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Understanding the connection between different stimuli and the brain response represents a complex research area. However, the
use of mathematical models for this purpose is relatively unexplored. The present study investigates the effects of three different
auditory stimuli on cerebral biopotentials by means of mathematical functions. The effects of acoustic stimuli (S1, S2, and S3)
on cerebral activity were evaluated by electroencephalographic (EEG) recording on 21 subjects for 20 minutes of stimulation,
with a 5-minute period of silence before and after stimulation. For the construction of the mathematical models used for the
study of the EEG rhythms, we used the Box-Jenkins methodology. Characteristic mathematical models were obtained for the
main frequency bands and were expressed by 2 constant functions, 8 first-degree functions, a second-degree function, a fourth-
degree function, 6 recursive functions, and 4 periodic functions. The values obtained for the variance estimator are low,
demonstrating that the obtained models are correct. The resulting mathematical models allow us to objectively compare the
EEG response to the three stimuli, both between the stimuli itself and between each stimulus and the period before stimulation.

1. Introduction

Understanding how the brain functions is one of the
utmost scientific challenges of all time. Interdisciplinary
research in the fields of neuroscience, physics, biology,
neurochemistry, genetics, molecular biology, and psychol-
ogy has made exciting progress on a wide range of issues.
However, as researchers discover evermore functions and
locations of brain activity, other scientific concerns arise

and no general theory of brain function has been entirely
accepted.

Several common techniques exist to measure brain activ-
ity: direct imaging techniques—electroencephalography
(EEG) and magnetoencephalography (MEG)—which mea-
sure electrical or magnetic signal generated due neuronal
activity directly and indirect imaging techniques—functional
magnetic resonance imaging (fMRI) and positron emission
tomography (PET)—which measure neuronal activity using
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neuronal oxygen consumption. In the case of the EEG and
MEG, one joint approach has been to investigate how the
time course of brain electrical potentials is influenced by spe-
cific stimuli. Combined with controlled sensory stimulation,
these methods allow exploration of the sensory and
perceptual processes. In this specific area, EEG has been
recommended for its non - invasiveness, high temporal
resolution, relatively low setup price, possibility of porta-
bility and relative ease of use. The influence of different
types of external, visual or acoustic, stimuli on cortical
EEG has been detailed in various studies [1–8].

Acoustic stimulation through repetitive stimuli, either
solely administered or associated with diverse activities can
provide new data about complex mental processes [9–11].

Music is a particular type of auditory stimulus because it
is a combination of frequency, beat, density, tone, rhythm,
repetition, amplitude, and lyrics. Researchers mapped the
music-evoked areas of the brain and suggested that music is
able to modulate activity in the core areas of emotion, reveal-
ing that distinct parts of the brain are activated by music as a
function of tonality [12–21].

It has been demonstrated that persistent negative emo-
tional states can increase one’s susceptibility to viral infec-
tions, yeast infestations, heart attacks, high blood pressure,
and other diseases [22]. It is likely that music therapy can
influence the autonomous nervous system and reduce stress
and stress-related health problems [23], rebalancing the
immune system, particularly when the music is known and
pleasing to the individual [15, 24, 25]. The effect of music
on patients suffering from various neurological disorders or
other pathologies has been extensively studied and positive
effects have been observed, making music a valuable adjunct
to medical practice [26–32].

In addition, classification of emotions based on the
EEG while listening to music has currently gained increas-
ing attention due to its potential applications in fields such
as music therapy, musical affective brain-computer inter-
face (BCI), neuromarketing, and multimedia tagging and
triggering [33].

The profound influence of music training on the func-
tional and structural architecture of auditory-related cerebral
areas has been documented by a large number of studies and
highlighted the often-observed cognitive advantages of music
experts in a variety of cognitive domains, including verbal
learning, memory and attention [34–42].

The most noticeable connection between music and
increase of performance or altering of neuropsychological
activity was shown by studies involvingMozart’s music, from
which the theory of “The Mozart Effect” [43] was derived.
Outcomes of many studies showed that listening to music,
especially Mozart compositions (e.g. Mozart sonata K 448)
can enhance cognitive performance, motor skills and recov-
ery after brain injury [15, 44–46].

A good part of the EEG studies carried out on Mozart’s
music showed that listening to Mozart sonata K 448
decreased alpha power which may indicate cortical activation
and offer helpful evidence of the Mozart Effect. In addition,
significantly decreased EEG theta and beta power were
observed [47]. Literature data show that alpha power is

regarded as a sensitive indicator of cortical activity and is
inversely related to cortical function, decreased values being
associated with activations in cortical structures that govern
goal-directed cognition and behavior [47, 48]. However,
other investigations in this area reported opposite findings,
also showing increases in the alpha band in response to music
[49, 50]. Despite this, EEG surveys of cerebral activity under
acoustic stimulation and, in particular, music, are scarce.

Increased understanding of the relationship between an
acoustic stimulus and the brain response will accelerate
various researches on the analysis of the brain reaction.
Different mathematical and computational methods were
used for analysis of the EEG signal under external stimuli
[51–56]. Unlike the stereotypical EEG response produced
following a short auditory event such as a click or onset
of sound, cortical activity associated with continuing stimula-
tion is harder to interpret as responses to each individual
event overlap in time, and the lack of repetition prevents sim-
ple averaging over trials. Therefore, the development of
models from data can be a formidable task, especially in the
field of clinical neurophysiology. Thus, several studies
focused on characterizing, discriminating or clustering the
time series based on the different types of measures applied
in preictal EEG segments in order to predict the seizure onset
in patients with epilepsy [57–59]. These measures are struc-
tured in three main groups: linear, nonlinear, and “other”
measures, each group being subdivided in subgroups. The
group of linear measures encompasses the subgroups of cor-
relation measures, frequency-based measures and model-
based measures. The standard linear models for time series
are the autoregressive model (AR) and autoregressive
moving average model (ARMA) [60]. Parametric modeling
has long been acknowledged as a versatile tool for the analy-
sis of EEG data [61–65].

Modeling of brain activity is a dynamic area of research
and several open issues need to be addressed in order to suc-
cessfully implement these techniques, especially for practical
applications such as EEG driven, BCI systems. The potential
applications in this direction include BCI-based music rec-
ommendation system and BCI-based music therapy, predic-
tion and diagnosis of epilepsy or other neurological
impairments. However, literature data on the use of mathe-
matical models in this area is limited.

In this context, our study is aimed at investigating
cerebral electrical activity under the influence of different
auditory stimuli, both recorded from nature and artificial,
different in regard to frequencies, amplitudes, and tonality,
by developing, for the first time, mathematical models, in
which mathematical functions offer the possibility of study
in evolution, with comparisons to the prestimulation period,
of the EEG spectral components. Moreover, our data would
guide ongoing efforts to develop additional representative
models of the brain response to other external stimuli as well
as in the case of other brain status.

2. Materials and Methods

2.1. Subjects. The experiments were carried out in the Univer-
sity of Medicine and Pharmacy of Craiova on 21 males (most
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of them students), all being right-handed, average age 23
(σ = 5:73), without previous musical training, and homoge-
nous regarding professional and extraprofessional activity.
Those with a history of neurological disturbances or with a
history of drug or ethanol abuse were excluded from the
study.

To standardize the group in terms of the degree of
fatigue of the subjects, the experiments were performed
in the evening, 8 pm, at low levels of noise and natural
light.

To select the study group, while ensuring that it is uni-
form in terms of the perception of sound stimuli, we used a
sinusoidal frequency generator coupled to an audio amplifier.
The sound provided by the amplifier was perceived by the
subjects tested by means of headphones, which were also
used in the EEG recording procedure under auditory stimu-
lation. Each subject was subjected to the minimum frequency
(45Hz) at a minimum sound intensity (pressure level). As
the subject confirmed the presence of the stimulus, we
increased the frequency. When the tested subject signaled
the disappearance of the sound stimulus, the intensity was
increased up to the limit of 40 dB, which was chosen as the
sound intensity level for our study. If the subject did not
perceive the sound, he was excluded from the study group.
The test ended when we reached the maximum frequency
of 16500Hz. This initial procedure was carried out because
the three variants of auditory stimulation we chose encom-
passed a wide range of frequencies at different intensities.

Starting 12 hours prior to the EEG recording, consump-
tion of none of the following substances—alcohol, caffeine,
tea, chocolate, B group vitamins, hormones, hypotensive
drugs, sedatives, tranquilizers, sleeping pills—was allowed.
Approval for experiments with human subjects for scientific
purposes was obtained from The Ethical Commission of the
University of Craiova, Romania. Each subject was provided
with detailed information about the aims of the ongoing
study and gave his written consent to participate in it.

2.2. Experimental Stimuli. Auditory stimulation was per-
formed using three different stimuli: S1, an automobile
moving on a rough surface, S2, rainfall recorded in a rainfor-
est and S3, two piano sonata K448 byMozart. The three types
of acoustic stimuli were chosen as representative for a
monotonous auditory stimulation, subjectively disturbing
in case of S1, soothing in case of S2 and pleasant but tensing,
in case of S3 [8, 66, 67] (Figure 1).

The three sounds have different characteristics: while in
S1 the uniformity of stimulation and the presence of low
frequencies are noticeable, with values between 75Hz and
325Hz, S2 presents major differences from S1, being much
richer in frequencies (the presence of three frequency groups,
one below 600Hz, one around 2000Hz +/-250Hz and the
last between 3100 and 3800Hz can be observed), and in
variations of amplitudes and tones; while S3 is not a flat,
monotonous signal, it is also not quite unpredictable, with
repetition intervals which, while not emerging at equal inter-
vals, can still be detected, and a frequency range that is com-
parable to that of the S2 signal, with some uniform presences
distributed.

The EEG was recorded while the subjects were under-
going continuous auditory stimulation, for the duration of
20 minutes, using a pair of headphones (frequency range:
20-20000Hz) connected to a laptop, powered by its own
batteries to avoid parasitic currents. The intensity of the
sound was measured with an NM102 Noise Meter and was
maintained at a medium level of around 40 dB which was
considered safe for the 20 minutes stimulating period in
our study activity. We considered the monotony condition
to be achieved in stimuli lasting 20 minutes. Longer stimula-
tion periods led to decrease in recording quality, due to the
too prolonged discomfort caused by sitting immobile in the
chair, electrodes on the scalp, headphones in the ears, or even
the reverse – falling asleep.

2.3. EEG Recording. The acquisition of cortical biopotentials
was made using an industrially produced electroencephalo-
graph, Nihon Kohden EEG-9200. A transformer was used
to separate it from the public electricity supply network.
The electrodes were placed in the international standard
10–20 system, bipolar acquisition montage, references on
the 2 ears, and the extra ECG lead (both hands and the left
foot) with the main role of signal quality control. Figure 2
presents the montage corresponding to the pattern 3 of the
collection of cerebral micropotentials.

A great advantage of the Nihon-Kohden EEG-9200 elec-
troencephalograph is that after a bipolar collection, at the
time of the acquisition, the data is stored at the sampling rate
set initially. This allows adaptation of both the filtration and
the collection patterns of the micropotentials according to
the requirements of processing. Processing does not affect
the original form of the stored data. Spectral analysis can be
performed by the program on an artifact-free portion of the
EEG, selected by the operator.

During signal inspection, we complied with the require-
ments of the QP-220AK spectral analysis and mapping pro-
gram (collection of bipolar brain micropotentials). For a
high-fidelity study, the acquisition of signals was made at a
high sampling rate (500Hz), which gives us an EEG that also
contains relatively high frequencies (120Hz), as well as the
possibility of performing a Fast Fourier transform (FFT) in
the Hanning window on 1024 points for 20 seconds of the
signal.

For our study, the frequency band was reduced by more
than 60Hz, and the time constant (the filter passes up) was
set to 0.3 s, thus ensuring a sufficiently large bandwidth for
the investigated beta, alpha, theta, and delta cerebral rhythms
(Table 1).

All recordings were made in identical experimental
conditions: subjects with the same degree of physical and
psychological tiredness – assessed both subjectively by
the examinee and objectively (e.g. number of hours slept
previous to experiment) - sitting immobile in a relaxed
position, eyes closed, no ambient sound and lighting, no
disruptive ambient electrical fields. As an additional mea-
sure, a front, grounding electrode was used. The contact
impedance during EEG recordings was kept below 30
Kohms and saline solution was used for its reduction,
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maintaining the contact noise at unanimously acceptable
values.

The procedure was carried out as follows—3 valid
recordings for each subject, each made under a different
stimulus of the three (S1, S2, and S3) (see Figure 3 for the
experimental design), with the following well-specified steps:

(i) Switching on the equipment

(ii) Placement of electrodes and headphones

(iii) Entering the data corresponding to the registration
in the EEG program

(iv) Checking the contact impedance and viewing the
EEG for control

(v) Reduction of ambient light

(vi) Start recording

(vii) Subjects close their eyes at the operator’s command
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Figure 1: Graph of the sound amplitude over time for the three acoustic stimuli: (a) S1, (b) S2, (c) and S3.
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(viii) After 5 minutes of silence (L1 period), the operator
begins the auditory stimulation

(ix) After 20 minutes of stimulation (S period), the
operator stops the auditory stimulation

(x) After 5 minutes of silence (L2 period), the operator
stops the recording

(xi) The operator stores the recording made on the
computer

(xii) The subject may open his eyes and be released

To avoid inducing rhythm modulation, subjects were
not instructed to follow any particular mental activity, or
lack thereof, and were given complete freedom.

Each experiment was carried out in accordance to the
general working conditions and the stages inscribed in
the protocol, and the recordings performed on the same
subject under the influence of auditory stimuli were made
on consecutive days (day 1: sound S1, day 2: sound S2,
and day 3: sound S3) after 8 pm, in identical working
conditions.

After each experiment followed a verification stage, in
which the signals were analyzed, for validation, performing rep-
etitions (tests at another time), in case of defective recordings.

2.4. EEG Data Processing for Mathematical Modeling.
Because our study was limited to the effects of sound stimu-
lation, we only analyzed the data collected from electrodes
P3-A1, P4-A2, O1-A1, and O2-A2 (Table 2) by mediation,
obtaining a single series of data to characterize the sound
projection area.

Following spectral analysis, we subjected data to normal-
ization. Since we are interested in the change of EEG frequen-
cies under external sound stimulation, we compared the
values obtained to the normal values of the period without
auditory stimulation (the time recorded before the initiation
of sound stimulation). We obtained a normalization coeffi-
cient for each electrode (average value during the period
before stimulation) and, with these values, we applied nor-
malization to each electrode separately (we divided each
value recorded by the normalization coefficient).

The mathematical formulas used in the normalization
process for the studied derivations are presented below:

The standardized data series Mn
ij formed the basis for

mathematical modeling.

2.5. Mathematical Modeling. When building mathematical
modeling for the study of the evolution of the total spectrum,

as well as for alpha, beta, delta, theta rhythms, we used the
Box-Jenkins methodology [68].

In modeling a sample of data as a time series, we searched
for patterns in which the process, noted yt , can be described
using a white noise process. A stochastic process fXt , t ≥ 0g

P3nij =
P3ij

1/v − 1∑v−1
j=1P3ij

i ∈ Delta, Theta, Alpha1, Alpha2, Beta1, Beta2, Total, Edge, Average, Median, Peakf g,
j = 1, 2,⋯ v − 1ð Þ, v,⋯r, r + 1ð Þ,⋯s,

v = start stimulation, r = stop stimulation, s = stop acquisition, n = normalized,

ð1Þ

P4nij =
P4ij

1/v − 1∑v−1
j=1P4ij

i ∈ Delta, Theta, Alpha1, Alpha2, Beta1, Beta2, Total, Edge, Average, Median, Peakf g,
j = 1, 2,⋯ v − 1ð Þ, v,⋯r, r + 1ð Þ,⋯s,

v = start stimulation, r = stop stimulation, s = stop acquisition, n = normalized,

ð2Þ

O1nij =
O1ij

1/v − 1∑v−1
j=1O1ij

i ∈ Delta, Theta, Alpha1, Alpha2, Beta1, Beta2, Total, Edge, Average, Median, Peakf g,
j = 1, 2,⋯ v − 1ð Þ, v,⋯r, r + 1ð Þ,⋯s,

v = start stimulation, r = stop stimulation, s = stop acquisition, n = normalized,

ð3Þ

O2nij =
O2ij

1/v − 1∑v−1
j=1O2ij

i ∈ Delta, Theta, Alpha1, Alpha2, Beta1, Beta2, Total, Edge, Average, Median, Peakf g,
j = 1, 2,⋯ v − 1ð Þ, v,⋯r, r + 1ð Þ,⋯s,

v = start stimulation, r = stop stimulation, s = stop acquisition, n = normalized,

ð4Þ

Mn
ij =

1
4
⋅ P3nij + P4nij +O1nij +O2nij
� � i ∈ D, T, A1, A2, B1, B2, Total, Edge, Average, Median, Peakf g,

j = 1, 2,⋯s,

s = stop acquisition, n = normalized:

ð5Þ
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is called white noise if for each t, s ≥ 0, Xt , Xs are uncorre-
lated, with zero mean and constant dispersion, σ2.

We will encounter two categories of such time series:
autoregressive time series (AR (p)) and moving average time
series (MA (q)).

A p order autoregressive time series, (AR (p)) is given by
the equation: yt − θ1yt−1 − θ2yt−2 −⋯−θpyt−p = at , in which
fat , t ≥ 0g is a white noise process.

A time series is a q order moving average time series,
(MA (q)) if given by the equation: yt = at + φ1at−1 + φ2at−2
+⋯+φqat−q.

In addition to these two major categories there are also
combined time series, the so-called ARMA ðp, qÞ models,
whose equation is

yt − θ1yt−1 − θ2yt−2−⋯−θpyt−p = at + φ1at−1 + φ2at−2+⋯+φqat−q:

ð6Þ

In applications, to find the appropriate serial model for a
data sample, a first step is to convert the data series into a
series that is similar to an ARMA model. The most com-
monly applied method is to model the overall trend of the
series and the seasonal component, if any. The global trend
can be modeled using the regression method. The effective
application of the method was made using the program
Minitab 16.

The following parameters were used for the modified
Box-Pierce (Ljung-Box) Chi-Square statistics: the lag, p
value, Chi-Square and DF.

The lag represents the time period that separates the data
that are ordered in time which is used to calculate the partial
autocorrelation coefficient. Minitab displays lags that are in
multiples of 12.

The p value is a probability that measures the evidence
against the null hypothesis. Lower probabilities provide
stronger evidence against the null hypothesis.

Chi-square is the test statistic that Minitab uses to deter-
mine whether the residuals are independent by calculating
the p value and comparing the p value to the significance level
for each chi-square statistic.

DF (the degrees of freedom) represents the amount of
information in the presented data, which are used by Minitab
program for the chi-square statistics to calculate the p value.

The coefficients used for the regression equation/analysis
are SE coefficient, t value, and p value.

SE coefficient (standard error of the coefficient) is used to
measure the precision of the estimate of the coefficient. The
smaller the standard error, the more precise the estimate.
Dividing the coefficient by its standard error a t value can
be calculated. If the p value associated with the t statistic is
less than the significance level, the coefficient is statistically
significant.

The t value measures the ratio between the coefficient
and its standard error. Minitab uses the t value to calculate
the p value, which is used to test whether the coefficient is sig-
nificantly different from 0.

Mathematically, the signals obtained from the occipital
area were simulated only. This is because the projection in
the occipital area is what provides the information for sound
perception.

3. Results

3.1. Delta Rhythm

3.1.1. Mathematical Model in S1 Signal Stimulation. The
S1 D time series appears to have a quadratic global trend
(Figure 4(a)), which allows for the use of two types of
regression models: linear and quadratic, of which the qua-
dratic regression model is the more adequate.

The results of the regression analysis are presented below
Table 3:

The regression equation is

S1D = 0:943701 − 0:0180543 C1 + 0:00114155 C1 ∗ C1:
ð7Þ

The p value of the linear coefficient is marginal
(p = 0:054), and therefore we decided to retain it, since
the quadratic value of the correlation coefficient, R2 =
48:7%, which reflects the percentage of variation in the
S1 D variable, is higher than when the coefficient of the
linear term is zero.

We continue the analysis of the residual series, namely
the S1 D series, from which we subtracted the regression
model. The series is noted below as zt .

Nasion
Fp1

F7

F3

C3T3

T5 P3

O1 O2

P4
Pz

C4
Cz

F4Fz

Fp2

F8

T4

T6

A2A1

Inion

Figure 2: Collection pattern of the cerebral micropotentials.

Table 1: Brain rhythms separated by the QP-220AK program.

EEG
rhythm

Frequency
band (Hz)

The filter passes
up (Hz)

The filter passes
down (Hz)

Delta 2-4 2 4

Theta 4-8 4 8

Alpha 1 8-10 8 10

Alpha 2 10-13 10 13

Beta 1 13-20 13 20

Beta 2 20-30 20 30
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Since the coefficient for lag 2 is quite large, the proposed
model for the time series zt is second-order autoregressive,
AR (2), of the form

zt = ϕ1zt−1 + ϕ2zt−2 + at , ð8Þ

in which fat , tg is white noise.
The result for the Box-Jenkins analysis is represented in

Tables 4 and 5.
We observed that both coefficients are significant (the p

values are very low for AR1, AR2) and the p value for the
Box-Pierce statistics is high, confirming that the fat , tg pro-
cess can be viewed as being white noise. By combining the
result of the regression equation (7) and that of the Box-
Jenkins analysis we obtained the model:

yt = 0:9437 − 0:0180543t − 0:00114155t2 + 0:4075yt−1 − 0:6339yt−2 + at :

ð9Þ

3.1.2. Mathematical Model in S2 Signal Stimulation. The S2 D
series is represented in Figure 4(b). The global trend is linear
and ascending, and also presents a somewhat periodic behav-
ior, for which it is difficult to define the period, which is why
we used a linear regression. The regression equation is

ŷt = 0:8072 + 0:0607t: ð10Þ

If we subtract from the S2 D series the model given by
equation (10), we obtain the series RESI7, represented in
the graph in Figure 4(c).

Next, we model the seasonal component of the series,
using a trigonometric function:

ŷt = 0:3 sin t − 11ð Þπ4
� �

: ð11Þ

The RESI7 series, together with the model proposed in
equation (11) are represented in Figure 4(d). The pattern
given by equation (11) is represented in red in the graphical
expression.

We noted the residuals of the RESI7 series after the elim-
ination of the sinusoidal model as RESI9.

Thus, the model found by this method is

yt = 0:8072 + 0:0607t + 0:3 sin t − 11ð Þπ4
� �

+ at : ð12Þ

We estimate the variance of white noise as being σ∧2

ðytÞ = σ∧2ðatÞ = 0:1642.

3.1.3. Mathematical Model in S3 Signal Stimulation.
Although the graph of the S3 D series appears to show the
global quadratic trend (see Figure 4(e)), we opted to use a

P4-A2
1 sec

50 μv Mathematical
models

Closed eyes
30 min

5 min 20 min 5 min
L1 s L2

L1, L2 = silence S = audition stimulation with S1, S2 or S3

Figure 3: Overview of the experimental workflow.

Table 2: Data provided by the encephalograph following spectral analysis (for an EEG segment of 20 sec).

Median value for EEG rhythms Indices for the whole spectrum
Delta Theta Alpha 1 Alpha 2 Beta 1 Beta 2 Total Edge Av Median Peak

P3 A1 2.766 2.8 4.785 3.615 2.088 1.515 17.568 19.141 10.16 9.57 10.16

P4 A2 3.727 3.78 6.639 3.854 1.521 0.783 20.304 13.672 8.789 9.18 10.16

O1 A1 2.257 2.971 13.644 16.39 2.591 1.895 39.745 14.453 10.35 9.961 10.16

O2 A2 2.416 4.028 13.17 13.79 1.93 1.398 36.729 11.914 9.961 9.961 10.16

Edge (edge frequency): the frequency that establishes, at a value initially set by the operator (90% in our case), the ratio—the left area/the whole area of the
spectrum; Av (average frequency): the frequency corresponding to the center of gravity of the spectrum area; median (median frequency): the frequency
that divides the area into two equal parts; peak (peak frequency): the maximum energy frequency.
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linear model, because the quadratic model had a non-
significant second-order coefficient.

For the modeling of residuals, we chose a 1st-order mov-
ing average, MA (1).

The obtained model is significant, the autocorrelation and
partial autocorrelation functions show that the model is suit-
able and an advantage of such a model is that it was obtained
with a minimum number of parameters (coefficients).
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In conclusion, the model obtained is

yt = 1:18 + 0:021t + at − 0:9033at−1: ð13Þ

3.2. Theta Rhythm

3.2.1. Mathematical Model in S1 Signal Stimulation. The time
series S1 theta (T) has an ascending global trend (see
Figure 5(a)), with a slight increase in variance and without
a seasonal component, which is why the most suitable option
for modeling is to use a second-degree polynomial function,
with the following equation:

yt = 0:95 + 0:00051t2 + at , ð14Þ

in which we can estimate the variance of white noise
σ∧2ðytÞ = σ∧2ðatÞ = 0:0073:

3.2.2. Mathematical Model in S2 Signal Stimulation. The S2 T
time series (Figure 5(b)) has an ascending, linear global
trend, without seasonal component. The proposed model
for S2 T is

yt = 0:9622 + 0:0186t + at: ð15Þ

The estimated value for the white noise process variant is

σ∧2 ytð Þ = σ∧2 atð Þ = 0:0218: ð16Þ

3.2.3. Mathematical Model in S3 Signal Stimulation. The
S3 T time series has an ascending, linear global trend, with
a tendency for the variance to increase. The series also
seems to have a seasonal composition, of period 6
(Figure 5(c)).

We transformed the series to transform it into a constant
variance series.

Usually, the transformation that is used in such cases is a
power function. In this case we used the following transfor-
mation:

xt = y1/4t , ð17Þ

where yt represents the original data series, S3 T.
Next, we modeled the global trend of the series with a lin-

ear model:

x̂t = 0:971 + 0:00655t: ð18Þ

The graph of the residuals obtained following the elimi-
nation of the global trend (named RESI6) is presented in
Figure 5(d).

The pattern found for the residue series is a first-order
seasonal moving average (SMA (1)): zt = at − θat−6 .

The results of the analysis are presented in Tables 6 and 7.
We observed that the p value for the model coefficient is

small; thus, the coefficient is significant.
On the other hand, the p value for the Box-Pierce statis-

tics is high, confirming that the residual process can be seen
as white noise.

The model found for S3 T is

yt = 0:971 + 0:00655t + at + 0:733at−6ð Þ4, ð19Þ

3.3. Alpha Rhythm

3.3.1. Mathematical Model for Alpha 1 Rhythm in S1 Signal
Stimulation. The S1 alpha 1 (A1) series is graphically repre-
sented in Figure 6(a).

We observed that the series has an approximately con-
stant global trend and also seems to have a seasonal compo-
nent of period 6. Calculating the slope of the regression line,
we found it to be non-significant (p = 0:35). This fact led us to
the proposal of a regression line, which would be con-
stant, ŷt = 0:727 (the value of the constant is the average of
the S1 A1 series).

The indexes of the seasonal component, identified using
the Minitab software, are the following:

c1 = 0:142, c2 = 0:023, c3 = −0:041, c4 = −0:068, c5 = −
0:135, c6 = 0:025.

The residuals of the model thus constructed have the
appearance of a white noise process (which is confirmed by
the graphs of the autocorrelation and partial autocorrelation
functions), so the proposed model for the S1 A1 series is

yt = 0:727 + ct mod 6ð Þ + at , ð20Þ

where tðmod 6Þ is the value of the remainder of dividing t by
6. The estimated value for the white noise process variant is

σ∧2 ytð Þ = σ∧2 atð Þ = 0:0158: ð21Þ

3.3.2. Mathematical Model for Alpha 1 Rhythm in S2
Signal Stimulation. The S2 A1 time series has an ascend-
ing, linear global trend, without a seasonal component
(Figure 6(b)). The model constructed with linear

Table 3: Coefficients.

Term Coef SE coef T P

Constant 0.943701 0.0397789 23.7236 0.001

C1 -0.018054 0.0087241 -2.0695 0.054

C1∗C1 0.001142 0.0004035 2.8289 0.012

Table 4: Final estimation of parameters.

Type Coef SE coef T P

AR 1 0.4075 0.1823 2.24 0.038

AR 2 -0.6339 0.1823 -3.48 0.003

Table 5: Modified Box-Pierce (Ljung-Box) chi-square statistics.

Lag 12 24 36 48

Chi-square 8.8 ∗ ∗ ∗

DF 10 ∗ ∗ ∗

P 0.549 ∗ ∗ ∗
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regression is ŷt = 0:688 + 0:007t; however, the p for the
slope of the line is marginally non-significant (p = 0:056).

The second model we tested is a constant line in which
the value of the constant is the average of the series S2 A1:
ŷt = 0:764. The residuals obtained with this global trend

model present functions of autocorrelation and partial auto-
correlation corresponding to a white noise process, and
therefore we can model the S2 A1 series: yt = 0:764 + at in
which the variance of the white noise process is estimated
to be σ∧2ðytÞ = σ∧2ðatÞ = 0:099

3.3.3. Mathematical Model for Alpha 1 Rhythm in S3 Signal
Stimulation. The S3 A1 series is presented in Figure 6(c).
We observed an ascending trend, possibly quadratic, with a
slight increase in variance. A seasonal component is possible;
however, the period is difficult to define.

A first attempt to model the global trend, through a
second-degree polynomial, demonstrates that such a model
is non-significant, since the coefficients have very high p
values. A second attempt was to consider the series of first-
order differences: xt = yt − yt−1, t ≥ 1, the graph of which is
presented in Figure 6(d).

We observed that the series has a constant global
trend; the variance appears to be constant and does not
appear to have a seasonal component. An analysis of the
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Figure 5: Graphs of the theta (T) series: (a) time function graph of the S1 T series values; (b) time function graph of the tendency (trend) and
of the model of S2 T series; (c) time function graph of the S3 T series values; (d) graph of the RESI6 series corresponding to S3 T. MAPE: the
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Table 6: Final estimation of parameters.

Type SE coef Coef T P

SMA 6 -0.7330 0.2948 -2.49 0.022

Table 7: Modified Box-Pierce (Ljung-Box) chi-square statistics.

Lag 12 24 36 48

Chi-square 11.8 ∗ ∗ ∗

DF 11 ∗ ∗ ∗

P 0.376 ∗ ∗ ∗
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autocorrelation and partial autocorrelation functions sug-
gests a first-order moving average model, MA (1): xt = at
− θat−1, t ≥ 1. The result of the Box-Jenkins analysis is pre-
sented below. The model coefficient is significant and the
model is adequate, as shown by the p value for the Box-
Pierce statistics Tables 8 and 9.

Also to be considered is that the graphs of the autocorre-
lation and partial autocorrelation functions of the model
residuals confirms that the residuals are a white noise pro-
cess. We conclude that an appropriate model is

yt − yt−1 = at − 0:71at−1: ð22Þ

Estimating the variance of the white noise process is σ∧2

ðatÞ = σ∧2ðyt − yt−1Þ/ð1 + 0:712Þ = 0:0542/1 + 0:712 = 0:036.

3.3.4. Mathematical Model for Alpha 2 Rhythm in S1 Signal
Stimulation. The S1 A2 series has an almost constant global
trend, without seasonal component; however, we did observe
a sudden drop at time t = 13 (Figure 7(a)).

We used a linear regression model for the global trend of
the series:

yt = 1:106 − 0:021t + at : ð23Þ

We estimate the variance of the white noise process as

σ∧2 ytð Þ = σ∧2 atð Þ = 0:1943: ð24Þ

3.3.5. Mathematical Model for Alpha 2 Rhythm in S2 Signal
Stimulation. The S2 A2 series has a quadratic global trend,
with an ascending variance, and appears to have a seasonal
appearance (Figure 7(b)); however, the data is insufficient
to confirm whether the pattern is repeated periodically or
not.

We transformed the series, taking into account the
first-order differences, and thus define the new series as
xt = yt − yt−1, t ≥ 1 (Figure 7(c)).
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Figure 6: Graphs of the alpha 1 (A1) series: (a) time function graph of the S1 A1 series values; (b) time function graph of the S2 A1 series
values; (c) time function graph of the S3 A1 series values; (d) the first-order difference graph for the S3 A1 series.

Table 8: Final estimation of parameters.

Type Coef SE coef T P

MA 1 0.7101 0.1887 3.76 0.001

Table 9: Modified Box-Pierce (Ljung-Box) chi-square statistics.

Lag 12 24 36 48

Chi-square 10.5 ∗ ∗ ∗

DF 11 ∗ ∗ ∗

P 0.483 ∗ ∗ ∗
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We observed that the series seems to present constant
variance. A model of first-order seasonal moving average
(with period 4, SMA 4) produces the result shown in
Tables 10 and 11.

The model coefficient is significant, and the Box-Pierce
statistics show that the model has residuals that may
belong to a white noise process (p = 0:25). We therefore
conclude that a plausible model for the S2 A2 series is

yt − yt−1 = at − 0:822at−4: ð25Þ

We can estimate the variance of the white noise pro-
cess:

σ∧2 atð Þ = σ∧2 yt − yt−1ð Þ
1 + 0:8222

=
0:032

1 + 0:8222
= 0:019: ð26Þ

3.3.6. Mathematical Model for Alpha 2 Rhythm in S3
Signal Stimulation. The S3 A2 series appears to have a
global tendency similar to a sinusoid, with an approxi-
mately constant variance, without the seasonal component
(Figure 7(d)).
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Figure 7: Graphs of the alpha 2 (A2) series: (a) the time function graph of the S1 A2 series values; (b) the time function graph of the S2 A2
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After transforming the series, and considering the first-
order differences, we obtained a series which can be inter-
preted as a white noise process (Figure 7(e)).

Thus, a plausible model is yt − yt−1 = at , with the white
noise variant estimated as being σ∧2ðatÞ = σ∧2ðyt − yt−1Þ =
0:074.

3.4. Beta Rhythm

3.4.1. Mathematical Model for Beta 1 Rhythm in S1 Signal
Stimulation. The series has an overall decreasing trend, with-
out a seasonal component (Figure 8(a)). By linear regression,
we modeled the global trend with a line:

ŷt = 0:967 − 0:0077t: ð27Þ

The result of the regression analysis shows that both coef-
ficients are significant Table 12.

The regression equation is

S1 B1 = 0:967 − 0:00768 C1: ð28Þ

After eliminating the global trend, the residuals obtained
have autocorrelation and partial autocorrelation functions
graphs which can be interpreted as belonging to a white noise
process. Thus, we can model the S1 B1 series as yt = 0:967
− 0:0077t + at with the white noise variance estimated to
be σ∧2ðatÞ = σ∧2ðytÞ = 0:0054.

3.4.2. Mathematical Model for Beta 1 Rhythm in S2 Signal
Stimulation. The S2 B1 series has an ascending global trend,
with a seasonal component of period 6, which is presented in
Figure 8(b).

The equation for the global trend was obtained by linear
regression:

ŷt = 0:8234 + 0:0102t: ð29Þ

The seasonal component of period 6 has the following
values:

c1 = −0:0726, c2 = −0:0181, c3 = 0:0635, c4 = −0:0678, c5
= −0:0182, c6 = −0:0181:

ð30Þ

The original series, together with the model given by the
global trend and the seasonal component, are represented in
Figure 8(c).

The residuals series has the characteristics of a white
noise process, and thus, we can conclude that the model of
the series is

yt = 0:8234 + 0:0102t + ct mod 6ð Þ + at , σ∧2 atð Þ = σ∧2 ytð Þ = 0:0074:

ð31Þ

3.4.3. Mathematical Model for Beta 1 Rhythm in S3 Signal
Stimulation. The series has an ascending global trend, with
a slight increase in variance which is difficult to verify, given
the size of the data sample (Figure 8(d)).

The global trend can be modeled using a linear regres-
sion:

ŷt = 0:8047 + 0:016t: ð32Þ

After eliminating the global trend, the residuals series can
be seen as a white noise process, so a suitable model for the
series is

yt = 0:805 + 0:016t + atσ∧
2 atð Þ = σ∧2 ytð Þ = 0:0172: ð33Þ

3.4.4. Mathematical Model for Beta 2 Rhythm in S1 Signal
Stimulation. In Figure 9(a) we present the evolution in time
of the series of values corresponding to the beta 2 rhythm,
under auditory stimulation with the S1 signal. This series
(S1 B2) has a decreasing global trend, without a seasonal
component. As a global trend model, we propose the linear
regression line: ŷt = 1:04 − 0:0067t.

The series of residuals obtained, after we subtracted the
linear model, RESI13, appears to be a white noise process,
although an analysis of the autocorrelation and partial auto-
correlation functions shows an increase of the values of the
autocorrelation coefficients with the increase of the gap
(although the values remain in the 95% confidence band).

Given that we used a fairly short range of values, it is dif-
ficult to establish how the autocorrelation function behaves
at larger gaps. Thus, a first model that we propose is

yt = 1:04 − 0:0067t + at , σ∧2 atð Þ = σ∧2 ytð Þ = 0:079, ð34Þ

A second model we propose is the following: first we con-
sider the series of first-order differences. Then, since the lag 1
autocorrelations coefficients were high and then decreased
sharply, a first-order moving average model, MA (1) is
advised.

The model is

yt − yt−1 = at − 0:81at−1, σ∧2 atð Þ = σ∧2 yt − yt−1ð Þ
1 + 0:812

=
0:0123
1 + 0:812

= 0:0074:
ð35Þ

3.4.5. Mathematical Model for Beta 2 Rhythm in S2 Signal
Stimulation. The S2 BS series is represented in Figure 9(b).

Table 11: Modified Box-Pierce (Ljung-Box) chi-square statistics.

Lag 12 24 36 48

Chi-square 13.7 ∗ ∗ ∗

DF 11 ∗ ∗ ∗

P 0.250 ∗ ∗ ∗

Table 10: Final estimation of parameters.

Type Coef SE coef T P

SMA 4 0.8219 0.2150 3.82 0.001
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We distinguish an ascending global trend, with a seasonal
character of period 6. The equation for the global trend was
obtained by a linear regression:

ŷt = 0:8833 + 0:0038t: ð36Þ

The seasonal component of period 6 has the following
values: c1 = −0:0543, c2 = 0:0054, c3 = 0:0152, c4 = 0:0686,
c5 = 0:0004, and c6 = −0:0393.

The original series, together with the model, are repre-
sented in Figure 9(c). The series of residuals has the charac-

teristics of a white noise process; we can decide that the
series model is

yt = 0:8833 + 0:0038t + ct mod 6ð Þ + at , σ∧2 atð Þ = σ∧2 ytð Þ = 0:0038:

ð37Þ

3.4.6. Mathematical Model for Beta 2 Rhythm in S3 Signal
Stimulation. The S3 B2 series is very similar to the S3 B1
series: the same sudden increase is observed at the 16th value
in the series. Beyond this, the series seems to have a decreas-
ing global trend, without a seasonal aspect (Figure 9(d)). The
equation given by linear regression is

ŷt = 0:888 + 0:007t: ð38Þ

The Box-Jenkins analysis shows that the MA (2) model is
adequate: the coefficients have very low p values and that the
p value for the Box-Pierce statistic is high Tables 13 and 14.
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Figure 8: Graphs of the beta 1 (B1) series: (a) time function graph of the S1 B1 series values; (b) time function graph of the S2 B1 series values;
(c) time function graph of the tendency (trend) and of the model of S2 B1 series; (d) time function graph of the S3 B1 series values. MAPE: the
mean absolute percent error; MAD: the mean absolute deviation; MSD: the mean square deviation.

Table 12

Coef SE coef T P

Constant 0.96655 0.02746 35.19 0.001

C1 -0.007679 0.002293 -3.35 0.004
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We can thus decide that the S3 B2 series model is

yt = 0:888 + 0:007t + at + 1:0622at−1 + 0:8at−2,

σ∧2 atð Þ = σ∧2 ytð Þ
1 + 1:06222 + 0:82

=
0:0184
2:7683

= 0:0066:
ð39Þ

4. Discussion

In this paper, we estimated the variance from the residuals of
the mean fit to each signal series. Therefore, the smaller the
estimate for the variance, the better the regression fit to the
series. Following the values of the obtained models, we

obtained a sufficiently small variance size – with the excep-
tion of three cases in which a value could not be obtained.

The resulting mathematical functions offer the possibility
to study, during the 20 minutes of stimulation, the evolution
in time, compared to the period prior to stimulation, of the
spectral composition of the EEG.

In Table 15 the mathematical models of the alpha, beta,
delta and theta rhythms corresponding to the S1 sound are
presented.

We observe that the alpha rhythm (A1 and A2) has the
largest variance, and generally the lowest amplitude while
the theta rhythm has the highest amplitude, at least towards
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Figure 9: Graphs of the beta 2 (B2) series: (a) the time function graph of the S1 B2 series values; (b) the time function graph of the S2 B2 series
values; (c) the time function graph of the tendency (trend) and of the model of S2 B2 series; (d) the time function graph of the S3 B2 series
values. MAPE: the mean absolute percent error; MAD: the mean absolute deviation; MSD: the mean square deviation.

Table 13: Final estimation of parameters.

Tip Coef SE coef T P

MA 1 -1.0622 0.2281 -4.66 0.001

MA 2 -0.8011 0.2220 -3.61 0.002

Table 14: Modified Box-Pierce (Ljung-Box) chi-square statistics.

Lag 12 24 36 48

Chi-square 5.3 ∗ ∗ ∗

DF 10 ∗ ∗ ∗

P 0.869 ∗ ∗ ∗
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the end of the period when the S1 stimulation was applied.
Indeed, the mean values of the alpha waves (Table 16) are
among the lowest (0.727 for alpha1 and 0.889 for alpha2),
while the mean value of the theta wave is 1.023. Also, the
amplitude of the theta waves tends to increase towards the
end of the period when the S1 stimulus was applied, reaching

the value of about 1.2, compared to the minimum amplitude
of about 0.55, reached by the alpha1 wave.

Regarding the S2 sound, (Table 17) the alpha waves again
show the lowest amplitude, while the delta rhythm has the
highest amplitude and increasing in the second half of the
period when the sound was applied, reaching up to a value

Table 15: Comparative presentation of mathematical models in the case of S1 stimulation.

EEG spectrum Mathematical model Variance estimator σ∧2 atð Þ
Delta yt = 0:9437 − 0:0180543t − 0:00114155t2 + 0:4075yt−1 − 0:6339yt−2 + at

Theta yt = 0:95 + 0:00051t2 + at 0.0073

Alpha 1
yt = 0:727 + ct mod 6ð Þ + at

c1 = 0:142, c2 = 0:023, c3 = −0:041, c4 = −0:068, c5 = −0:135, c6 = 0:025 0.0158

Alpha 2 yt = 1:106 − 0:021t + at 0.1943

Beta 1 yt = 0:967 − 0:0077t + at 0.054

Beta 2 yt = 1:04 − 0:0067t + at 0.079

Table 16: Statistical analysis of the values generated in the case of stimulation with the S1 signal.

N Average Standard deviation Minimum Q1 Median Q3 Maximum

S1 A1 20 0.7270 0.1256 0.5418 0.6369 0.6928 0.8359 1.0130

S1 A2 20 0.8894 0.1943 0.5973 0.7056 0.9512 1.0671 1.1849

S1 B1 20 0.8859 0.0733 0.7710 0.8057 0.8989 0.9501 1.0026

S1 B2 20 0.9655 0.0890 0.8055 0.9053 0.9582 1.0291 1.1430

S1 D 20 0.9179 0.0706 0.7861 0.8788 0.9161 0.9624 1.0648

S1 T 20 1.0232 0.0852 0.9281 0.9655 0.9904 1.0703 1.1992

Table 17: Comparative presentation of mathematical models in the case of S2 stimulation.

EEG spectrum Mathematical model Variance estimator σ∧2 atð Þ
Delta yt = 0:8072 + 0:0607t + 0:3 sin t − 11ð Þπ4

� �
+ at 0.1642

Theta yt = 0:9622 + 0:0186t + at 0.0218

Alpha 1 yt = 0:764 + at 0.099

Alpha 2 yt − yt−1 = at − 0:822at−4 0.019

Beta 1
yt = 0:8234 + 0:0102t + ct mod 6ð Þ + at

c1 = −0:0726, c2 = −0:0181, c3 = 0:0635, c4 = −0:0678, c5 = −0:0182, c6 = −0:0181 0.074

Beta 2
yt = 0:8833 + 0:0038t + ct mod 6ð Þ + at

c1 = −0:0543, c2 = 0:0054, c3 = 0:0152, c4 = 0:0686, c5 = 0:0004, c6 = −0:0393.
0.038

Table 18: Statistical analysis of the values generated in the case of stimulation with the S2 signal.

N Average Standard deviation Minimum Q1 Median Q3 Maximum

S2 A1 20 0.7640 0.0988 0.6129 0.7118 0.7404 0.8421 0.9440

S2 A2 20 0.9150 0.1913 0.5319 0.7707 0.9289 1.0382 1.2770

S2 B1 20 0.9255 0.0823 0.8165 0.8616 0.9166 0.9727 1.0946

S2 B2 20 0.9236 0.0620 0.8311 0.8808 0.9202 0.9575 1.1015

S2 D 20 1.4445 0.4053 0.8183 1.0530 1.4260 1.7606 2.1503

S2 T 20 1.1575 0.1477 0.8869 1.0406 1.1780 1.2582 1.4131
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of about 2.15. Analyzing the standard deviations from
Table 18, the delta rhythm has the highest value (0.405),
while the smallest deviation is the beta2 wave (0.062). We
also notice that the beta1 and beta2 frequency bands are
almost identical, a fact confirmed by the similarity of the
two models found by the Box-Jenkins analysis.

The graphs show the greatest separation between the S2
sound when compared to the S1 sound.

Mathematical models for brain rhythms corresponding
to S3 stimulation are given in Table 19. As with the S2 stim-
ulus, delta and theta rhythms appear to dominate in the sec-
ond half of the time interval. It is interesting to note in
Table 20 that the standard deviations are mostly close to
0.2, except for the beta1 and beta2 frequency bands which
have values close to 0.13.

If we compare the results obtained after the stimulation
with the three types of complex sounds, grouping by fre-
quency band, we notice that for both the alpha1 and alpha2
frequency bands the lowest average values (0.727 and 0.889,
respectively) are recorded for the S1 stimulus and the highest
mean values are for the S3 stimulus (0.901 and 1.027, respec-
tively). In terms of standard deviation, it is higher for S3
sound for both alpha1 and alpha2 waves.

For the beta rhythm, the mean values are much closer
than in the case of alpha waves ranging between 0.8859 (S1
B1) and 0.9726 (S3 B1). Standard deviations are also lower,
ranging from 0.0733 (S1 B1) to 0.1357 (S3 B2). Thus, S3 for
beta1 has the highest average on the considered interval for
beta 2, while the sound S1 has the highest average, slightly
exceeding S3.

The delta rhythm shows a much more interesting behav-
ior: the average values increase from 0.9179 for the S1 sound
to 1.4445 for the S2 sound and 1.3981 for the S3 sound. Stan-
dard deviations also increase significantly, from 0.07 for S1 to

0.405 for S2 and 0.2027 for S3. A clear domination of the
waves corresponding to the signals S2 and S3 is observed.

The same increase is observed for the theta rhythm: the
average values increase from 1.0232 for S1 to 1.183 for the
S3 stimulus, but the increase is much smaller than that
recorded for delta or alpha rhythms. The theta rhythm corre-
sponding to the sounds S2 and S3 dominates the one corre-
sponding to S1. The standard deviation is as in the case of
the other studied rhythms higher for S2 and S3 (0.1477 and
0.2019, respectively) compared to 0.0852 for S1.

5. Conclusions

In the present study, a model was obtained for the th5ree
types of stimulation signals S1, S2, and S3 which generated
mathematical functions for the main waves of the electroen-
cephalogram: alpha, beta, delta, and theta. Mathematical
models give us the possibility to compare simply but objec-
tively the response of the encephalogram to the stimuli S1,
S2, and S3.

Synthetically, mathematical models were obtained
expressed by 2 constant functions, 8 first-degree functions
(linear), a second-degree function, a fourth-degree function,
6 recursive functions, and 4 periodic functions.

Each sound stimulation produced a characteristic pattern
of changes in cortical micropotentials: S3 predominantly
influences the low-frequency bands (for theta p = 0:003), S1
influences those of higher frequencies (for beta p = 0:027),
and S2 exerts a moderate influence on both bands, with a
slight predominance over the low-frequency ones.

In most models for the residuals, the estimate for the var-
iance is rather small, indicating that the signal series can be
modeled quite accurately.

Table 19: Comparative presentation of mathematical models in the case of S3 stimulation.

EEG spectrum Mathematical model Variance estimator σ∧2 atð Þ
Delta yt = 1:18 + 0:021t + at − 0:9033at−1 0.0226

Theta yt = 0:971 + 0:00655t + at + 0:733at−6ð Þ4 —

Alpha 1 yt − yt−1 = at − 0:71at−1 0.036

Alpha 2 yt − yt−1 = at 0.074

Beta 1 yt = 0:805 + 0:016t + at 0.0172

Beta 2 yt = 0:888 + 0:007t + at + 1:0622at−1 + 0:8at−2 0.0066

Table 20: Statistical analysis of the values generated in the case of stimulation with the S3 signal.

N Average Standard deviation Minimum Q1 Median Q3 Maximum

S3 A1 20 0.9016 0.1933 0.6648 0.7723 0.8651 0.9654 1.5343

S3 A2 20 1.0274 0.2193 0.7108 0.8060 1.0343 1.2096 1.4195

S3 B1 20 0.9726 0.1312 0.8473 0.8895 0.9405 1.0026 1.4151

S3 B2 20 0.9628 0.1357 0.8224 0.8597 0.9386 1.0052 1.3536

S3 D 20 1.3981 0.2027 0.9821 1.2878 1.3515 1.5804 1.8019

S3 T 20 1.1830 0.2019 0.9041 1.0132 1.1431 1.3218 1.6730
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The resulting mathematical functions offer the possibility
of studying, for the 20 stimulation minutes, of the evolution
in time, compared to the period before stimulation, of the
EEG spectral component.

The development of a mathematical model which allows
the study of evolution of the spectral EEG component repre-
sents an aspect of originality of this study and marks the
practical importance, in the case of monotonous auditory
stimulations, of the interval of time in which the synchroni-
zation of cerebral activity, depending on the type of stimula-
tion, may occur.
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