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Abstract

Background: Sequence-binning techniques enable the recovery of an increasing number of genomes from complex
microbial metagenomes and typically require prior metagenome assembly, incurring the computational cost and
drawbacks of the latter, e.g., biases against low-abundance genomes and inability to conveniently assemble multi-terabyte
datasets. Results: We present here a scalable pre-assembly binning scheme (i.e., operating on unassembled short reads)
enabling latent genome recovery by leveraging sparse dictionary learning and elastic-net regularization, and its use to
recover hundreds of metagenome-assembled genomes, including very low-abundance genomes, from a joint analysis of
microbiomes from the LifeLines DEEP population cohort (n = 1,135, >1010 reads). Conclusion: We showed that sparse coding
techniques can be leveraged to carry out read-level binning at large scale and that, despite lower genome reconstruction
yields compared to assembly-based approaches, bin-first strategies can complement the more widely used assembly-first
protocols by targeting distinct genome segregation profiles. Read enrichment levels across 6 orders of magnitude in relative
abundance were observed, indicating that the method has the power to recover genomes consistently segregating at low
levels.
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Background

Metagenomic shotgun sequencing has dramatically increased
our appreciation of the intricacies of microbial systems, whether
sustaining biogeochemical processes or underlying health sta-
tus of their hosts. Several limitations, including sequencing er-
rors, strain-level polymorphism, repeat elements, and inequal
coverage, among others, concur however to yield fragmented
metagenome assemblies, which require post-processing in or-
der to cluster (bin) assembled fragments into meaningful bio-
logical entities, ideally strain-resolved genomes.

The advent of reasonably efficient sequence-binning tech-
niques, often exploiting a coverage covariance signal across
multiple samples, allowed the field of metagenomics to move
toward more genome-centric analyses [1], and recently thou-
sands of so-called metagenome-assembled genomes (MAGs)
have been reported, both from environmental sources and hu-
man surfaces or cavities [2–5]. The vast majority of these MAGs
have been produced by post-assembly binning approaches, i.e.,
operating on sequence contigs assembled on a sample-by-
sample basis. Although highly successful, such methods are
nevertheless “inherently biased towards the most abundant or-
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ganisms, meaning consistently less abundant organisms may
still be missed” [4]. For example, although thousands of MAGs
were reconstructed from >1,500 public metagenomes in the re-
markable study by Parks et al. [2], over 93% of these MAGs had an
average coverage of >10× (5th percentile, 9.2x, 95th percentile,
268x). The high proportions of phylogenetically unassigned
reads typical in medium- to high-complexity metagenomes is
another consequence of this limitation [6].

Even though the ecological or community-level importance
of rare species is a matter of debate, there are both theoreti-
cal and empirical observations supporting the notion that rare
organisms can substantially contribute to community-level be-
havior and resilience and hence represent valuable targets for
genome recovery.

Theoretical modeling of microbial trade of diffusible goods
[7] has, for example, highlighted an apparent paradox (called
“curse of increased efficiency” by Kallus et al [7]), where 1 bac-
terial species becomes rarer in the population despite becoming
fitter and more efficient at producing a key metabolic resource.
This situation is provoked by metabolic interdependencies that
can evolve via trade in microbial consortia and that can lead
to low-abundance organisms becoming essential for a faster
growth rate of the community. On the other hand, several em-
pirical studies have documented the ecosystem-level relevance
of rare bacteria (see [8] for a review); e.g., Kalenitchenko et al.
[9] make a case for the role of “ultrarare” bacteria in ecosystem-
level productivity, and Benjamino et al. [10] highlight the role of
some low-abundance bacteria in driving termite hindgut bacte-
rial community composition.

Considering that global metagenome assembly (or cross-
assembly) is currently unpractical to recover low-abundance
genomes or complex microbial consortia from terabytes of data,
we decided to investigate a “bin first and assemble second”
paradigm that could make the assembly problem more tractable
by targeting lower-complexity sequence subsets (bins). Binning
unassembled reads is however more computationally demand-
ing because the number of raw sequences is typically orders
of magnitude higher than the number of assembled contig se-
quences.

Even though the dominating paradigm nowadays is
assembly-first binning, it is worth noting that the first
sequence-binning methods reported, such as Abundance-
Bin [11] and MetaCluster [12], operated at the read level. This
shift towards contig binning was mainly driven by the increase
in data throughput, as the first read-level binning methods
were designed at the time of 454 (Roche) and even Sanger
sequencing (both providing longer reads) to process individual
samples. They were thus not designed to scale to large multi-
sample terabase-sized short-read datasets. In this perspective,
assembly can be viewed as a pre-processor to reduce the
computational burden of binning.

A pioneering pre-assembly binning scheme [13] was pro-
posed a couple of years ago, with the read partitioning prob-
lem formulated by analogy to the latent semantic analysis (LSA)
technique widely used in natural langage processing (NLP). The
core idea to view metagenomes as linear mixtures of genomic
variables can lead to read clustering formulations based on the
deconvolution of latent variables (“eigengenomes”) driving the
k-mer (subsequences of length k) abundance covariance across
samples. The raw sequence data are first summarized in a sam-
ple by k-mer occurrence matrix (analogous to term-document
matrices in NLP), approximating the abundance of k-mers across
samples. Matrix decomposition techniques can then be used to
define 2 sets of orthogonal latent vectors analogous to principal

components of sample and sequence space. The large memory
requirements incurred by the factorization of large abundance
matrices naturally drove Cleary et al. [13] toward a rank-reduced
singular value decomposition (SVD), for which efficient stream-
ing libraries [14] enable a parallel processing of blocks of the
abundance matrix by updating the decomposition iteratively.
Clusters of k-mers can then be recovered by an iterative sam-
pling and merging heuristic that samples blocks of eigen k-mers
from the right singular vectors matrix until an arbitrary portion
(∼0.4% in [13]) of the latter has been covered. This heuristic is
however acknowledged as a significant hindrance, the authors
stating that “more sophisticated methods are needed to com-
putationally discover a ’natural’ clustering” [13].

We describe here a pre-assembly binning method based on
sparse dictionary learning and elastic-net regularization that ex-
ploits sparsity and non-negativity constraints inherent to k-mer
count data. This sparse coding formulation of the binning prob-
lem can leverage efficient online matrix factorization techniques
[15] and scales to very large (terabyte-sized) k-mer abundance
matrices; it also bypasses the aforementioned problematic k-
mer clustering heuristic, removes interpretability issues asso-
ciated with the SVD (e.g., the physical meaning of negative con-
tributions), and is able to enrich sequences from a given genome
across 6 orders of magnitude in relative abundance (see section
”Recovery of very low-abundance genomes”).

Analyses

We describe in the following section some analyses and results
of the proposed binning scheme based on the modeling of data
vectors as sparse linear combinations of basis elements (sparse
coding [15]).

We start with a preliminary experiment illustrating the abil-
ity of read binning to recover a target genome whose sequences
segregate at levels too low to yield any kilobase-sized fragment
by assembly in any single sample and hence would not be re-
coverable by assembly-first approaches. We then describe re-
sults from a direct comparison of assembly-first versus bin-
first methods that illustrate the complementarity of the 2 ap-
proaches in terms of the profiles of genomes recovered. The next
subsection describes a comparison of the sparse coding–based
bin-first approach with a state of the art read-binning method.
The next subsections describe strain separation results obtained
with the new method and document its scalable behavior and
its ability to enrich rare sequences, thereby enabling the recov-
ery of low-abundance genomes. We conclude with a discussion
of some important limitations of the method and consider some
of its potential applications.

Read-level binning can recover low-abundance
genomes that escape assembly-first protocols

We devised an experiment to illustrate a situation where
assembly-first approaches are not able to recover a target
genome—because target genome sequences are too low in num-
ber in any single sample—whereas a bin-first approach is suc-
cessful at it. The experimental set-up involved distributing a
very low number of short reads (100 paired reads) randomly
sampled from a target genome (a 10-kb plasmid) into 14 sam-
ples containing each a background of 20,000 unrelated bacte-
rial sequences (4 further samples contained only background se-
quences with no read from the target genome at all). Because no
single kilobase-sized fragment could be recovered by assembling
the sequences from each sample individually, this precluded
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Table 1: Binning accuracy estimates

Parameter k-means LSA Sparse coding

Precision 0.52 0.58 0.72
Recall 0.63 0.64 0.82
F-value 0.57 0.61 0.77

LSA refers to the original algorithm of [13], with a cosine similarity threshold

of 0.7 as recommended by the authors; k-means refers to a direct clustering of
the columns of the abundance matrix, with the number of clusters set to 1,000
(equal to the number of components for the sparse decomposition); see main
text and Methods.

the application of assembly-first methods (e.g., contig binning
methods like metabat [16,17] require ≥1,500 bp sequences as in-
put). On the other hand, ∼90% of the reads originating from the
target genome could be segregated in a single cluster/bin using
our read binning pipeline (Supplementary Table 1), leading to the
complete recovery of the target genome in a single contig after
assembly (Methods).

Bin-first and assembly-first strategies recover distinct
and complementary genome sets

A second experiment aimed at directly comparing the genome
recovery yield of assembly-first versus bin-first strategies on
a real-life dataset. We selected the raw sequence data from
18 (randomly chosen) individuals of the LifeLines DEEP cohort
[18] and either assembled these individually (i.e., on a sample-
by-sample basis) with metaSPAdes (v3.13.0) followed by con-
tig binning across samples with the MetaBat2 adaptive algo-
rithm [17] or clustered the raw reads using our read-level bin-
ning pipeline, followed by metaSPAdes assembly of the resulting
partitions/bins.

Fourteen nearly (>90%) complete and uncontaminated (<5%)
genomes were recovered using the assembly-first approach, ver-
sus 7 using the bin-first method. Interestingly, the 2 genome sets
were disjoint, with no complete genome recovered by both ap-
proaches. Among the 14 genomes recovered by the assembly-
first approach, 3 were not represented in the set of 164 MAGs re-
covered from the analysis of the entire cohort using the bin-first
protocol. More surprisingly, only 3 of the 7 complete genomes
retrieved by our bin-first pipeline from the analysis of 18 sam-
ples were represented among the complete or nearly complete
MAGs identified from the full cohort analysis, indicative of a lack
of stability of the algorithm that we relate to bin fragmentation
provoked by extensive strain-level variation across the samples
(see Discussion).

The surprising lack of overlap between the 2 genome sets in
this experiment is not attributable to fundamental differences
in abundance levels between the genomes recovered by the 2
approaches because in both cases the genome bins could be di-
rectly aligned to individual sample assemblies; i.e., the genomes
recovered using both approaches were of sufficiently high cov-
erage to yield relatively large contigs in the assemblies of in-
dividual samples. We assessed potential differences between
the distributions of binned genome sequences across the sam-
ples, which highlighted distinct patterns for the 2 approaches,
with the genomes identified by the bin-first approach aggregat-
ing sequences from a larger number of samples (and harboring
a higher number of contigs per genome bin on average) (Fig. 1).

Thus, in the present experiment, the assembly-first approach
targeted genomes reaching high abundance in a limited num-
ber of samples, for which the weaker abundance covariation

signal probably hampered the bin-first approach. Consistent
with this view, sequences from genomes produced through the
assembly-first approach were frequently located in large (dozens
of megabase pairs in size) and unresolved partitions computed
by read-level binning (see Discussion).

On the other hand, we should keep in mind that the number
of samples (18) used in this experiment is relatively low. Related
approaches based on abundance-covariance, like Concoct [19] or
LSA [13] among others, require a higher number of samples to
achieve best performance (∼50 samples for the former and 30–50
for the latter).

Despite these limitations, the fact that the bin-first approach
was able to recover a significant number of complete genomes
not identified by the assembly-first approach illustrates the
complementarity of the 2 strategies.

Enhanced accuracy of sparse coding–based read
binning versus state of the art read binning

Besides the 2 pioneering read-binning methods already men-
tioned (AbundanceBin [11] and MetaCluster [12]), we could
also mention CompostBin [20], which is a principal component
analysis–based read-level–binning algorithm that was designed
and tested on Sanger reads. BiMeta [21] and MetaProb [22] are
other tools that operate at the read level but describe themselves
as “assembly-assisted,” meaning that they rely on the detection
of read overlaps. BiMeta was tested on 454 reads simulating bac-
terial communities of a dozen different genomes at most and on
the Acid Mine Drainage dataset [23], which is of low complexity
and consists of Sanger reads. MetaProb shares some principles
with BiMeta: it is also “assembly-assisted” and was tested on
the same low-complexity synthetic datasets as the latter. The
authors also tested their method on a real microbiome sample
consisting of 43 million reads, but only after filtering the latter
down to 2 million reads.

Thus, all the above methods were designed to operate on in-
dividual samples, at a time when scalability issues were less
acute. Moreover, with the exception of AbundanceBin, which ex-
ploits a coverage signal extracted from unique k-mers, the other
methods are better described as composition-based, using a nu-
cleotide composition signal measured from short k-mers (typi-
cally of length 4 or 5).

We developed our method with scalability in mind because
we wanted it to be able to process on the order of 1010 short
reads and to be able to process increasingly larger multi-sample
datasets by simply stacking additional computing resources. In
this respect, there is only 1 competing method left, Latent Strain
Analysis [13], that is both scalable and designed to operate on
unassembled short reads from a large number of samples.

To evaluate our method, we first compared its read clus-
tering accuracy (measured in terms of precision, recall, and F-
value metrics; see Methods) with that of the original LSA method
by using previously described benchmark datasets [24] (down-
loadable from the GigaScience database [25]), for which read to
genome assignments were known ([24] and Methods). The re-
sults from these experiments are summarized in Table 1 and
show improved accuracy of the sparse-coding framework over
both the original LSA and a naive k-means algorithm.

Partial strain separation

The counting and indexing of k-mers in fixed memory is
achieved by locality sensitive hashing (Methods). By design, lo-
cality sensitive hash functions increase the probability of colli-
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Figure 1: Sample origins of the sequences aggregated into genome bins (displayed by their genome identifier on the x-axis) using our bin-first method (first 7 genomes
[104–94] on the left) vs assembly-first binning using metabat2 (14 rightmost [3–224] genomes). Genomes retrieved by the bin-first method aggregate sequences from a

larger number of samples.

Table 2: Average nucleotide identity (ANI) between the Bacillus amy-
loliquefaciens strains used in the strain separation experiment illus-
trated in Fig. 2A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
94.20 1
94.30 99.44 1
94.21 99.96 99.44 1
98.74 94.20 94.27 94.20 1
99.02 94.25 94.33 94.25 98.72 1
97.75 94.09 94.20 94.09 97.79 97.77 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

See main text and Methods.

sion for related items [26]. On one hand, this provides a conve-
nient way to handle sequencing errors. On the other hand, the
occurrence in natural environments of multiple strains from the
same species (the so-called species pangenome) could lead to ar-
tifactual k-mer merging and potential overlap between distinct
genomic partitions. This represents an issue potentially exacer-
bated by the inter-sample read aggregation process.

To assess the behavior of the method in the presence of ex-
tensive pangenomic (i.e., strain-level) variation, we quantified
its ability to separate closely related (up to 99.96% average nu-
cleotide identity [ANI]; Table 2) strains that were deliberately in-
cluded in the genome mixtures of the virtual cohort used in the
test experiments.

Fig. 2 illustrates 2 practical examples of partial strain separa-
tion achieved with the method. Fig. 2A illustrates a partial sepa-
ration of 7 strains of the species Bacillus amyloliquefaciens (whose
ANI ranged from 94.18 to 99.96; Table 2), while Fig. 2B shows
similar results for 8 strains of Sulfolobus islandicus (whose ANI
ranged from 97.84 to 99.59). Because the genomic origin of each

read is known in the virtual cohort dataset, these plots show,
for each strain (represented by a horizontal line), the distribu-
tion of its reads among the full set of clusters/bins generated by
the pipeline (and arbitrarily ordered along the x-axis). Fig. 2A il-
lustrates that the 7 strains of B. amyloliquefaciens are mostly sep-
arated into 2 groups according to whether their main cluster is
located near x-coordinate 220 or x-coordinate 500. Fig. 2AB on
the other hand shows that the 8 strains of S. islandicus share a
common “core” cluster (located near the origin), while a variable
portion of their genomes are segregated into distinct “variable”
clusters.

Overall, this analysis makes apparent a partial separation of
closely related strains (Fig. 2A), as well as the differential seg-
regation of the core (i.e., the genome fraction that is shared be-
tween all the strains of a species) and variable portions of the
species pangenomes (Fig. 2B).

In practice, some level of strain mix-up is probably inherent
to the inter-sample read aggregation process, and approaches
based on sample-by-sample assembly limit the risk of strain
mixing, but at the expense of focusing on those genomes that
reach high coverage (∼10×). Our approach aimed at relaxing the
latter constraint, but by doing so through the aggregation of
lower-abundance reads across samples, it becomes vulnerable
to extensive strain-level variation. Dealing with this problem is
the focus of future research; e.g., a possible workaround could
be to carry out a “soft-clustering” by allowing “core” sequences
to belong to >1 “variable” cluster.

Sensitivity and scalability on real-life data

By scalability, we refer to the ability of the method to adapt to
order-of-magnitude change in the input (raw reads) and its abil-
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Figure 2: Partial resolution of species pangenomes. x-axis: partition identifier; y-axis: horizontal axes correspond to different strains from the same species (left: B.

amyloliquefaciens strains; right: S. islandicus strains). Circle area is proportional to the number of reads from a given strain assigned to the given partition. A illustrates
the partial separation of 7 strains into 2 distinct partitions. B illustrates the differential segregation of the core (at the left of the figure) and variable portions of the
species pangenome.

ity to maintain its functionality and performance under high de-
mand (i.e., increasingly higher data volumes).

To assess the sensitivity and scalability of the sparse cod-
ing method, we applied it to a real-world dataset of >1010 reads
(∼10 TB of raw sequence data) derived from 1,135 gut micro-
biomes of healthy Dutch individuals from the LifeLines DEEP
cohort [18]. The pre-assembly binning of the cohort’s reads re-
sulted in 983 partitions, which were then assembled individu-
ally using the SPAdes engine [27] (Methods). The distribution
of assembly sizes is shown in Fig. 3, making apparent that al-
most all partitions are bacterial-genome sized (i.e., in the 2–5
Mb range). A few dozens of coarse-grained partitions harboring
unresolved genomes make up the right tail of the distribution.

Because a direct read to genome mapping is not available for
real-life metagenomes, we assessed clustering performance by
quantifying the genomic homogeneity and completeness of the
resulting partitions based on the occurrence pattern of univer-
sal single-copy markers using the checkm toolkit [28]. A sum-
mary of completion and contamination statistics of the genome-
resolved partitions is presented in Table 3 .

The fact that many of the partitions display low contami-
nation is somehow balanced by the concomitant generation of
large and unresolved partitions. The production of these unre-
solved partitions arises from the fact that the extent of genome
divergence is not uniform across the range of taxa occurring
in the samples. As discussed above, strain-level (“pangenomic”)
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Figure 3: Distribution of assembled bin sizes. x-axis: assembled partition size (in kilobase pairs); y-axis: partition frequency.

Table 3: Genome completion and contamination statistics of assem-
bled partitions/bins

Classification
Completeness

(%)
Genomes

(bins)
Contamination

(%)

Nearly
complete

>90 14 ≤5

Substantial >70 to ≤90 53 ≤5
Moderate >50 to ≤70 97 ≤5
Partial ≤50 724 ≤5
Unresolved >100 95 >5

See main text and Methods.

variation is another factor contributing to cluster fragmentation,
by inducing a differential segregation of the core and variable
portions of genomes, and is exacerbated by the inter-sample
read aggregation process.

Recovery of very low-abundance genomes

A key motivation for the pre-assembly processing of reads
was the theoretical possibility to aggregate reads from low-
abundance organisms across samples.

To assess whether we could indeed identify such consistently
low-abundance genomes in real-life datasets, we characterized
the abundance of a subset of > 70% complete genomes from
the LifeLines DEEP cohort analysis by directly mapping the raw
reads of the original samples against them. Given the large size
of the cohort, this analysis was not performed on the full set of
MAGs but on a limited number of genomes, the aim being to val-
idate the ability of the method to retrieve such low-abundance
genomes by exhibiting some of them.

The relative enrichment levels of these genomes was mea-
sured as the fraction of raw reads contributed by each sample to
them (Methods) and is illustrated in Fig. 4 for 2 genomes, with
panel A showing an example of a consistently low-abundance
genome (i.e., with nearly all the samples contributing no more
than 10−5 to 10−4 of their reads to the given genome), while panel
B shows a genome of overall moderate abundance (10−4) but

reaching higher abundance (10−3) in a few dozen samples (rep-
resented by the rightmost peak in the histogram).

Given the large number of microbiomes analyzed, we quite
frequently observed situations where a given genome reaches
medium to high relative abundance in ≥1 sample (as illustrated
in Fig. 4B). However and importantly, we could also detect in-
stances of genomes that consistently segregated at low abun-
dance levels across the whole cohort (Figs 4A and 5B and D).

The recovery of these genomes was made possible by aggre-
gating a few thousand reads per sample across a large number of
samples, thus demonstrating the ability of the method to isolate
rarer genomes. Overall, the high proportion of homogeneous
partitions corresponding to partial genomes (Table 3) is consis-
tent with the recovery of sequences from lower-abundance or-
ganisms, whose cumulative coverage across the cohort is not
sufficient to allow complete genome reconstruction.

Assessing novelty against reference genome
compendia

To investigate the extent to which the recovered genomes could
correspond to novel organisms, we screened a subset of 164
of them (>50% complete with <5% contamination, accessible
via GigaDB [25]) against several reference genome libraries. We
first compared the genomes against the Kraken 2 [29] database
built from NCBI’s Refseq bacteria, archaea, and viral libraries (ac-
cessed October 2018). Only 21 of the 164 genomes compared had
≥1 fragment classified against this reference database (Meth-
ods). We also compared the genomes against the “Global Human
Gastrointestinal Bacteria Genome Collection” (HGG [6]), which
represents one of the most comprehensive resources of gas-
trointestinal bacterial reference sequences currently available.
Less than half (72 of 164) of the genomes displayed convincing
similarity to the HGG genome catalogue (Methods).

Discussion

Abundance covariance-based binning has the power to identify
biologically meaningful associations between metagenomic se-
quences that could go unnoticed by analyses based on sequence
overlap (assembly) or nucleotide signatures. This is illustrated
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Figure 4: Enrichment histograms displaying the fraction of raw reads contributed by each sample to 2 distinct genome-resolved bins. x-axis: read abundance of
partition 0 (left) and partition 757 (right); y-axis: sample frequency (among the 1,135 samples). Different situations are illustrated: a relatively high proportion of reads
can be contributed by a small subset of individuals (a few dozens, corresponding to the rightmost peak for the genome-resolved bin shown in panel B), while panel
A illustrates that substantial (i.e., ≥70% complete) genomes of low-abundance organisms can also be recovered by aggregating only a few thousand reads per sample

across the full cohort.

in the present study by a preliminary experiment using a syn-
thetic dataset spiked with low-abundance sequences from a tar-
get genome that does not reach a sufficient coverage to yield
kilobase-sized fragments after assembly in any individual sam-
ple (thus precluding the application of contig binning) but that
is successfully recovered via read-level binning (Supplementary
Table). When applied to the >1010 reads from the LifeLines DEEP
cohort’s metagenomes, our bin-first protocol recovers hundreds
of metagenome-derived genomes, including from consistently
less abundant organisms (Figs 4 and 5B and D). By increasing
the number of distinct abundance profiles that can be generated,

larger sample numbers increase both the sensitivity and resolu-
tion of covariance-based methods; one may therefore anticipate
further gains in the application of such methods in relation to
future increases in the scale of sequence data generated (i.e., in-
creased cohort sizes).

We need however to acknowledge several important limita-
tions that impede the overall performance and applicability of
our bin-first framework. First, we already mentioned a limita-
tion arising from the natural occurrence of strain-level varia-
tion at the origin of differential segregation of core and vari-
able fractions of species pangenomes (Fig. 2). The large number
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Figure 5: Left panels (A, C): GC-coverage plots (x-axis: contig GC%; y-axis: contig coverage) illustrating the homogeneity of 2 assembled bins (A, bin 470 [70% complete,
4.8% contamination]; C, bin 766 [70% complete, 3.5% contamination]) corresponding to 2 unclassified Firmicutes genomes of low abundance, whose enrichment
histograms are shown in the corresponding right panel (B, D). Right panels (B, D): Enrichment histograms showing the fraction of raw reads contributed by each of

the 1,135 samples to the 2 genomes whose GC-coverage plots are displayed in the corresponding left panel. x-axis: read abundance of genome bin 470 (B) and 766 (D);
y-axis: sample frequency (among the 1,135 samples).

of incomplete but otherwise uncontaminated partitions/bins in
the LifeLines DEEP analysis partly reflects the widespread oc-
currence of this type of variation in natural habitats. However,
it should be noted that neither are assembly-based approaches
immune to this type of variation, frequently discarding it when
building “flattened” consensus contigs. This type of polymor-
phism is difficult to handle in a de novo way, and current meth-
ods for strain-level surveys of metagenomes typically rely on ref-
erence databases of strain-specific nucleotide polymorphisms
(see, e.g., [ 30]). Sample-by-sample assembly limits the risk of
strain mix-up, but at the expense of focusing on those genomes
reaching high coverage (∼10×). Our approach aimed at relaxing
the latter constraint, but by doing so through the aggregation of
lower-abundance reads across samples, it becomes vulnerable
to extensive strain-level variation.

To the best of our knowledge, a method that could target—
in an unsupervised way—low-coverage genomes in a strain-
resolved manner is not available today, and working towards
this goal is clearly a promising research area. It should be noted
however that, to some extent, the degree of similarity that one
wishes to distinguish can be tuned through the choice of the
k-mer length and hash size. Increasing the k-mer size would
increase the separation of closely related sequences, but only

to some extent because the locality-sensitive hashing (LSH)
scheme will inherently increase the probability of collision for
similar sequences. Thus, we face here another trade-off: besides
efficient in-memory indexing, the same LSH trick that allows
convenient handling of sequencing errors (noise) can also put
a limit on the power to separate very similar sequences (e.g.,
strains).

The observation that 4 of 7 genomes retrieved in the prelim-
inary experiment based on 18 samples were not among the set
of MAGs identified by analyzing the full dataset is indicative of a
lack of stability of the algorithm. This effect of the sample num-
ber is most likely mediated by the increasing presence of strain
variation when aggregating reads across increasing numbers of
samples, leading to more fragmented partitions, and suggests
that, above a certain level, increases in sample number can lead
to diminishing returns in terms of complete genome recovery.
We probably underestimated the extent of strain-level variation
in real-world data, and the high level of genome fragmentation
in the LifeLines DEEP partitions can be partly attributed to this
problem, with low sequence coverage able to contribute as well.

Another limitation of the method is the generation of coarse-
grained partitions harboring a large number of unresolved
genomes (corresponding to the tail of the partition size distribu-
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tion shown in Fig. 3). This problem is already manifest in the pre-
liminary experiment comparing assembly-first versus bin-first
approaches, and further exemplified in the large cohort analy-
sis that yielded 983 partitions, 888 of which displayed low levels
(<5%) of contamination (Table 3), but also produced several large
clusters holding dozens of microbial genomes. The generation
of such unresolved partitions seems difficult to avoid because
the extent to which genomes differ from each other is variable
across phylogenetic groups. As a result, it is unlikely that a single
setting (e.g., k-mer length and hash size) could achieve perfect
separation of genomes from highly diverse genome mixtures.

These 2 limitations probably concur to explain that the num-
ber of moderate to nearly complete genomes recovered from
the population cohort analysis appears much lower than the
number of ”species genomes” recoverable via assembly-first
approaches (remember, e.g., that close to 5,000 species-level
genome bins were recovered from the analysis of nearly 10,000
metagenomes in [3]; one should however note that an average
of 5.3 Gb per sample after quality control was generated in the
latter study, vs 3.0 Gb before quality control in the LifeLines DEEP
[18] data analyzed here).

When analyzing a large number of related samples, we no-
ticed quite commonly that distinct organisms are able to reach
a sufficiently high (to be assembled) relative abundance level in
≥1 sample (a situation exemplified in Fig. 4B). When following
a sample-by-sample assembly-based strategy, a high coverage
reached in a single sample (the likelihood of which increases
with the number of samples analyzed) might be sufficient to as-
semble significant portions of a genome, even if it segregates at
much lower levels in the remaining part of the cohort. This prob-
ably contributes to explain the high genome recovery yields of
assembly-based approaches.

However, a key feature of the presented method is its ability
to recover genomes of organisms consistently segregating at low
levels across the entire cohort, as verified in a test experiment
and on real-world data (cf. Fig. 4A). The observation that more
than half of the genomes recovered here were not detected in a
very large compendium of human gut genomes assembled from
thousands of samples [3] is consistent with this view.

Metagenomic sequence binning is still a very active research
field, and there are many interesting ongoing efforts, includ-
ing some attempts to cast binning as an assembly graph par-
titioning problem [31]. Recent efforts include Brown et al. [32],
which exploits the structural sparsity of compact de Bruijn as-
sembly graphs to compute succinct indexes in linear time, al-
lowing neighborhood queries to be performed on large assem-
bly graphs in an “assembly-free” manner. One should note how-
ever that, even though this can leverage developments in ef-
ficient k-mer counting and graph compaction (e.g., [33]), as-
sembling large multi-terabyte datasets can remain problematic
in the first place. Nevertheless, most of the recent develop-
ment efforts in the field of metagenomic sequence binning re-
main directed toward assembly-first approaches, which have
already delivered a vast array of high-performing and user-
friendly software [19,34–36], some of which have shown capa-
bilities to recover genomes as low as 0.6% (10−3) in relative
abundance [35]. However, we have shown that the method pre-
sented here is able to recover genomes by sequence enrichments
of the order of up to 10−6 (10−7 for some plasmid sequences)
and therefore believe that it could be a useful adjunct to exist-
ing more mainstream approaches, especially for targeting more
rare organisms. On the other hand, benefits of read-binning for
comparative metagenomics have also been recently reported
[37].

Potential Implications

As global metagenome assembly (and even more co-assembly)
remains unpractical for multi-terabase–sized datasets, meth-
ods like the one described here—for which computer memory
requirements remain independent of sequence depth—could
prove valuable by making pre-assembly binning tractable while
allowing researchers to gain access to genomes from the rare
biosphere.

Methods
Control datasets

The control experiments used the dataset described in
Gkanogiannis et al. [24] (and accessible from GigaScience’s
GigaDB [25]) corresponding to a virtual cohort of 50 individuals
each harboring a microbiome of 100 distinct bacterial genomes
sampled under a power-law abundance distribution (with
power parameter α = 1.0) from a pool of 750 fully sequenced
genomes at an average depth of 10× (see [24] for details). We call
these datasets semi-synthetic because they are made of real
bacterial genome sequences assembled into artificial mixtures.
The read to genome assignments (ground truth) being known
in advance for all the reads, the precision and recall metrics
were computed from the read clustering output as in equations
(10) and (11) of Meyer et al. [38] (see section ”Comparison of
read binning algorithms”), with precision corresponding to
what the authors refer to as purity and recall corresponding to
completeness.

Real dataset: LifeLines-DEEP metagenomes

The LifeLines-DEEP cohort features 1,135 individuals (474 men
and 661 women) from the general Dutch population, whose
gut microbiomes were shotgun sequenced using the Illumina
short-read technology, generating an average of 32 million
reads per sample (see [18] and EBI dataset accession No.
EGAD00001001991).

Locality-Sensitive Hashing

We used the SimHash [26] scheme described by Cleary et al. [13]
to obtain a proxy for k-mer abundance. Briefly, raw reads are
parsed into k-mers of fixed size (k = 31 was used in our experi-
ments), the bases of which are individually mapped to a complex
simplex via a mapping of the form A = 1, C = i, G = −i, T = −1 that
can also incorporate base-call confidence scores [13]. k-mers are
thus represented in k-dimensional space in which n hyperplanes
(we used n = 30 in our experiments) are randomly drawn, creat-
ing 2n subspaces, or buckets, indexing the columns of the sam-
ple by k-mer abundance matrix whose rows were scaled to unit
�2 norm. The LSH scheme is sequence sensitive, increasing the
probability of collision for more similar k-mers [26], and allows
the representation of k-mer abundance matrices of arbitrary di-
mensions in fixed memory.

Regarding the choice of a k-mer length, the key requirement
is that k-mers should be sufficiently long so that most of them
will be specific to each genome, thereby capturing genuine abun-
dance patterns of individual genomes. In our experiments, the
k-mer length (31) was chosen to be close to the value used by
Cleary et al. [13] to analyze their largest (terabase-sized) dataset.
Some limited experiments with varying k-mer length values
were carried out on smaller subsets of the data to check that



10 Binning unassembled short reads on the basis of k-mer covariance using sparse coding

small variations in k-mer size did not result in disproportionate
differences in clustering outputs.

In choosing the k-mer length, we were also guided by the ob-
servations in [39] that k-mer similarity between genomes at dif-
ferent k approximates various degrees of taxonomic similarity,
with k = 31 appearing to correspond to species-level similarity.
We also noticed that k = 31 is the default setting in the popular
sequence classification engine kraken [29].

Sparse coding

Our aim is to learn sparse and non-negative factors from the
sample by (hashed) k-mer abundance matrix X. The sparsity as-
sumption has biological roots in the fact that every individual
only harbors a small subset of all the genomes that constitute
the global microbiome, while each genome only contains a very
small subset of the k-mers encountered across all the samples.
Sparse coding aims at modeling data vectors as sparse linear
combinations of elements of a basis set (aka dictionary) that
can be learned from the data by solving an optimization prob-
lem [15]. We used the SPAMS library [40], which implements the
learning algorithm of [15]: given a training set x1, ..., xn it tries to
solve

min
D∈C

lim
n→+∞

1
n

n∑
i=1

min
αi

[
1
2

‖ xi − Dαi ‖2
2 +ψ(αi )

]
,

where ψ is a sparsity-inducing regularizer (e.g., the �1 norm)
and C is a constraint set for the dictionary (positivity constraints
can be added to α as well). The following optimization scheme
was used (FL stands for fused LASSO):

min
D∈C

1
n

n∑
i=1

1
2

‖ xi − Dαi ‖2
2 +λ1 ‖ αi ‖1 +λ2 ‖ αi ‖2

2

with C a convex set verifying

C = D ∈ Rm×ps.t.∀ j, ||dj ||22 + γ1||dj||1 + γ2FL(dj ) ≤ 1.

Once the dictionary has been learned, the SPAMS library of-
fers an efficient implementation of the least-angle regression al-
gorithm [41] for solving the LASSO or elastic net problem: given
the data matrix X in Rm×n and a dictionary D in Rm×p, this algo-
rithm returns a matrix of coefficients A = [α1, ..., αn] in Rp×n such
that for every column x of X, the corresponding column α of A
is the solution of

min
α

1
2

||x − Dα||22 + λ1||α||1 + 1
2

λ2||α||22.

The SPAMS implementation of this algorithm allows the ad-
dition of positivity constraints on the solutions α, which have a
natural interpretation as weighing the contribution of the differ-
ent hashed k-mers to the latent genomes. In practice, we defined
clusters by assigning hashed k-mers from bucket i to component
c if c = argmaxjAi, j.

Read classification and assembly

Starting with the raw reads and their decomposition into k-
mers, the bulk of the binning algorithm thus operates in k-mer
space. After computing covarying k-mer sets (“eigengenomes”),
a post-processing step is thus necessary to assign reads to their

cognate k-mer clusters to achieve a read-level clustering. We
stuck to the LSA procedure [13] for this step, with the original
reads being assigned to k-mer clusters based on a log-likelihood
score aggregating (i) cluster sizes (measured in terms of k-mer
numbers), (ii) the overlap between k-mers in reads and those in
clusters, and (iii) an inverse document frequency–style weight
expressing the rarity of each of the overlapping k-mers. After
read assignment, the partitions were assembled with the SPAdes
(v3.13.0) engine [27] using default settings.

First experiment for comparing assembly-first versus
bin-first protocols

An experimental set-up was designed to illustrate the ability of
read binning to cluster rare reads from a target genome across
samples, while assembly-first protocols are inoperable because
the low coverage of the target genome prevents the generation
of any kilobase-sized contig from the assembly of the individual
samples.

The dataset consisted of 18 samples each containing a subset
of 20,000 reads sampled from the 18 metagenomic libraries ana-
lyzed in Sharon et al. [42] and randomly spiked with mock reads
from a Bacillus thuringiensis plasmid (NG 035027.1) as in the test
data used in the original LSA paper [13]. However, as the num-
ber of spiked reads (up to 4,000) distributed among the samples
in LSA’s test dataset was sufficient to yield contigs covering a
large fraction of the plasmid genome upon assembly, we derived
a new dataset only containing 0–100 paired reads (14 samples
contained 100 paired reads while 4 were entirely devoid of plas-
mid reads) and used the latter for this experiment. This dataset
is available on the repository associated with this publication
[25].

After checking that no kilobase-sized contig could be assem-
bled in any of the samples—thus precluding the application of
contig binning—the dataset was processed by our pre-assembly
pipeline using the following settings: a k-mer length of 30 and
a hash size of 22 were used to build the k-mer abundance ma-
trix; the latter was decomposed by SVD and the columns of
the eigen–k-mer matrix were clustered using a cosine similar-
ity threshold of 0.25, followed by read assignment and assembly
(using SPAdes) of the partitions. More than 99% (2,782 of 2,800)
of the plasmid-derived reads ended up in a single partition (Sup-
plementary Table), leading to the recovery of the complete target
genome sequence upon assembly.

Second experiment for comparing assembly-first
versus bin-first strategies

The raw sequence data from 18 (randomly chosen) individuals
of the LifeLines DEEP cohort were either assembled individually
(i.e., on a sample-by-sample basis) with metaSPAdes (v3.13.0)
followed by contig binning across samples with the MetaBat2
adaptive algorithm [17], or the raw reads were clustered using
our read-level binning pipeline, followed by metaSPAdes assem-
bly of the resulting partitions/bins.

The raw reads were first mapped to the assembled
contigs using bwa-mem [43] using default parameters.
MetaBat2 was then invoked in the following way: first, the
jgi summarize bam contig depths script was called to compute
contig abundance statistics from the read mapping bam files,
with the default options (minimum percent identity for a
mapped read: 0.97; minimum contig length: 1,000; minimum
contig depth: 1). The metabat2 program was then called using
the default parameters (minCV 1.0, minCVSum 1.0, maxP 95%,
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minS 60, and maxEdges 200) and the previously generated
coverage statistics file, leading to the generation of 225 bins
covering 694,000,907 bases.

For the comparison, our sparse coding pipeline was then ex-
ecuted under the same settings as in the full cohort analysis
(hash size and k-mer size equal to 30 and 31, respectively, and
default parameters for the dictionary learning and sparse de-
composition of the abundance matrix), with the exception of the
number of components that was matched to the number of bins
(225) generated by MetaBat2. To generate Fig. 1, the complete
genomes retrieved using both approaches were aligned (using
nucmer [44] with default parameters) to individual assemblies
from all the samples, and the number of distinct contig hits
(≥99% identity and ≥2,500 bp) was recorded.

Comparison of read-binning algorithms

The virtual cohort dataset described above and in Gkanogiannis
et al. [24] was used to compare the clustering accuracies of the
original LSA [13] and sparse coding methods, as well as the per-
formance of directly clustering the columns of the abundance
matrix using a k-means algorithm as a baseline.

The read to genome memberships being comprehensively
known in these controlled genome mixtures, clustering accu-
racy metrics (precision, recall, and F-measure) could be quan-
tified as in Meyer et al. [38] (Table 1). Briefly, each bin is first
mapped to its most abundant (in terms of number of reads)
genome (note that if each bin is mapped to a single genome, a
given genome can be mapped to multiple bins). Precision is de-
fined as the ratio of reads originating from the mapped genome
to all the bin’s reads. Recall on the other hand reflects how
complete a bin is with respect to the sequence of its cognate
(mapped) genome. Average precision is the fraction of correctly
assigned reads for all assignments to a given cluster averaged
over all clusters, while average completeness is averaged over all
genomes (including those possibly not assigned to any cluster).
We follow Meyer et al. [38] to give larger bins higher weight in
performance determinations. Specifically, if X is the set of clus-
ters and Y the set of underlying genomes, precision and recall
are defined, respectively, as:

p =
∑

x∈X T Px∑
x∈X T Px + F Px

=
∑

x∈X
max
y |x ∩ y|∑
x∈X |x|

and

r =
∑

y∈Y
max
x |x ∩ y|∑
y∈Y |y| .

The same k-mer abundance matrices (built using a k-mer size
of 31 and a number of hash bits [hyperplanes] equal to 30) were
used as input for all the methods.

Initial estimate of genome richness and number of
components

For the test experiments based on synthetic microbiomes of
controlled complexity (e.g., the virtual cohort of 50 individuals,
where each microbiome consisted of 100 genomes drawn from
a pool of 750 genomes under a given abundance distribution),
the number of clusters was set to match the (known) number of
distinct genomes segregating in the complete set of samples.

For the analysis of real-world data (the LifeLines DEEP co-
hort), where the total number of genotypes is unknown, a mean-

ingful number of components for the sparse decomposition was
estimated on the basis of the number of distinct rpS3 ribosomal
protein sequences in the analyzed metagenomes, clustered at
98% identity, which roughly corresponds to species-level delin-
eations according to Sharon et al. [45].

Evaluation of read enrichment levels

To assess whether we could identify genomes segregating at
consistently low abundance levels in real-life datasets, we char-
acterized the abundance of a dozen MAGs reconstructed from
the LifeLines DEEP cohort analysis by directly mapping the raw
reads from the original samples against them. Given the large
size of the cohort (and the significant amount of computer re-
sources associated with this analysis), and given that our objec-
tive was to establish whether consistently rare genomes can be
identified by the method, this analysis was performed on a lim-
ited number of genomes.

Relative enrichment levels were estimated by mapping the
original reads (after removal of duplicated reads) to the genome-
resolved partitions using bwa-mem [43] with default parame-
ters. Uniquely and consistently (i.e., paired) mapped reads were
scored to compute enrichment ratios as the number of mapped
reads divided by the number of raw reads analyzed, as displayed,
e.g., on the x-axes of Figs 4 and 5B and D.

Comparison of genome-resolved partitions to reference
genomes

To assess the novelty of the genomes assembled from individ-
ual partitions produced by our pipeline through the analysis of
the LifeLines DEEP cohort, we screened them against 2 reference
libraries. First, the genomes were compared to the Kraken2 (v1)
database [46] built from NCBI’s Refseq bacteria, archaea, and vi-
ral libraries (accessed October 2018), using the Kraken2 classifier
[29] and a confidence score threshold of 0.2. Second, the same
genomes were compared against the Human Gastrointestinal
Bacteria Genome Collection [6] (HGG, encompassing >100 GB of
sequence data) using the nucmer aligner [44] with default pa-
rameters. A genome was marked as already known if it shared
≥10 distinct 99% identity alignments of length ≥5 kb to any HGG
entry.

Binning implementation

Code for the pipeline used to perform the analysis of the Life-
Lines DEEP cohort can be cloned from https://gitlab.com/kyrgy
zov/lsa slurm, while a more lightweight implementation of key
algorithms (including sparse non-negative matrix factorization
[NMF]) is available from [47]; they draw on the code base of the
LSA tool ([13] and [48]) and on the SPAMS library that can be
downloaded from [40]. The analysis of the metagenomes from
the LifeLines DEEP cohort was carried out on a Bullion S6130 octo
module server equipped with 2 Intel Xeon Haswell E7-4890 v3
CPU (18 cores) per module, 8 TB of RAM, and 35 TB storage. Most
of the tasks being embarassingly parallelizable, they were run
through a Slurm workload manager. The analysis took ∼3 weeks
wall time, with the sparse decomposition of the k-mer abun-
dance matrix taking <1 day. The bulk of the execution time was
spent in pre- and post-processing tasks: pre-processing of the 10
TB of raw reads to improve load balancing (∼5 days), k-mer hash-
ing and counting for constructing the k-mer abundance matrix
(∼4.5 days), assignments of reads to eigengenomes following
the sparse decomposition step (∼6 days), and assembly of in-

https://gitlab.com/kyrgyzov/lsa_slurm
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dividual read partitions using the SPAdes assembly engine [27]
(∼2.5 days).

A desirable feature when designing computational pipelines
is to have resource requirements, especially memory, scale in
a way independent of the sheer data volume. This is the case
for the analytical method presented here because it can be ex-
ecuted “in memory” with the dimensionality of the empirical
abundance matrix tailored via the LSH scheme to capture the
desired amount of sequence diversity while remaining consis-
tent with the available resource budget. The use of efficient on-
line matrix factorization techniques [15] leads to limited mem-
ory footprints. Even though we leveraged here a powerful com-
puter infrastructure to carry out the analysis of the large co-
hort dataset (10 TB of data), our pipeline is routinely executed
on commodity hardware for smaller projects.

Availability of Source Code and Requirements
� Project name: Metagenomic read binning using sparse coding
� Project home page: https://gitlab.com/kyrgyzov/lsa slurm
� Operating system(s): Linux
� Programming language: Python
� Other requirements: NumPy, SciPy, Gensim, SPAMS (https://

gitlab.inria.fr/thoth/spams-devel)
� License: MIT License
� RRID:SCR 018134
� biotoolsID:Metagenomic read binning using sparse coding

A lightweight implementation of key algorithms (including
sparse NMF) is available from [47].

Availability of Supporting Data and Materials

Assembled sequences of the genome-resolved bins (>50% com-
plete and with <5% contamination) recovered from the analy-
sis of the LifeLines DEEP cohort are available via the GigaScience
database [25]. The datasets used in the test experiments (virtual
cohort and spiked datasets), as well as supporting data and an
archival copy of the code, are also available via GigaDB [25].

Additional Files

Supplementary Table 1: Cluster assignments of reads from a tar-
get genome vs background (unrelated) reads. Nearly all the 2,800
reads from the target genome segregating at low levels in the
samples (100 paired reads per sample in 14 samples; none in
the remaining samples) are binned in a single partition using
our bin-first pipeline, leading to the complete genome after as-
sembly. No kilobase-sized contig could be assembled from any
individual sample, making the assembly-first protocol inopera-
ble.
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