain activations associated with different stimulus
strengths

Areas showing a linear relationship between brain activation and
stimulus strength were identified through SPM first-level analysis
with contrast [3 1 1 3] for the nociceptive stimuli at CO2

concentrations of 35, 50, 65, and 80% vol/vol. Second-level
group analysis of brain activation vs stimulus strength revealed 10
clusters (Table 1). The global maximum activation was located at
MNI coordinates x5 38, y524, z5 10mm (Fig. 2) in the largest
cluster (1668 voxels), located at the right insula, the right Rolandic

Table 2

Clusters of brain regions reflecting the different influences of the cTBS condition on the linear relationship between brain

activation and stimulus strength, modeled at the SPM first-level analysis as contrast [-3 -1 1 3] for the nociceptive stimuli at CO2

concentrations of 35, 50, 65, and 80% vol/vol.

Cluster # Voxels x* y* z* Label† Distance F value P (FWE)

1 3314 56 26 14 “Rolandic_Oper_R” 0 87.09 0.00000

38 26 10 “Insula_R” 0 58.67 0.00000

66 24 10 “Rolandic_Oper_R” 0 55.79 0.00000

2 3659 236 210 14 “Insula_L” 0 72.10 0.00000

258 0 8 “Rolandic_Oper_L” 0 69.70 0.00000

256 210 16 “Postcentral_L” 0 59.19 0.00000

3 1283 210 12 34 “Cingulum_Mid_L” 0 55.39 0.00000

8 14 38 “Cingulum_Mid_R” 0 42.90 0.00011

24 12 46 “Supp_Motor_Area_L” 0 36.72 0.00081

4 1141 0 226 24 “Thalamus_L” 5.65 49.48 0.00002

26 216 24 “Thalamus_L” 2 45.33 0.00005

14 214 22 “Thalamus_R” 0 38.62 0.00044

5 451 14 266 222 “Cerebelum_6_R” 0 41.61 0.00017

24 258 226 “Cerebelum_6_R” 0 39.55 0.00032

6 150 214 262 224 “Cerebelum_6_L” 0 32.56 0.00318

7 12 22 26 68 “Supp_Motor_Area_L” 0 36.61 0.00084

* MNI coordinates.

† R, right; L, left.

The results of a factorial 2 3 3 ANOVA testing the influence of the factors “measurement” (baseline, post-cTBS) and “condition” (cTBS condition: M1 verum, S2 verum, sham) on the linear relationship between stimulus

strength and associated brain activations addressed in the first-level analysis are shown. For anatomical localization of brain activations, the anatomy toolbox, version 2.5.218 was used. Significant peak activations are reported

in Montreal Neurological Institute (MNI) coordinates (mm).

ANOVA, analysis of variance; cTBS, continuous theta-burst stimulation; FWE, family-wise error.
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operculum (corresponding to S2) and, in addition, the right
supramarginal gyrus. Results were statistically significant at the
FWE-corrected level (F . 55, P , 0.00001). The second largest
cluster comprised 1332 voxels (FWE-corrected significant level of
F . 59, P , 0.00001) and was located in the left insular cortex
(MNI coordinates x 5 236, y 5 28, z 5 12 mm).

3.1.2. Influence of the transcranial magnetic stimulation
condition on the relationship between brain activation and
stimulus strength

The influence of the cTBS condition on the relationship between brain
activation and stimulus strength was modeled using a 23 3 ANOVA
design with the factors “measurement” (baseline, post-cTBS) and
“condition” (cTBS condition: M1 verum, S2 verum, and sham). This
analysis revealed 7 clusters (Table 2). The global maximum activation
was located at MNI coordinates x5 56, y526, z5 14 mm (Fig. 3)

in the second largest cluster (3314 voxels), located at the right
Rolandic operculum (corresponding to S2) and the right insula.
Resultswerestatistically significant at theFWE-corrected level (F.55,
P , 0.00001). The largest cluster comprised 3659 voxels (MNI
coordinates x5236, y5210, z5 14mm) located in the left insular
and S2 areas, and in addition, in the postcentral gyrus corresponding
to S1. Subsequent t-contrasts indicated that significant reductions of
the steepness of the brain activation vs stimulus strength (CO2

concentration) relationshipmodeled at level 1 were observed after the
M1 verum condition, whereas cTBS targeted at S2 had no effect
(empty glass brains; Fig. 4).

3.2. Pain-intensity perceptions

Data were lost because of a technical error (failure of recording) in
one subject (#2). Therefore, the analyzed cohort comprised 17

Figure 3. Brain regions reflecting the different influences of the cTBS condition on the linear relationship between brain activation and stimulus strength, modeled
at the SPM first-level analysis as contrast [3 1 1 3] for the nociceptive stimuli at CO2 concentrations of 35, 50, 65, and 80% vol/vol. The results of a factorial 23 3
ANOVA testing the influence of the factors “measurement” (baseline, post-cTBS) and “condition” (cTBS condition: M1 verum, S2 verum, and sham) on the linear
relationship between stimulus strength and associated brain activations addressed in the first-level analysis are shown as a glass brain representation (left) and
superimposed on axial slices of the canonical MR template implemented in SPM12 (right). The significance at voxel level is color coded from dark red to yellowwith
increasing F values (Table 2). Activations are shown at a threshold of P , 0.05 (family-wise error-corrected). The figure was created using the SPM12 Matlab
toolbox (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/; Wellcome Department of Imaging Neuroscience, London, United Kingdom24,92) and the xjView
Matlab toolbox (http://www.alivelearn.net/xjview). ANOVA, analysis of variance; cTBS, continuous theta-burst stimulation.

180 O. Annak et al.·160 (2019) 172–186 PAIN®

Copyright � 2018 by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited.

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.alivelearn.net/xjview


healthy right-handed volunteers (mean age6 SD, SD: 24.26 2.7
years; 7 men).

3.2.1. Analysis of variance

The linear relationship between the pain VAS ratings and the
strength of the CO2 stimuli did not change after cTBS treatment.
This was reflected in the results of the rm-ANOVA analysis of the
slopes of this relationship, where neither statistically significant
main effects of the rm-ANOVA factors “measurement” or
“condition” were observed, nor was the important interaction
between these factors statistically significant (all P-values . 0.5;
for details see Table 3).

The pain-intensity ratings (individual medians per CO2 con-
centration, experimental condition, and measurement) on the
VAS (range: 0-100) were between 0 and 88.5. Pain-intensity
ratings increased with increasing CO2 concentration (Fig. 5).
Although this was reflected in a statistically significant effect of
the factor “CO2 concentration” in the rm-ANOVA (Table 3), the
ratings neither differed between the baseline and the

poststimulation sessions (nonsignificant effect of the rm-
ANOVA factor “measurement”), nor did the cTBS condition have
any effect on the pain intensity of the CO2 stimuli (nonsignificant
effect of the rm-ANOVA factor “condition” and no significant
interactions “condition” by “measurement” by “CO2 concentra-
tion”; for details, see Table 3).

3.2.2. Unsupervised data exploration for subgroup
identification

Unsupervised data analysis was used to explore whether the data
displayed a systematic structure that reflected the experimental
condition or hinted at subgroups of subjects in the sense of
responder/nonresponder.

Cluster analysis using the progeny algorithm resulted in k 5 2
clusters as the optimum number to describe the pattern of pain
ratings when rearranged for CO2 concentrations (Supplementary
Figure 1, available at http://links.lww.com/PAIN/A660), whereas
k 5 4 clusters were preferred to describe the pattern of pain
ratings when rearranged for cTBS conditions. These numbers

Figure 4. Brain regions where the cTBS treatment reduced the steepness of the linear relationship between brain activation and stimulus strength, for the M1
verum and the S2 verum conditions against the sham TBS condition, modeled as SPM t-contrasts [1 0 1 1 0 1] and [0 1 1 0 1 1], respectively, in a design
matrix–ordered measurement1/condition1, measurement1/condition2, measurement1/condition3, measurement2/condition1, measurement2/condition2, and
measurement2/condition3, according to the factors defined as “measurement” (baseline, post-cTBS) and “condition” (cTBS condition: M1 verum, S2 verum, and
sham). Although a reduction of the steepness of this relationship was observed during the M1 verum experimental condition, no effect was obtained during the S2
verum condition. The figure was created using the SPM12 Matlab toolbox (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/; Wellcome Department of Imaging
Neuroscience, London, United Kingdom24,92). cTBS, continuous theta-burst stimulation.
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provided the most stable clustering, starting with an initial
clustering of the full data set, based on the maxima observed
with the cluster stability score criterion proposed for the progeny
clustering algorithm.36 The clusters identified in the pain ratings
when rearranged for CO2 concentrations agreed significantly with
the CO2 concentrations as indicated by significant x2 test (x2 5
42.118, P5 3.7883 1029; supplementary Figure 1, available at
http://links.lww.com/PAIN/A660). This persisted when testing
out k 5 4 clusters, for which the heat plot and a cluster
dendrogram provided support, ie, the x2 test remained significant
in that 4-cluster scenario (x2 5 67.676, P 5 4.34 3 10211). By
contrast, the clusters identified in the pain ratings when
rearranged for the cTBS condition did not reflect the experimental
treatment (x2 5 3.631, P 5 0.7289; supplementary Figure 1,
available at http://links.lww.com/PAIN/A660).

The steepness of the linear relationship between the pain rating
and the physical stimulus strength was expected to decrease
after cTBS-mediated inhibition of S2 processing.71 Therefore, the
slopes of this relationship were evaluated after cTBS application
and at baseline, and their differences were analyzed for group
structures across the whole study. The expectation was a group
separation towards larger negative differences during the S2
verum condition. In addition, possible subgroups could hint at the
necessity to split the cohort into responders and nonresponders
in subsequent analyses. However, visual inspection of the
probability density distribution (PDF) of the slope differences
suggested merely a unimodal normal distribution with a few
outliers (supplementary Figure 2, available at http://links.lww.
com/PAIN/A660). The outliers probably had the effect that
statistical evaluation of goodness of fit favored a bimodal
distribution, ie, a Gaussian mixture model using M 5 2 modes
as indicated by a significant likelihood ratio test between M 5 1
and M 5 2 Gaussian modes (difference in minus 2 times log
likelihood: 219.03, P 5 2.74 3 1028). No more significant
improvement of the fit was obtained when a further Gaussian was

added, based on likelihood ratio tests (difference in minus 2 times
log likelihood: 20.996, P 5 0.574). However, the slope differ-
ences were evenly distributed between cTBS experimental
conditions across the whole data range (colored dots in
supplementary Figure 2, available at http://links.lww.com/PAIN/
A660) discouraging smaller differences observed during the S2
verum conditions or the presence of a responder subgroup.

3.2.3. Supervised machine learning to predict group
membership from pain-intensity ratings

Supervised machine learning applied in cross-validation experi-
ments using 1000 bootstrap random resamplings of 2/3 (new
training) vs 1/3 (new test) of the data provided the consistent
observation that, when using the true VAS ratings, the class
assignment to the CO2 concentration of the rated stimuli was
better than guessing (supplementary Figure 3, available at http://
links.lww.com/PAIN/A660), which established the relationship
between pain increasing with increasing stimulus strength on the
basis of quantitate standard test performance measures (sup-
plementary Figure 4, available at http://links.lww.com/PAIN/
A660). Thus, it can be concluded that the VAS ratings yield
information about the strength of the pain-generating stimulus.
This finding was further strengthened by the observation that,
when permuting the VAS ratings, ie, breaking their relationship to
the strength of the generating stimulus, all machine-learned
classifiers were not better than guessing, ie, were unable to
assign the stimulus strength based on the VAS information
provided. The assignment was not perfect as indicated by the
almost 100% classification accuracy achieved when the VAS
ratings were sorted, so that higher ratings became associated
with stronger stimuli. The latter experiment served as positive
control to verify that a less than perfect classification was not due
to poor implementation of the machine-learning methods.

In contrast to the observation that the VAS ratings allowed
conclusions about the strength of the pain-generating stimulus,
associating the ratings with the cTBS-related experimental
conditions failed. Specifically, all machine-learned classifiers did
not perform better than guessing when training them with VAS
rating information acquired during the different experimental
conditions, regardless of whether the ratings before and after
cTBS application were used or their differences (supplementary
Table 1 and supplementary Figure 3, available at http://links.lww.
com/PAIN/A660).

4. Discussion

In this study, cTBS application to the M1 was followed by
a significant impairment of the relationship between the strength
of nociceptive stimuli and the resulting brain activation. This effect
was mainly located in the insular cortex and the secondary
somatosensory area S2 (Fig. 3), which has previously been
identified as being crucially involved in the processing of pain
stimuli.71 Therefore, the results of this study clearly suggest
a cTBS effect on the central processing of trigeminal nociceptive
inputs. This is in line with previous reports of occasionally
successful pain modulations through targeting
M1.4,6,18,23,35,48–51,62,68,75,77

However, an analogous effect of the cTBS application on S2
was not observed. Hence, although the study was successful
from a technical point of view, it did not support the hypothesis
that inhibition of the function of S2 by setting a “virtual lesion”
should result in a flattening of the relationship between pain-
intensity and physical stimulus strength. This is despite S2 was

Table 3

Results of the analyses of variance for repeated-measures

(rm-ANOVA) of the slopes of the linear relationship between

pain ratings and stimulus strength and of the VAS ratings of

the nociceptive CO2 stimuli (Fig. 4), specifying the number of

degrees of freedom (df) and the F and P-values.

Effect df F P

Slopes of the VAS vs CO2 stimulus concentration

relationship, 3 conditions, 2 measurements

Condition 2.32 0.678 0.515

Measurement 1.16 0.139 0.714

Condition 3 measurement 2.32 0.172 0.842

VAS ratings, 3 conditions, 2 measurements, 4

CO2 stimulus concentrations

Condition 2.32 1.082 0.351

Measurement 1.16 0.117 0.736

CO2 concentration 3.48 174.6 ,2 3 10216

Condition 3 measurement 2.32 0.952 0.397

Condition 3 CO2 concentration 6.96 0.306 0.932

Measurement 3 CO2 concentration 3.48 0.453 0.716

Condition 3 measurement 3 CO2
concentration

6.96 0.206 0.974

The slopes of the relationship between VAS and CO2 concentration were analyzed by means of rm-ANOVA

with “condition” (ie, M1 verum, S2 verum, and sham TBS5 placebo) and “measurement” (baseline, post-

cTBS) as within-subject factors. The VAS ratings were analyzed by means of rm-ANOVA with “condition” (ie,

M1 verum, S2 verum, and sham), “measurement” (baseline, post-cTBS) and “CO2 concentration” (35, 50,

65, or 80% vol/vol) as within-subject factors.

ANOVA, analysis of variance; CTBS, continuous theta-burst stimulation; VAS, visual analog scale.
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proposed as a cortical target for orofacial neuropathic pain where
its stimulation producedmore pronounced analgesic effects than
that of S1/M153 and also contrasts with findings that rTMS over
S2 produced hypoalgesia to heat and cold stimuli; however, the
latter with a restriction to male volunteers85 or with observations
that TMS over S2-disrupted pain-intensity coding,54 which in turn
agrees with own previous observations.71 Therefore, this study
cannot discourage the inclusion of S2 as a TMS target in future
studies on the modulation of pain through this method.

The present negative findings could be due to insufficient
inhibition of S2 by cTBS. It should be noted that subjects were
selected according to the electromyographic observations after
M1 deactivation using cTBS, which led to the report of
a responder subgroup33 from which this study participants were

exclusively selected. Although this establishes the principal
functioning of the experimental setup and proves the influence
of cTBS on M1, subject selection was based on a motor effect
generated at M1. This favoured M1 over S2, and in fact,
stimulation of M1 was successful. However, the effect addressed
in this study was a sensory change. We are not aware of a test
scenario that would allow for verifying a positive effect on the
sensation of pain without performing the whole study already
during the verification phase. Therefore, although having estab-
lished a general success of the chosen cTBS protocol, insufficient
modulation of the function of S2 remains as a possible cause for
the absent changes in pain perceptions when applying cTBS on
that region. There may be even a possibility that the selection
method had introduced a bias for positive findings with M1,

Figure 5. Intensity ratings of the CO2 stimuli on a VAS ranging from 0 to 100. For each strength (35, 50, 65, or 80% vol/vol), 20 stimuli were applied during baseline
sessions, ie, before cTBS application, and after cTBS application at 3 different experimental conditions, ie, M1 verum, S2 verum, and sham (placebo). The
Spaghetti plots show the individual median VAS ratings per stimulus strength (dots), connected by a straight line and color-coded for each individual subject. The
quartiles andmedians (solid horizontal line within the box) were used to construct the overlaid “box andwhisker” plots. Thewhiskers add 1.5 times the interquartile
range (IQR) to the 75th percentile or subtract 1.5 times the IQR from the 25th percentile and are expected to include 99.3% of the data if normally distributed. A
linear regression line and its confidence interval of estimate are overlaid showing the group trend of the pain intensity vs stimulus strength relationship. The figure
has been created using the library “ggplot2” (https://cran.r-project.org/package5ggplot2)90 with the R software package (version 3.4.3 for Linux; http://CRAN.R-
project.org/).20 cTBS, continuous theta-burst stimulation; VAS, visual analog scale.
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although in that case, it remains unclear how this should have led
to the enrolment of subjects particularly insensitive to cTBS on
S2. Another possibility as a directed bias is a variability of the
cTBS responses in S2 independent of those in M1. Indeed, it
cannot be excluded that the changes in sensory perceptions after
cTBS at S2 showed similarly high variability as observed in the
changes in motor responses after cTBS at M1; however, without
that, the observed responder/nonresponder subgroups neces-
sarily included the same subjects. Hence, although cTBS on M1
might have suppressive effects as intended, cTBS on S2 may
have exerted suppressive effects only in some participants while
no effects or opposite effects in others. This again emphasizes
the need of a responder selection criterion for sensory cTBS
effects. Exploring the relationship between changes in intensity
ratings and changes in the magnitude of the blood oxygenation
level–dependent response after cTBS on S2 might guide the
design of further studies addressing systematically the response
rates to S2 cTBS. However, in the present sample, the relation-
ship between stimulus strength and rating seemed unaffected by
cTBS on S2 except for a single subject (green line in Fig. 5). Thus,
the present sample size seems insufficient to address possible
subgroups at a reliable statistical power.

The finding that cTBS application on S2 did not provide the
hypothesized reduction in the processing of nociceptive input might
be due to a more complex architecture of stimulus intensity
processing that might not be adequately addressed by applying
cTBS exclusively to this brain area. In a previous experiment using
identical CO2 stimuli of different strengths, activations associated
with the nociceptive stimulationwere observed inmost regionsof the
so-called “pain matrix”5,14,61; however, correlations between brain
activation and stimulus intensity were found in the posterior insula,
the primary and secondary somatosensory cortex, the amygdala,
and the middle cingulate cortex. This distribute network may have
contributed to the failure to observe significant reductions in stimulus
intensity processing when impeding only a single component of this
network.Moreover, in independent assessments, alternative sites of
stimulus intensity coding were proposed. For example, in experi-
ments using fMRI8 or intracerebral EEG25 recordings, stimuli
perceived as painful were observed to elicit a correlated response
in the insular cortex rather than in S2, while the responses in S2
increased with stimulus intensity only below the pain threshold and
reached a plateau at suprathreshold levels. This contrasts with the
clear findings of an S2 localization of stimulus intensity coding, on
which the present hypothesis was based54,71; however, these
observations offer an explanation of the lack of cTBS effects when
targeted on S2 in the present experiments.

Among brain regions where cTBS over M1 altered the linear
relationship between stimulus-related activations and stimulus
strength was the thalamus (Table 2). Activation of M1 is not only
a pain epiphenomenon such as related to pain-evoked movement,
but a specific local response to nociceptive stimuli shownbymeansof
intracortical evoked potentials to non-noxious electrical and noxious
laser heat stimuli recorded from epileptic patients.26 Direct con-
nections between M1 and the thalamus have been shown in owl
monkeys,79where eachof themajor somatotopic divisions ofM1was
observed tobe connected in a somatotopically organized fashionwith
an anteroposteriorly elongated territory within the ventrolateral
thalamic complex, and most projections were reciprocal.79 Hence,
the effects located in the thalamus observed in this study probably
directly show a part of the mechanism of pain modulation by cTBS
over M1. Moreover, the thalamic effects could also be generated
through corticospinal circuits. Specifically, for movement-relevant
circuits, it has been shown recently that corticospinal fibers originating
in the mouse motor cortex directly synapse onto spinal premotor

interneurons.82 Moreover, activation in the motor cortex (M2) induced
firing of layer V neurons in S1 while blocking this pathway caused
deficits in sensory perceptions in mice,60 and corticocortical
connections between M1 and S1 also exist in humans.45 Further-
more, a direct connection between M1 and the spinal level is
supportedbyobservations that greater gray-matter volume inM1after
spinal cord injury was associated with amount of neuropathic pain,44

and corticospinal inputs have been found in cTBS experiments in
humans.27 Thus, present observations are compatible with evidence
about a more complex involvement of the motor cortex in the
modulation of pain including thalamic and corticospinal pathways.

Considering this possible involvement of S1 or M1, the vicinity
of these brain regions to S2 arises the possibility that cTBS
delivered over S2 may have also modulated the face represen-
tation within those regions. To contemplate this further, pre-
viously observed MNI coordinates available from studies with an
explicit focus on the localization of brain regions activated by the
CO2 stimulus were consulted. Specifically, after right-sided
intranasal stimulation, S1 was observed at MNI coordinates of
x, y, z 5 260, 221, 33 mm, and after left-sided intranasal
stimulation, S2was observed at 57,26, 24mm.9 To estimate the
distance, the Signed Differential Mapping neuroimaging software
library online coordinate utilities (Radua J, https://www.sdmpro-
ject.com/utilities/?show5Coordinates) was used. The distance
between these two coordinates was 118.3 mm, and when
switching S2 to the same side as S1, it was 17.6 mm.
Alternatively, the closest distance between activations assigned
to either S1 (239, 227, 54 mm) or S2 (245, 218, 21 mm) in 71
was 34.73 mm. In both variants, the focal effects of the cTBs
impulses of approximately 5-mm diameter are exceeded. This
remains true when calculating the distance between S1 and the
line linking the center of the TMS coil to S2 target. Specifically, the
coordinates of the S2 target were at x, y, z 5 48, 2, 10 mm (see
supplementary Figure 4, available at http://links.lww.com/PAIN/
A660), which indicates that the coil held over the skull was placed
at approximate coordinates of x, y, z 5 66, 2, 20 mm, which is
when switching to the same side at a distance of 27.1 mm from
the S1 coordinates taken from 9 or at 52.2 mm from the S1
coordinates taken from 71.

Similar data for M1 were not available because the face
representation was not experimentally addressed as in 85 where,
however, the coordinates were not reported. Therefore, a cos-
timulation of S1 with cTBS over M1 cannot be excluded.
Regardless of scattering effects of cTBS across regions,
coinfluences of cTBS over S2 through above-mentioned in-
terregional connections are possible and need to be considered
when interpreting present results. Indeed, this might have played
a role considering the small cTBS effects on the activation vs
concentration relationship observed at the stimulated sites,
according to an explorative SPM analysis of the effect sizes
using the SPM toolbox rfxPlot28 (supplementary Figure 4, avail-
able at http://links.lww.com/PAIN/A660).

Although cTBS applied to M1 clearly altered the brain
processing of nociceptive stimuli with different strength in a way
that reduced the slope of the linear relationship between brain
activation and stimulus strength, the cerebral modifications were
not accompanied by a similar change in the perceptions of
experimentally induced trigeminal nociceptive stimuli. By con-
trast, although several different methods of analyzing the pain
rating data were used, comprising both the fMRI factorial analysis
of the slope of the above relationship implemented as an rm-
ANOVA, and several different supervised methods including
machine learning, results did not support the hypothesis of
a cTBS effect on the perception of trigeminal nociceptive input.
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The complex analysis of the VAS data was performed to prove
that the psychophysical data provided sufficient resolution of
different stimulus strengths to observe this effect. This was
verified by the consistent success of several different bioinfor-
matics methods to show that from the VAS data, the strength of
the originating pain stimulus could be deduced. In the psycho-
physical data, both the M1 and the S2 cTBS treatment were not
reflected, contrastingwith the clear coding of stimulus strength by
these data. Hence, while modulating the central processing of
nociceptive input, cTBS failed to produce a subjectively relevant
change in pain perception, indicating that the method in the
present implementation is still unsuitable for clinical application. It
should be noted that the results were obtained on healthy
subjects, rather than on pain patients. However, this should not
constitute a problem because it has been shown that the results
obtained with the present pain model serve as satisfactory
predictors of the clinical efficacy of analgesics.57,70
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