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Abstract: Since the onset of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
pandemic, various potential targeted therapies for SARS-CoV-2 infection have been proposed. The
protective effects of mineralocorticoid receptor antagonists (MRA) against tissue fibrosis, pulmonary
and systemic vasoconstriction, and inflammation have been implicated in potentially attenuating the
severity of SARS-CoV-2 infection by inhibiting the deleterious effects of aldosterone. Furthermore,
spironolactone, a type of MRA, has been suggested to have a beneficial effect on SARS-CoV-2 out-
comes through its dual action as an MRA and antiandrogen, resulting in reduced transmembrane
protease receptor serine type 2 (TMPRSS2)-related viral entry to host cells. In this study, we sought to
investigate the association between MRA antagonist therapy and mortality in SARS-CoV-2 patients
via systematic review and meta-analysis. The systematic review was performed according to the Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. MEDLINE
and EMBASE databases were searched for studies that reported the incidence of mortality in patients
on MRA with SARS-CoV-2 infection. Pooled odds ratio (OR) and 95% confidence interval (CI) of the
outcome were obtained using the random-effects model. Five studies with a total of 1,388,178 subjects
(80,903 subjects receiving MRA therapy) met the inclusion criteria. We included studies with all types
of MRA therapy including spironolactone and canrenone and found no association between MRA
therapy and mortality in SARS-CoV-2 infection (OR = 0.387, 95% CI: 0.134–1.117, p = 0.079).

Keywords: COVID-19; SARS-CoV-2; coronavirus; mineralocorticoid receptor antagonist; aldosterone
antagonist; spironolactone; meta-analysis

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was declared
a pandemic by the World Health Organization (WHO) in March 2020 and has created
a global health crisis with recurrent surges [1–3]. More than 350 million SARS-CoV-2
infection cases have been reported worldwide with over 5 million related deaths from
the multisystemic disease. The pathophysiology and targeted treatment modality for
SARS-CoV-2 remain unclear, however, and studies are underway.

A mineralocorticoid receptor antagonist (MRA) is an important part of guideline-
directed medical therapy in heart failure with reduced ejection fraction and also used in
chronic hypertension, primary aldosteronism, and ascites from liver cirrhosis [4–6]. MRAs
inhibit the activity of aldosterone, the final effector of the renin–angiotensin–aldosterone
system (RAAS), by blocking aldosterone receptors and preventing their deleterious effects
such as electrolyte imbalance, endothelial dysfunction, smooth muscle cell proliferation
of the blood vessels, glomerular injury in the kidneys, and myocardial inflammation and
fibrosis. Spironolactone is a type of MRA that also has antiandrogenic properties, and
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studies have implicated its potential effect on decreasing the severity of SARS-CoV-2
infection. In this study, we aimed to investigate the effect of MRA use on mortality in
patients with SARS-CoV-2 infection through systematic review and meta-analysis.

2. Materials and Methods
2.1. Search Strategy

Two investigators (J.K. and K.M.) independently conducted a systematic search for
published studies indexed in the MEDLINE and EMBASE databases from inception to De-
cember 2021, utilizing a search strategy that included the terms “SARS-CoV-2”, “COVID”,
“COVID-19”, “coronavirus”, “mineralocorticoid receptor antagonist”, and “aldosterone
antagonist”. Patients with all disease statuses and methods of conditioning regimens were
included. There was no restriction on the types of mineralocorticoid receptor antagonist
used, patients’ ethnicity, gender, race, age, data sources, or study location. Review articles,
case reports, commentaries, and letters were excluded. A manual search for additional
pertinent studies using references from the retrieved articles was also performed.

2.2. Study Inclusion Criteria

The eligibility criteria for inclusion of studies are the following:

(1) Randomized controlled trials (RCTs), cohort studies (prospective or retrospective),
case-control studies, and cross-sectional studies that reported the incidence of mortal-
ity in patients who were infected with SARS-CoV-2 who were on MRA compared to
those who were not on MRA therapy;

(2) Odds ratio (OR), hazard ratio (HR), or risk ratio (RR), and its corresponding 95%
confidence intervals and p-values or sufficient raw data for these calculations had to
be provided.

2.3. Data Extraction

Two investigators (J.K. and K.M.) independently performed a systematic review of
studies following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [7]. A standardized data collection was conducted by obtaining the
following information from each study: title, name of authors, year of publication, country
of origin, the number of participants in the MRA therapy group, and the control (no MRA)
group who have SARS-CoV-2 infection. In addition, information about the type of MRA,
patients’ mean age, gender, and comorbid conditions was collected. Any conflict on the
data extraction was resolved by the investigators’ consensus following discussions.

2.4. Quality Assessment of the Included Studies

The Newcastle–Ottawa quality assessment scale (NOS), ranging from 0 to 9, was
utilized to evaluate each study in the following domains: recruitment and selection of
the participants, similarity and comparability between the groups, and ascertainment of
the outcome of interest among cohort studies [8]. The Cochrane Collaboration tool for
assessing risk of bias was used to assess the quality of randomized controlled trial by
assigning a score (high, low, or unclear) to individual element from five domains (selection,
performance, attrition, reporting, and other).

2.5. Statistical Analysis

Meta-analysis of the included studies was performed to determine the pooled effect
size with a 95% confidence interval (CI). The outcome of interest was the incidence of
mortality in the MRA therapy group versus the control (non-MRA) group with SARS-CoV-
2 infection. The heterogeneity of effect size estimates across the studies was quantified using
the Q-statistic and the corresponding p-value or equivalent using the Higgins I-squared (I2)
statistic [9]. In our study, meta-analysis was performed using the random-effects model,
and the main results were summarized in a forest plot. To test the robustness of the results,
a sensitivity analysis was performed by conducting meta-analyses excluding one study at a
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time [10]. All meta-analyses were performed using STATA 16 software (StataCorp LLC,
College Station, TX, USA).

3. Results
3.1. Study Search Results

Figure 1 shows a PRISMA flow diagram that depicts the process of identification,
screening, eligibility, and inclusion or exclusion of the studies. The initial search of the
PubMed and EMBASE databases yielded 58 articles. After title and abstract review, a
total of 19 duplicate studies were removed, followed by elimination of three studies that
were irrelevant to our study and eight studies conducted in animals or cellular models.
Subsequently, 28 studies underwent full article review. Of these articles, nine studies were
excluded because they were not of the appropriate type or design of study for our analysis,
and 14 studies were eliminated as they did not have the outcomes of interest. The final
analysis included five unique studies with a total of 1,388,178 subjects.
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Figure 1. A PRISMA diagram depicting the search methodology and selection process.

3.2. Description of the Included Studies and Quality Assessment

A total of five studies with 1,388,178 subjects (80,903 subjects received MRA therapy)
were included in our meta-analysis (one single-blind randomized-controlled study, two
cross-sectional studies, and two case-control studies) [11–15]. The main characteristics of
the included studies are described in Table 1. The mean age of subjects of the included
studies ranged between about 50 to 70 years old, and the male gender constituted about
50% to 80% of total subjects in the studies. Regarding the type of MRA therapy, two studies
utilized spironolactone [12,13], one study used canrenone [14], and two studies did not
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specify the type of MRA [11,15]. Four studies provided the raw data for the incidence of
mortality in patients with SARS-CoV-2 infection who received MRA therapy and those
who did not receive MRA therapy and calculations were manually performed to obtain
the OR and its corresponding 95% CI. On the other hand, Vicenzi et al. directly provided
the value of OR and its corresponding 95% CI [14]. The Newcastle–Ottawa Scale (NOS) of
the five studies ranged from 6 to 9 with a mean score of 8, reflecting a high quality of these
studies. For the RCT study included in the meta-analysis, the Cochrane Collaboration tool
for assessing the risk of bias was used. This showed a low risk of bias in most categories,
except for the lack of double-blinding in the study design.

Table 1. Main characteristics of the included studies (n = 5).

Author Country Published
Year

Study
Type

MRA
(n =

80,903)

No MRA
(n =

1,307,275)

Mean
Age

(Years)

Male
(%)

HTN
(%)

DM
(%)

HLD
(%)

MRA
Type

Abbasi U.S. 2021
Randomized-

controlled
trial

50 87 57.0 54.0 31.4 27.7 NR Spironolactone

Ersoy Turkey 2021 Case control 30 30 58.8 80.0 NR NR NR Spironolactone

Kocayigit Turkey 2020 Cross-
sectional 5 161 65.8 46.7 100 34.9 16.6 NR

Savarese Sweden 2020 Cross-
sectional 80,788 1,306,958 73.5 52.1 79.8 28.7 NR NR

Vicenzi Italy 2020 Case-control 30 39 61.0 72.0 45.0 NR 20.0 Canrenone

Abbreviations: MRA, mineralocorticoid receptor antagonist; HTN, hypertension; DM, diabetes; HLD, hyperlipi-
demia; NR, not reported.

3.3. Quantitative Meta-Analysis Results

We assessed the presence of heterogeneity among the studies in terms of the Q-
statistic and the corresponding p-value [9]. In the present case of p < 0.05, heterogeneity
among studies existed. We quantified the degree of heterogeneity by using the I2 statistic
which indicated a substantial heterogeneity among the studies (I2 > 50%). We employed
the random-effects model to analyze the pooled effect size given substantial heterogene-
ity [16]. The incidence of mortality in patients with SARS-CoV-2 infection who received
MRA therapy was not significantly lower than that of the non-MRA group (OR = 0.387,
95% CI: 0.134–1.117, p = 0.079). The forest plot demonstrating the pooled OR comparing
mortality in patients with SARS-CoV-2 infection who received MRA therapy and those
who did not receive MRA is shown in Figure 2.
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3.4. Publication Bias

We aimed to investigate potential publication bias via the funnel plot and Egger’s
test [17]. However, as we only had five studies included in the analysis, this number was
insufficient to reject the assumption of no funnel plot asymmetry; thus, we did not perform
a funnel plot or Egger’s test [18,19].

3.5. Sensitivity Analysis

To examine the robustness of the pooled OR and 95% CI of our study, sensitivity
analyses were undertaken by excluding one individual study at a time [10]. When the
study by Savarese et al. was removed, the result was statistically significant. Otherwise, no
significant changes were noted when excluding other studies.

4. Discussion

The present study is the first systematic review and meta-analysis that investigated the
incidence of mortality in SARS-CoV-2 infection who received MRA therapy compared to
those who did not receive MRA therapy. Our study included all types of MRA therapy, and
the results underscored that MRA therapy does not provide mortality benefit in patients
with SARS-CoV-2 infection.

SARS-CoV-2 necessitates transmembrane protease receptor serine type 2 (TMPRSS2)
to bind to an angiotensin-converting enzyme 2 (ACE2) receptor via proteolytic processing
of the viral spike protein and becomes internalized to the host cell [20,21]. ACE2 has
been identified as a key receptor for SARS-CoV-1 and SARS-CoV-2 to enter host cells
and is expressed in essential organs including the lungs, heart, brain, and the kidneys in
humans [22–24]. ACE2 serves as a counterregulatory enzyme of the renin–angiotensin–
aldosterone system (RAAS), a cascade of vasoactive peptides that regulates blood pressure
and fluid balance in the body, and degrades angiotensin II, thereby inhibiting its adverse
effects such as acute lung injury, myocardial remodeling, vasoconstriction, sodium retention,
and fibrosis [25–28]. Upon endocytosis of the viral complex, surface ACE2 levels are
downregulated, and can result in angiotensin II accumulation and local activation of RAAS.

The interaction between SARS-CoV-2 and ACE2 has been proposed as a possible factor
affecting the viral infectivity. Concerns about RAAS inhibitors affecting ACE2 levels have
been previously raised; however, data in humans are limited. Experimental animal models
have shown mixed findings on the effects of ACE inhibitors and angiotensin-receptor
blockers (ARBs) on ACE2 levels [29,30]. Currently, experts warn about potential adverse
clinical outcomes from abrupt withdrawal of RAAS inhibitors, and it is recommended to
continue RAAS inhibitors in patients who are otherwise stable and are at risk for or have
SARS-CoV-2 infection [31,32]. Recombinant ACE2 has been suggested to possibly normalize
angiotensin II levels, and clinical trials are underway to assess whether recombinant ACE2
may restore balance in the RAAS cascade and prevent organ injury in patients with SARS-
CoV-2 infection.

Androgen activity has also been implicated in SARS-CoV-2 infectivity and disease
severity. Increased levels of circulating androgens contribute to a higher expression of trans-
membrane proteins such as TMPRSS2 that facilitate viral binding and entry into human
cells by modulating viral spike proteins [33,34]. Early reports corroborating these findings
have indicated that male gender is an independent risk factor for severe SARS-CoV-2 infec-
tion and that children tend to have milder disease courses than adults [35–37]. Subsequent
studies have also shown that men with androgenic alopecia or anabolic androgenic steroid
use, as well as women with hyperandrogenic states such as polycystic ovary syndrome
(PCOS), can increase the risk for SARS-CoV-2 infection [38–41].

Finally, the protective effects of MRAs against tissue fibrosis, inflammation, and
vascular dysfunction have been implicated in potentially attenuating the severity of SARS-
CoV-2 infection by inhibiting aldosterone [33,42,43]. Previous authors have hypothesized
that spironolactone, a type of MRA, may have a beneficial effect on SARS-CoV-2 outcomes
through its dual action as an MRA and antiandrogen, resulting in reduced TMPRSS2-
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related viral entry [38,44,45]. In animal models, spironolactone was also associated with
reduction in oxidative stress and lung injury and has been considered a possible therapy in
the treatment of COVID-19-related pulmonary fibrosis [42,46,47]. Despite the promising
effects of this widely used drug, the effect of spironolactone on morbidity and mortality
in patients with COVID-19 remains unclear, as the results of recent studies have been
variable [48,49].

In our meta-analysis, we have included studies with all types of MRA therapy includ-
ing spironolactone and canrenone, and have found that there is no association between
MRA therapy and mortality in SARS-CoV-2 infection (OR = 0.387, 95% CI: 0.134–1.117,
p = 0.079). Despite its known effect of decreasing sympathetic activity, inflammation, tissue
fibrosis, and the potential action of hindering viral entry to host cells, MRA therapy did
not translate into a significant decrease in mortality in patients with SARS-CoV-2 infection.
Mortality was chosen as the outcome of our interest as this particular outcome was consis-
tently reported across the studies. However, it remains to be seen whether MRA therapy
has association with other outcomes such as oxygen saturation, need for intubation or
vasopressors, duration of hospitalization, and levels of inflammatory markers. Prospective
clinical trials are currently underway to further elucidate the relationship between MRA
therapy and morbidity and mortality in SARS-CoV-2 infection.

There are several limitations in our study. First, only one RCT was included in the
analysis, while other studies were case-control and cross-sectional studies, making our
analysis subject to unmeasured confounding factors which are inherent to observational
study designs. Moreover, the types of MRA were varied and sometimes not reported
in the studies, and the doses of MRA therapy received by patients were not uniform.
Recent studies suggest possible beneficial effects of RAAS inhibitors and non-insulin
anti-hyperglycemic agents against SARS-CoV-2 infection, and concurrent use of other
medications such as angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor
blockers (ARB), dipeptidyl peptidase-4 inhibitors (DPP4i), sodium-glucose cotransporter-2
inhibitors (SGLT2i), and glucagon-like peptide-1 receptor (GLP1) agonists reported in
several of the included studies may have confounded the results [50–54]. Subsequently, an
elevated heterogeneity was noted in our analysis (I2 = 71.2%, p = 0.008), and the random-
effects model was employed in our meta-analysis to account for this heterogeneity. It is
also notable that, in our sensitivity analysis, the result of the analysis when the study by
Savarese et al. was removed was statistically significant. Of note, the study by Savarese
et al. involved a much larger number of subjects in a nationwide registry population,
compared to that of other studies (Table 1). Ultimately, the sensitivity analysis suggests
that the findings of our study may need to be interpreted with caution.

5. Conclusions

In conclusion, our meta-analysis does not establish a significant association between
MRA therapy and mortality in patients infected with SARS-CoV-2. Based on the lack of
definitive benefit of MRA use in SARS-CoV-2 infection, clinicians should be cautious in
initiating MRA therapy in these patients. Larger-scale randomized controlled trials with
extended follow-up periods are needed to further elucidate the relationship.
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