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Abstract

Paired DNA and RNA profiling is increasingly employed in genomics research to uncover 

molecular mechanisms of disease and to explore personal genotype and phenotype correlations. 

here, we introduce Simul-seq, a technique for the production of high-quality whole-genome and 

transcriptome sequencing libraries from small quantities of cells or tissues. We apply the method 

to laser-capture-microdissected esophageal adenocarcinoma tissue, revealing a highly aneuploid 

tumor genome with extensive blocks of increased homozygosity and corresponding increases in 

allele-specific expression. Among this widespread allele-specific expression, we identify germline 

polymorphisms that are associated with response to cancer therapies. We further leverage this 

integrative data to uncover expressed mutations in several known cancer genes as well as a 

recurrent mutation in the motor domain of KIF3B that significantly affects kinesin–microtubule 

interactions. Simul-seq provides a new streamlined approach for generating comprehensive 

genome and transcriptome profiles from limited quantities of clinically relevant samples.

Integration of both DNA and RNA sequencing data enables a variety of analyses that are 

useful for exploring the genetics of normal phenotypic variation and disease. In addition to 

enumerating global patterns of gene expression, RNA sequencing data provides an 

orthogonal verification of DNA variant calls and can be used to prioritize expressed 

candidates, which are more likely to exert biologic effects. In cancer, for example, roughly a 

third of the somatic single-nucleotide variants (SNVs) that fall within coding regions can 

also be observed in the RNA1, providing a biologic filter for candidate driver mutations. 

Furthermore, combined DNA and RNA profiling is useful for characterizing regulatory 
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variation2–4, RNA editing5 and allele-specific expression6–8, important contributors to 

phenotypic diversity and disease.

Currently, most integrative experiments are performed in parallel and on distinct cell 

populations, a strategy that requires lengthy library preparation times and potentially 

exacerbates variability on account of sample heterogeneity. Single-cell integrative 

sequencing approaches, genome and transcriptome sequencing (G&T-seq)9 and gDNA and 

mRNA sequencing (DR-seq)10, have recently produced the first genome-wide glimpses of 

the correlation between copy number and expression at a cellular level. However, due to the 

large technical variance and coverage gaps inherent in current single-cell sequencing 

approaches, these new methods have limited utility in contexts where more comprehensive 

genomes and transcriptomes are required. Moreover, both methods still require the DNA and 

RNA libraries to be generated independently.

Our simultaneous DNA and RNA sequencing method, Simul-seq, leverages the enzymatic 

specificities of the Tn5 transposase and RNA ligase to produce whole-genome and 

transcriptome libraries without physical separation of the nucleic acid species (Fig. 1a), 

reducing the library preparation time compared with that of standard independent library 

approaches (Supplementary Fig. 1a). Simul-seq also employs a ribosomal depletion step, 

thereby maintaining many biologically relevant classes of noncoding RNAs. Additionally, 

Simul-seq incorporates dual 5′ and 3′ indices specific for both DNA and RNA molecules, 

minimizing cross contamination caused by spurious ligation and tagmentation or by 

template switching during pooled PCR. Finally, differential amplification from distinct RNA 

and DNA adapter sequences can be used to adjust the read outputs derived from either 

library.

Results

Simul-seq efficiently produces distinct RNA-seq and DNA-seq data

To rigorously assess the specificity of the Simul-seq method, we first produced libraries 

derived from a mixture of 50 ng of human genomic DNA and 100 ng of yeast mRNA 

(Supplementary Fig. 1b). We quantified the presence of both DNA-seq and RNA-seq 

libraries in the pool using droplet digital PCR (ddPCR; Supplementary Fig. 1c,d). 

Subsequent sequencing and alignment of the dual-indexed reads to the yeast and human 

genomes revealed cross-species mapping rates that were similar to those observed in yeast 

RNA-seq and human DNA-seq libraries produced independently (Fig. 1b), indicating that 

the Simul-seq method specifically barcodes the DNA and RNA with distinct adapters. Next, 

we leveraged these adapters to optimize read outputs for various applications and starting 

material inputs using differential PCR. To verify this approach, we varied the number of 

PCR cycles with RNA primers alone while holding the number of cycles with both DNA 

and RNA primers constant. Inclusion of RNA-specific cycles increased the fraction of the 

total library derived from RNA, as measured by ddPCR (Fig. 1c). Moreover, ddPCR 

quantification of the DNA and RNA constituents before sequencing was also highly 

correlated with subsequent read outputs (Fig. 1d), enabling users to perform quality control 

on the mixed libraries before high-throughput sequencing.

Reuter et al. Page 2

Nat Methods. Author manuscript; available in PMC 2017 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Simul-seq DNA sequencing data is of high quality

To benchmark Simul-seq against established library preparation methods, we next applied 

the approach to fibroblasts derived from an individual who had previously been subjected to 

whole-genome sequencing11. In parallel, we also prepared independent RNA-seq libraries 

from these cells using an analogous RNA-ligase-based protocol. For the Simul-seq library, 

we obtained 560,218,621 and 57,091,162 dual-indexed DNA and RNA 101-bp paired-end 

reads, respectively (Supplementary Table 1). 93% of Simul-seq DNA reads mapped to the 

genome, producing an average genomic depth of 31.9 × (Fig. 2a). Although the Simul-seq 

coverage distribution was consistent with the distribution obtained from a library previously 

generated using an established DNA-seq method11 (Fig. 2a), the distribution exhibited some 

sequencing bias characteristic of the Tn5 transposase12. To further explore potential 

coverage biases, we generated Lorenz curves comparing the cumulative fraction of mapped 

bases with the cumulative fraction of the genome covered. Both the Simul-seq and the DNA-

seq control genomes exhibited comparable read distributions (Fig. 2b), indicating that 

pooled DNA and RNA library preparation and sequencing does not introduce sequencing 

bias in excess of standard methods.

Whole-genome sequencing is generally performed to identify variants that are polymorphic 

among populations or associated with disease. Therefore, we next compared variant calls 

between the Simul-seq and control DNA-seq genomes. Of the 3,635,954 SNVs determined 

in the Simul-seq genome, 95.6% were concordant with SNVs called in the standard DNA-

seq genome (Fig. 2c). In addition, the identity and size distribution of small insertions and 

deletions (indels) identified in the Simul-seq genome were similar to those obtained from the 

DNA-seq genome, with 87.5% of Simul-seq-derived indels exhibiting concordance with the 

standard genome (Fig. 2d). These degrees of concordance were comparable to those 

observed from previously published biologic replicates using a standard DNA-seq 

approach11 (Supplementary Fig. 2a,b), demonstrating that Simul-seq produces high-quality 

whole-genome data.

Simul-seq RNA sequencing data is of high quality

Next, we examined the quality of the RNA sequencing data. Similar to RNA-seq control 

data, Simul-seq RNA reads were effectively depleted for ribosomal sequences and mapped 

primarily to transcribed regions of the genome (Fig. 3a). Simul-seq RNA reads were also 

highly strand specific and evenly distributed across the length of transcripts (Fig. 3b,c), 

enabling accurate transcriptome quantification and isoform analysis. As a control, Simul-seq 

DNA reads mapped primarily to intronic and intergenic regions of the genome and were 

evenly distributed between each DNA strand, as expected (Fig. 3a,b). To rigorously assess 

the technical variation of transcript quantification, External RNA Controls Consortium 

(ERCC) RNA standards13 were spiked into the total nucleic acid mixture. Simul-seq 

produced ERCC transcript measurements that were both highly correlated with the known 

ERCC concentrations as well as with RNA-seq control ERCC measurements (Fig. 3d). The 

Simul-seq-derived transcriptome contained 7,992 protein-coding genes as well as an 

additional 1,123 noncoding genes that would be largely undetected with poly-A enrichment 

(Fig. 3e and Supplementary Fig. 3). Moreover, fragments per kilobase of transcript per 

million fragments mapped (FPKM) measurements were both reproducible and well 
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correlated with RNA-seq control FPKMs (Fig. 3f and Supplementary Fig. 4). Taken 

together, these experiments demonstrate that the Simul-seq protocol efficiently produces 

high-quality whole-genome sequencing data and RNA sequencing data, allowing for the 

comprehensive profiling of genomic and transcriptomic variation from the same cell 

population. In addition, we have applied the method to as few as 50,000 fibroblasts, 

obtaining coverage distributions and variant calls (Supplementary Fig. 5a,b) as well as 

FPKM and ERCC expression data (Supplementary Fig. 5c,d) that were both reproducible 

and well correlated with our previous results.

Application of Simul-seq to cancer

Integrative DNA and RNA profiling is increasingly employed in cancer genomics to 

distinguish driver mutations of various types (e.g., protein coding, regulatory, structural 

variants, etc.) from the multitude of passenger mutations1,14,15. To test Simul-seq in this 

tissue context, we applied the method to laser-capture-microdissected material (∼150 μg) 

isolated from a male subject with metastatic esophageal adenocarcinoma (EAC). Deep 

sequencing of the Simul-seq EAC library produced 727,341,682 DNA and 191,398,961 

RNA 101-bp dual-indexed paired-end reads, with 95.1% and 79.4% of the reads mapping to 

the genome and transcriptome, respectively (Supplementary Table 1). Similarly to the data 

acquired from fibroblasts, the Simul-seq RNA reads primarily mapped to transcribed 

regions, were highly strand specific and evenly distributed over transcripts (Supplementary 

Fig. 6a,b). However, the percentage of reads mapping to introns was increased for this 

library, suggesting an increased rate of intron retention and/or number of unspliced 

transcripts in this tumor specimen (Supplementary Fig. 6c). The tumor genome was 

sequenced to an average coverage of 38× and displayed a skewed coverage distribution 

indicative of large-scale copy-number alterations (Fig. 4a).

Comparing the Simul-seq tumor genome with a DNA-seq paired normal genome revealed a 

highly aneuploid genomic landscape, with somatic evidence for 142 structural variants and 9 

expressed gene fusions as well as 15,607 SNVs and 2,904 indels (Fig. 4b and 

Supplementary Tables 2–5). Globally, the ratio of heterozygous to homozygous SNPs for the 

tumor genome was 0.49, an exceptional deviation from the typically observed ratio of ∼1.5 

(Fig. 2c) that indicated widespread loss of heterozygosity (LOH) (Fig. 4c). Analysis of 

allele-specific expression using the Simul-seq EAC transcriptome data provided further 

support for extensive LOH, with 92.9% of the identified allele-specific transcripts exhibiting 

average major allele frequencies of greater than or equal to 0.9 (Fig. 4c and Supplementary 

Table 6). Given the high levels of LOH-induced allele-specific expression (ASE) in the 

tumor, we hypothesized that damaging germline variants in tumor suppressor genes might be 

specifically expressed in the tumor. Indeed, we identified eight nonsynonymous variants in 

tumor suppressor genes (as defined by the TSGene 2.0 database16) where a PolyPhen-2 (ref. 

17)- and SIFT18-predicted damaging allele was predominantly expressed (Supplementary 

Table 7).

To distill the 15,607 somatic SNVs into potential oncogenic mutations, we integrated the 

Simul-seq DNA and RNA data to identify 29 expressed nonsynonymous somatic mutations 

(Table 1 and Supplementary Table 4). In addition to representing potential driver mutations, 
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these expressed protein-altering mutations are also possible neoantigens from which patient-

specific immunotherapies may be derived19–21. Notably, three Cosmic Cancer census 

genes22 (TP53, ATM and ESWR1) were found to harbor expressed somatic missense 

mutations. While ESWR1 is typically a constituent of an oncogenic fusion protein, and the 

R45W mutation in the ATM serine/threonine kinase tumor suppressor is not yet 

characterized, the Y220C mutation is a known TP53 hotspot that decreases protein 

stability23,24. Moreover, we found that the TP53 locus exclusively expressed the damaging 

allele (Table 1), exacerbating the loss of TP53 function and likely underpinning the 

widespread genomic instability observed in this tumor specimen. Interestingly, this patient 

also exhibited ASE for common germline polymorphisms in the epidermal growth factor 

receptor gene (EGFR, rs2227983) as well as the cyclin D1 gene (CCND1, rs9344) 

(Supplementary Table 6), polymorphisms that are associated with response to 

chemotherapeutic treatments25–28.

Characterization of a recurrent mutation in a kinesin family gene

In addition to discovering clinically relevant alterations in known cancer genes, we observed 

an expressed arginine-to-tryptophan mutation in KIF3B (R293W), a type II kinesin motor 

protein. Although several kinesin family members have established roles in cancer29, KIF3B 
somatic coding mutations have not been previously described. KIF3B has been linked to the 

intracellular trafficking of several tumor suppressor genes29,30, and biochemical data have 

shown that substitution of specific arginine and lysine residues within the kinesin motor 

domain negatively impacts kinesin-microtubule association31. To further explore KIF3B 
mutation frequency in EAC, we performed targeted resequencing of the KIF3B locus in a 

cohort of 49 EAC samples, with 25 paired normals. Overall, KIF3B harbored verified 

nonsynonymous mutations in ∼6% of the tumor samples, and the R293W mutation was 

observed in a second independent patient (Fig. 5a and Supplementary Fig. 7a,b). To 

investigate the functional consequences of this recurrent R293W mutation, we purified 

recombinant wild-type and mutant KIF3B motor domains (Supplementary Fig. 8a,b). When 

compared with the wild-type domain, the mutant motor domain displayed a significantly 

reduced rate of ATP hydrolysis upon incubation with various concentrations of 

microtubules, suggesting that the R293W mutation abrogates kinesin–microtubule binding 

(Fig. 5b). Together, these results demonstrate the benefits of Simul-seq in providing 

comprehensive DNA and RNA data sets, leading to the annotation of several clinically 

important variants as well as the description of a functionally significant recurrent mutation.

Discussion

As sequencing technologies advance and more individuals are profiled in both clinical and 

research settings, straightforward methods for generating comprehensive and accurate 

whole-genome and transcriptome sequencing data will become increasingly valuable. The 

combined sequencing of both DNA and RNA from single cells was recently enabled by the 

development of two methods, DR-seq32 and G&T-seq33. Simul-seq provides a 

complementary approach that focuses on producing comprehensive DNA and RNA profiles 

from limited quantities of tissues or cells rather than single cells. In contrast to previous 

dual-sequencing approaches, Simul-seq generates a single pooled library, and thus both 
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reduces the library preparation time and keeps paired data sets physically linked. 

Importantly, whereas DR-seq and G&T-seq depend upon polyadenylation to distinguish 

RNA transcripts from genomic DNA, the use of RNA ligase in Simul-seq allows for a 

ribosomal RNA depletion step. Therefore, Simul-seq retains biologically and clinically 

important nonpolyadenylated RNA transcripts and may reduce 3′ bias for samples with 

lower RNA quality34,35. Overall, Simul-seq produces high-quality DNA and RNA 

sequencing data, enabling genotype and phenotype comparisons in a single workflow.

Cancer genome interpretation is one scenario where integration of precise and 

comprehensive DNA and RNA landscapes has proven useful but can be challenging on 

account of limited starting material. Moreover, tumor heterogeneity increases the likelihood 

of discrepancies between genome and transcriptome profiles prepared in parallel on separate 

cell populations. Applying Simul-seq to laser-capture-microdissected tumor tissue revealed a 

highly aneuploid somatic landscape, including a recurrent R293W mutation in KIF3B that 

dramatically reduced kinesin–microtubule interaction. Although the ∼6% mutation 

frequency that we observed is consistent with recently published data from whole-genome 

sequencing of 22 esophageal adenocarcinomas36, KIF3B has not been classified as a cancer 

gene in large-scale EAC exome sequencing studies37,38. These efforts, however, are still 

largely statistically underpowered14. Intriguingly, overexpression of C-terminal truncations 

of KIF3B-induced aneuploidy in NIH3T3 cells39. Moreover, KIF3B has been linked to the 

intracellular trafficking of several tumor suppressors, including the adenomatous polyposis 

coli (APC)30 and von Hippel–Lindau (VHL)29 proteins. Together, our findings suggest that 

additional experiments are warranted to delineate specific functional roles for KIF3B 

mutation in esophageal tumorigenesis.

In addition to the novel KIF3B mutation, we also identified a number of clinically relevant 

variants in this EAC patient sample. We observed a known TP53 hotspot mutation (Y220C) 

that destabilizes the TP53 protein at body temperatures24 and is also a target of several small 

molecules designed to restore TP53 function in tumors23,40. TP53 inactivation followed by 

whole-genome duplication and chromosomal catastrophe is a frequent trajectory for EAC 

development36,41 and is consistent with our observations for this tumor. Among the 

widespread LOH induced by this genomic instability, we detected ASE for germline variants 

with pharmacogenomic links to the efficacy of cancer therapies used in EAC. The EGFR 
polymorphism (rs2227983) observed in this patient is associated with increased survival of 

colorectal cancer patients treated with Cetuximab27,28, perhaps via attenuation of EGFR 

pathway signaling42. In contrast, the patient harbored a second variant in CCND1 (rs9344) 

that is inversely correlated with overall survival in colorectal cancer patients treated with 

Cetuximab43. In both cases, however, the beneficial allele was predominantly expressed in 

the tumor, suggesting a positive overall response. Taken together, our results in this EAC 

patient both highlight the utility of Simul-seq as well as the many benefits of acquiring 

combined DNA and RNA profiles for genome interpretation and personalized medicine.
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Online Methods

Sample acquisition

The male-patient-derived fibroblasts used in this study were collected and derived with 

informed patient consent under a protocol approved by the Institutional Review Board at 

Stanford University Medical Center (IRB17576). Cells tested negative for mycoplasma and 

were cultured with DMEM supplemented with 10% fetal bovine serum (FBS). The 

deidentified male esophageal cancer sample was obtained from Stanford Cancer Institute's 

Tissue Repository and was exempt from IRB requirements by the Stanford Research 

Compliance Office. Investigators were not blinded to experimental groups, and no power 

calculation was performed before experiments to ensure detection of a prespecified effect 

size.

DNA/RNA extraction

For the mixing experiments, yeast mRNA was obtained from Clontech (Clontech: 636312) 

and human genomic DNA was isolated using the DNA Mini kit (Qiagen: 51304). For all 

other Simul-seq experiments, total nucleic acids were extracted using the RNeasy Mini kit 

(Qiagen: 74104) per manufacturer's instructions, except the optional DNase I treatment was 

not performed. DNA and RNA were then quantified using the Qubit DNA HS and RNA HS 

(Thermo Fisher: Q32851, Q32852), respectively. For fibroblast experiments, extraction 

began with 1 × 106 cells, whereas the laser-capture-microdissected (LCM) tumor library 

started with approximately 150 μg of tissue (based on isolating ∼150 × 106 μm3 and 

assuming an average tissue density of 1.0 g/cm3). The quality of the starting total RNA was 

measured using Bioanalyzer, with RNA integrity number (RIN) values ranging from 8 for 

LCM-isolated tissue to 10 for LCM-isolated cells. For Simul-seq library preparations, ERCC 

spike in mixture A (Life Technologies: 4456740) was added per manufacturer's instructions 

before the ribosomal RNA depletion step.

Ribosomal depletion

Ribosomal RNA sequences were depleted from the total nucleic acid mixture using Ribo-

Zero gold (Illumina: MRZG126) and following the manufacturer's instructions. To reduce 

potential hybridization to genomic DNA sequences; however, the standard 70 °C 

hybridization step was changed to 65 °C. Ribosomal RNA depletion began with the 

recommended amount of total RNA (1 μg for LCM tissue to 5 μg for fibroblasts). For 50,000 

fibroblast experiments, ∼400 ng of total RNA was used. Following ribosomal RNA 

depletion, the total nucleic acid mixture was purified using RNA Clean and Concentrator 5 

columns (Zymo Research: R1015) and quantified using high-sensitivity DNA and RNA 

Qubit reagents as above.

Simul-seq protocol

Unless otherwise noted, reagents were from New England Biosciences (NEB: E7330S) or 

Illumina (Illumina: FC-121-1031). Simultaneous RNA fragmentation and DNA 

tagmentation was achieved by mixing 25 μl of TD buffer, 5 μl of TDE, 1 μl RNase III (0.5 

U, NEB: E6146S) and 19 μl of DNA/RNA consisting of 30-50 ng of genomic DNA and 10–
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100 ng of ribodepleted RNA. This reaction was incubated for 5 min at 55 °C, and the 

thermocycler was cooled to 10 °C before the reaction was placed on ice. 100 μl Ampure XP 

RNAclean beads (Beckman Coulter: A63987), or 2× the reaction volume, were then added 

to the reaction and incubated for 10–15 min to bind the nucleic acids. The beads were placed 

on a magnet stand until clear, washed twice with 400 μl of 80% ethanol and dried for 10 min 

at room temperature The total nucleic acids were eluted from the dried beads using 7 μl of 

H2O. To remove secondary RNA structure, 6 μl of the eluate and 1 μl of the 3′ ligation 

adapter were first heated to 65 °C for 5 min and then immediately placed on ice. For ligation 

of the 3′ adapter to the RNA molecules, 10 μl of 3′ ligation buffer and 3 μl of 3′ ligation 

enzyme mix were added and incubated for 1 h at 25 °C in a thermal cycler with the lid 

heated to 50 °C. To reduce adapter–adapter ligation products, 1 μl of the reverse 

transcription primer (SR RT primer) and 4.5 μl of H2O were added to the 3′ adapter ligation 

reaction and incubated in a PCR machine for 5 min at 65 °C, 15 min at 37 °C, 15 min at 

25 °C and held at 4 °C until the next step. To ligate the 5′ adapter, 1 μl of 5′ SR adapter, 

which had been previously heated to 70 °C and then placed on ice, along with 1 μl of 5′ 
ligation buffer and 2.5 μl of 5′ ligase enzyme mix were added to the 3′ adapter-ligated and 

SR-RT-primer-hybridized RNA. This reaction was incubated for 1 h at 25 °C with the lid 

heated to 50 °C and then placed on ice. First-strand cDNA synthesis was performed by 

adding 8 μl of first-strand reaction buffer, 1 μl of murine RNase inhibitor and 1μl of 

ProtoScript II reverse transcriptase to the previous mixture and incubating the reaction for 1 

h at 42 °C with the lid heated to 50 °C. 48 μl of Ampure XP beads (Beckman Coulter: 

A63880), or 1.2× of the reaction volume, were then used to clean up the cDNA and 

transposed genomic DNA. The beads were incubated for 5–10 min with the DNA, washed 

twice with 80% ethanol and mixed with 26.5 μl of H2O to elute the DNA. PCR conditions 

varied depending on whether differential PCR was performed. DNA libraries were amplified 

using standard Nextera indexing primers. RNA libraries were amplified with a custom I5 

indexing primer AATGATACGGCGACCACCGAGATCTA 

CACTATCCTCTGTTCAGAGTTCTACAGTCCG-s-A, where -s- indicates a 

phosphorothioate bond, and a standard I7 indexing primer. For differential PCR, 25.5 μl of 

the eluate was combined with 1.25 μl of each RNA indexing primer (10 mM stock) and 12 

μl Nextera PCR Master Mix (NPM) and then thermocycled as follows: 72 °C for 3 min; 

98 °C for 30 s; then two to seven cycles of 98 °C for 10 s, 62 °C for 30 s and 72 °C for 3 

min; before a final hold at 4 °C. After this hold, the reaction was removed from the 

thermocycler and combined with 12.5 μl of a master mix comprising 2.5 μl of each DNA 

indexing PCR primer (5 mM stock), 5 μl of PPC and 5 μl NPM. This combined reaction was 

then subjected to five additional cycles using the same program described above. The 

fibroblast, LCM and 50,000 fibroblast Simul-seq libraries used two, four and seven cycles of 

RNA-specific PCR, respectively. The final libraries were cleaned using 66 μl Ampure XP 

beads as described above and eluted in 12 μl of H20. To quality control the dual-indexed 

libraries, we performed high-sensitivity Qubit DNA and Bioanalyzer assays prior to 

sequencing of paired-end 101 bp reads on Illumina HiSeq or MiSeq machines. A typical 

Simul-seq library will be approximately 10 ng/ml, with an average size distribution of ∼350 

bp (Supplementary Fig. 1b). A detailed description of Simul-seq reagents, equipment and a 

step-by-step protocol can be found in the Supplementary Note.
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Read processing and alignment

For both DNA and RNA reads, Cutadapt v1.8.1 (ref. 44) was used to trim the paired-end 

adapter sequences. Only trimmed reads longer than 30 bases and with a quality score >20 

were aligned. For the DNA barcoded reads, 5′-

CTGTCTCTTATACACATCTCCGAGCCCACGAGAC-3′ and 5′- 

CTGTCTCTTATACACATCTGACGCTGCCGACGA-3′ sequences were used to trim the 

adapter sequences. For RNA bar-coded reads, 5′-

AGATCGGAAGAGCACACGTCTGAACTCCAG TCAC- 3′ and 5′-

GATCGTCGGACTGTAGAACTCTGAACGTG TAGATC-3′ sequences were used to trim 

the adapter sequences.

DNA libraries were processed and analyzed using the Bina Technologies whole-genome 

analysis workflow with default settings. Briefly, libraries were mapped with BWA mem 

0.7.5 software45 to hg19 and then realigned around indels with GATK IndelRealigner46. 

Next, base recalibration was performed with GATK BaseRecalibrator taking into account the 

read group, quality scores, cycle and context covariates. Variants were called with GATK 

HaplotypeCaller with the parameters–variant_index_ type LINEAR-

variant_index_parameter 128000. VQSR was used to recalibrate the variants, first with 

GATK VariantRecalibrator and then ApplyRecalibration. For the cross-contamination 

analysis shown in Figure 1b, Simul-seq DNA-seq-indexed reads were mapped to hg19 and 

SacCer3 using Bowtie2 (ref. 47) with default settings.

RNA libraries were also processed and analyzed using Bina Technologies RNA analysis 

using default settings. Briefly, TopHat 2.0.11 (ref. 48) was used to map libraries to hg19, and 

Cufflinks49 was then used to perform per-sample gene expression analysis. Finally, Cuffdiff 

was used to find differential expression between replicates and different library types. For 

cross-contamination analysis shown in Figure 1b, Simul-seq RNA-indexed reads were 

mapped with TopHat to hg19 and SacCer3 using default settings.

DNA and RNA QC analysis

Coverage plots were calculated from the Bina output. SNV and indel concordance between 

sequencing libraries was calculated using VCFtools v0.1.12 (ref. 50) on all variants 

annotated with a ‘passed’ filter. Summary statistics for SNVs were also calculated with 

VCFtools. Read fractions were calculated with Picard v1.92 (http://broadinstitute.github.io/

picard) for the DNA and RNA sequencing libraries. Strand specificity and gene-body 

coverage were calculated with RSeQC 2.6.2 (ref. 51). For the analysis transcripts biotypes, 

the Simul-seq RNA data was mapped with TopHat using the Ensembl GENCODE 

annotations and quantitated with Cufflinks. Genes with FPKM values ≥5 were counted. 

Cuffdiff was used to compare log10(FPKM + 1) expression values between Simul-seq RNA 

libraries and control RNA-seq libraries.

Lorenz curves—Duplicates were removed from hg19-aligned reads using Picard v1.92, 

and Bedtools v2.18.0 (ref. 52) was used to calculate the coverage at every position in the 

genome. The file was then sorted by coverage, and cumulative sums for the fraction of the 

covered genome and the fraction of total mapped bases were calculated using custom scripts.
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ERCC analysis—TopHat was used to align reads to ERCC reference using default 

settings. Next, duplicate reads were removed using Picard MarkDuplicates, and 

FeatureCounts53 was used to determine the total read counts for each ERRC transcript. Read 

counts were then normalized across transcripts and libraries using the RPKM methodology 

(i.e., reads per kb of transcript per million mapped reads). ERCC RPKM measurements for 

Simul-seq and RNA-seq replicates were averaged, zero values were set to one and then log10 

transformed. ERCC transcript data for Simul-seq and RNA-seq replicates is shown 

(Supplementary Table 8).

Droplet digital PCR

DNA:RNA ratios of between 5:1 to 10:1 are optimal for whole-genome and whole-

transcriptome sequencing of human samples. ddPCR experiments were performed according 

to manufacturer's guidelines (Droplet Digital PCR Application Guide, Bulletin 6407 Rev A) 

using a Bio-Rad QX200 system. Briefly, custom qPCR assays were designed to the unique 

the DNA-seq and RNA-seq library adapter sequences and purchased from IDT as 

PrimeTime Std qPCR Assays (Supplementary Fig. 1c,d). These assays incorporated HPLC-

purified probes with 5′ HEX or 6-FAM fluorophores and internal ZEN and 3′ Iowa Black 

FQ dual quenchers. 20 μl ddPCR reactions were assembled using diluted Simul-seq libraries 

(2 μl of a 10−6 dilution was typically sufficient but will vary depending on the starting 

library concentration). The ddPCR reactions were then subjected to the following cycling 

program: 10 min at 95 °C; 40 cycles of 30 s at 95 °C and 1 min at 60 °C, 10 min at 98 °C; 

and a hold at 4 °C. Triplicate reactions were done for each sample, and quantitation was 

performed using QuantaSoft version 1.3.2.

Laser-capture microdissection

For LCM, 7 μm cryosections were placed onto 76 × 26 PEN glass slides (Leica: 11505158) 

and stored at −80 °C for up to 4 d. To guide the isolation process, serial sections were 

immunofluorescently stained with Keratin 8 (1:100; Abcam: ab668-100) and counterstained 

with Hoechst 33342 dye (2 mg/ml in PBS), marking the tumor epithelium and nuclei, 

respectively. On the day of laser capture, the LCM slides were stained with Cresyl violet 

according to the manufacturer's protocol (LCM staining kit, Ambion: AM1935). 

Immediately following staining, a Leica AS LMD system was used to isolate ∼150 × 106 

μm3 (or ∼150 μg) of esophageal adenocarcinoma tumor tissue. The LCM-isolated tissue was 

then subjected to the Simul-seq protocol; and 727,341,682 DNA and 191,398,961 RNA 101 

bp paired-end reads were obtained using an Illumina HiSeq2000 machine. For all 

transcriptome analyses using Simul-seq RNA tumor data, 116,217,162 reads were analyzed.

Somatic variant analysis

Somatic variant analysis was performed using Bina tumor-normal whole-genome calling 

workflow. Briefly, somatic variants with a Bina ONCOSCORE of greater than or equal to 5 

were considered high confidence and reported. To identify somatic variants and generate the 

ONCOSCORE, Bina integrates JointSNVMix 0.7.5 (ref. 54), Mutect 2014.3-24-g7dfb931 

(ref. 55), Somatic Indel Detector 2014.3-24-g7dfb931, Somatic Sniper 1.0.4 (ref. 56) and 

Varscan 2.3.7 (ref. 57) outputs. GATK ASEReadCounter was used to determine the variant 

Reuter et al. Page 10

Nat Methods. Author manuscript; available in PMC 2017 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and reference expression counts for somatic SNV positions in the tumor transcriptome data. 

The resultant somatic SNVs and indels are annotated in Supplementary Tables 4 and 5.

To determine large somatic structural variants (SVs), CREST58 was run on the tumor-normal 

paired genomic data. To refine the variant calls, we only reported SVs with greater than five 

supporting reads on both the 3′ and 5′ arms of the variant, which resulted in 142 total 

potential genomic SVs (Supplementary Table 2). Somatic SVs resulting in expressed gene 

fusions were independently determined using the INTEGRATE software package59, which 

incorporates tumor RNA sequencing data along with paired tumor-normal genome 

sequencing data. To refine this expressed fusion list, we only reported fusions with no 

evidence in the normal DNA data and at least one read of evidence for both the tumor DNA 

and RNA, which resulted in 9 potential expressed gene fusions (Supplementary Table 3). 

Circos software 0.63 (ref. 60) was used to display somatic variation in Figure 4b.

Loss of heterozygosity

For the LOH analysis, heterozygous positions in the normal were selected in the VCF file 

using SNPsift61. GATK SelectVariants was then used to interrogate these heterozygous 

positions in the tumor VCF, classifying them as heterozygous or homozygous alternative. 

Heterozygous positions in the normal that were not present in the tumor VCF were 

considered homozygous reference and counted as LOH positions.

Allele-specific expression

To examine LOH at the level of gene expression, allele-specific expression (ASE) in the 

tumor RNA was calculated for heterozygous positions called in the normal using ASEQ62. 

Briefly, GENOTYPE mode was run on a bam file derived from the paired normal genome 

with the following options: mbq = 20 mrq = 1 mdc = 5 htperc = 0.2. Next, ASE mode was 

run using a bam file from the tumor RNA with the following options: mbq = 20 mrq = 20 

mdc = 10 pht = 0.01 pft = 0.01. This analysis was performed using an hg19 Ensembl 

transcript model and identified 21,797 transcripts—corresponding to 6,698 independent 

gene symbols—as exhibiting ASE (Supplementary Table 6). Circos was used to display the 

number of ASE transcripts in 100 kb bins in Figure 4b.

Targeted resequencing of KIF3B locus

Overlapping primer sets were designed to capture all of the coding exons of the KIF3B locus 

(Supplementary Tables 9 and 10). Genomic DNA was isolated from 50 formalin-fixed 

paraffin embedded (FFPE) tumor samples as well as 26 paired normal samples using an 

AllPrep DNA/RNA FFPE kit (Qiagen: 80204) according to manufacturer's instruction. The 

original sample (02-28923-C9) that was subjected to the Simul-seq protocol was included as 

a positive control. The gDNA concentrations were normalized to 50 ng/μl and subjected to 

amplification on a Fluidigm Axess Array system, following manufacturer's recommendation 

(FC1 Cycler v1.0 User Guide rev A4). The resultant libraries were pooled, sequenced on a 

single HiSeq2000 lane and mapped using bowtie (see Supplementary Fig. 7a). SAMtools63 

was used to generate a pileup, and SNVs were identified using four criteria: mapped to a 

targeted region, allele read fraction of ≥10%, mapping quality of ≥10 and coverage of ≥500. 

Using these criteria, three variants in KIF3B were identified and subsequently validated 
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using pyrophosphate sequencing (see Supplementary Fig. 7b). A single tumor-normal pair 

(00-18224-A2) displayed a substantially higher number of variant calls yet a lower number 

of uniquely mapped reads, suggesting that these samples harbored increased rates of PCR 

errors induced by low-quality genomic DNA. Therefore, variants identified in these samples 

were not reported.

Kinesin-microtubule interaction assays

Full-length kinesin proteins exhibit poor solubility in bacteria64. Therefore, wild-type and 

R293W mutant motor domains (amino acids 1–365) were amplified using the following 

primers: CATATGTCAAAGTTGAAAAGCTCAG and CTCGAGCTAGAGCCGAGCAAT 

CTCTTCCT. The PCR products were digested with NdeI/XhoI restriction enzymes and 

cloned into NdeI/XhoI-digested pET28a backbone, tagging the KIF3B motor domains on 

the N terminus. Recombinant KIF3B was purified using nickel affinity purification 

(Supplementary Fig. 8a,b). Briefly, bacterial pellets were lysed for 30 min on ice in lysis 

buffer (50 mM PIPES, pH 8.0, 1 mM MgCl2, 250 mM NaCl2, 250 μg/ml lysozyme, 250 mM 

ATP and protease inhibitors (Roche: 04693132001)). Lysates were pulse sonicated for three 

cycles of 18% amplitude (Bronson) for 5 s (0.5 s on and 1 s off), followed by 1 min on ice. 

Lysates were then cleared by centrifugation for 10 min at 4 °C and maximum speed. Cleared 

lysates were incubated with His-tag magnetic beads (Life Technologies: 10103D) for 1 h at 

4 °C, washed 2× in washing buffer (50 mM PIPES, pH 8.0, 1 mM MgCl2, 250 mM NaCl2, 

50 mM imidazole) supplemented with 250 mM ATP followed by an additional two washes 

in buffer excluding ATP. Beads were subsequently eluted in 25 mM PIPES, pH 8.0, 2 mM 

MgCl2, 125 mM NaCl2, and 250 mM imidazole. Kinesin ATPase end-point biochemical 

assays (Cytoskeleton: BK053) were performed in duplicate according to manufacturer's 

instructions with 0.4 μg of recombinant protein and increasing amounts of polymerized 

microtubules (see Fig. 5b).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simultaneous, single-tube sequencing of DNA and RNA. (a) Schematic of Simul-seq 

method. (b) Cross-species mapping rates for Simul-seq libraries produced from a mixture of 

yeast mRNA and human genomic DNA (n = 2) as well as yeast RNA-seq (n = 3) and human 

DNA-seq controls (n = 2). (c) Droplet digital PCR (ddPCR) assays on Simul-seq libraries (n 
= 3 technical replicates per library) with varying amounts of RNA-specific PCR 

amplification followed by an additional five cycles of PCR with primer sets for both RNA 

and DNA. (d) DNA and RNA library ratios measured by ddPCR (n = 3 technical replicates 

per library) are correlated with subsequent read ratios.

Reuter et al. Page 16

Nat Methods. Author manuscript; available in PMC 2017 December 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Characterization of Simul-seq whole-genome data. (a) Coverage distributions for Simul-seq 

and DNA-seq genomes of the same individual11. (b) Lorenz curves for the cumulative 

fraction of the covered genome versus the cumulative fraction of total mapped bases. Black 

line indicates the theoretical limit for independent sampling. (c) Comparison of single-

nucleotide variant (SNV) calls between Simul-seq and DNA-seq genomes. (d) Comparison 

of insertion and deletions (indels) calls and size distributions between Simul-seq and DNA-

seq genomes.
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Figure 3. 
Characterization of Simul-seq transcriptome data. (a,b) Genomic distribution and strand 

specificity of Simul-seq RNA-indexed reads compared to RNA-seq control. Simul-seq 

DNA-indexed reads are included as a control. (c) Distribution of normalized transcript 

coverage for Simul-seq and RNA-seq transcriptome data. (d) Correlation between External 

RNA Controls Consortium (ERCC) spike-in control log10 RNA concentrations versus the 

average log10(RPKM) for Simul-seq (Spearman's ρ = 0.97) and RNA-seq (Spearman's ρ = 

0.98) replicates (n = 2). Note, RPKM values of 0 have been shifted to 1, and all ERCC 

transcripts are shown. (e) Pie chart of Ensembl genes (FPKM ≥ 5) with noncoding biotypes 

from the Simul-seq transcriptome. Misc RNA, miscellaneous RNA; lincRNA, long 

intergenic noncoding RNA; miRNA, microRNA; snoRNA, small nuceolar RNA; snRNA, 

small nuclear RNA. (f) Scatter plot of log10(FPKM + 1) values across all genes measured in 

the Simul-seq or RNA-seq data sets (Spearman's ρ = 0.97).
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Figure 4. 
Comprehensive genome and transcriptome profiling of esophageal adenocarcinoma (EAC). 

(a) Coverage distributions for Simul-seq tumor genome and DNA-seq normal genomes. (b) 

Circos plot of somatic events in the tumor genome. The innermost ring depicts large 

structural variants (SVs), with expressed gene fusions highlighted in dark magenta. The 

second ring is a scatter plot of somatic single-nucleotide variants (SNVs), where an 

increased radial distance represents an increasing variant allele quality in the tumor genome. 

Dark magenta data points indicate expressed somatic SNVs, with the radius of expressed, 

nonsynonymous somatic mutations enlarged. The third ring is a histogram of the total 

number of heterozygous positions in the normal that are called homozygous in the tumor 

(LOH) per 100 kb. The fourth ring is a histogram of the number of transcripts exhibiting 

allele-specific expression (ASE) per 100 kb. The fifth ring corresponds to the normalized 

average coverage over 100-kb bins, whereas the orange line indicates the genome-wide 

average coverage. The outermost ring represents chromosome annotations. (c) Scatter plot 

for the average major allele frequencies for each transcript exhibiting allele-specific 

expression. Inset depicts reference (ref) and alterative (alt) RNA read counts for a known 

EGFR polymorphism.
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Figure 5. 
Identification and biochemical characterization of a recurrent mutation in KIF3B. (a) 

Schematic of KIF3B locus, including positions of mutations found in targeted resequencing 

of 49 esophageal adenocarcinoma patients and 25 paired controls. Coverage for 

representative sample is shown. Note, the original sample that was subjected to the Simul-

seq protocol was included as a positive control. (b) Strip plot of ATPase activity (n = 2) for 

recombinant wild-type and R293W mutant KIF3B motor domains when incubated with 

increasing quantities of microtubules. Activity was quantitated using an endpoint 

measurement of free phosphate.
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Table 1
Selected expressed somatic nonsynonymous variants in cancer-related genes

Gene DNA (ref/alt) RNA counts (ref/alt) Protein Cosmic census

TP53 T/C 0/76 Y220C Yes

ATM C/T 102/37 R45W Yes

EWSR1 C/T 26/9 P122L Yes

KIF3B C/T 170/64 R293W No

MCM3AP G/A 5/127 R1207C No

FAT1 C/T 11/44 V1274I No

MADD G/A 59/19 R225Q No

LRP1 G/T 16/3 D2106Y No

H2AFY G/A 13/43 R4C No

ZNF615 T/C 0/10 N154S No

CSTF1 G/A 51/68 G26S No
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