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Abstract

Influenza viruses are causative agents of an acute febrile respiratory disease called influenza (commonly known as “flu”) and belong to the
Orthomyxoviridae family. These viruses possess segmented, negative stranded RNA genomes (vRNA) and are enveloped, usually spherical
and bud from the plasma membrane (more specifically, the apical plasma membrane of polarized epithelial cells). Complete virus particles,
therefore, are not found inside infected cells. Virus particles consist of three major subviral components, namely the viral envelope, matrix
protein (M1), and core (viral ribonucleocapsid [vRNP]). The viral envelope surrounding the vRNP consists of a lipid bilayer containing spikes
composed of viral glycoproteins (HA, NA, and M2) on the outer side and M1 on the inner side. Viral lipids, derived from the host plasma
membrane, are selectively enriched in cholesterol and glycosphingolipids. M1 forms the bridge between the viral envelope and the core. The
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1. Introduction

Assembly and budding of virus particles are the last
critically important steps in the virus life cycle for both t
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survival of the virus as well as its disease-producing abil-
ity in the host. Without completion of these two steps, in-
fected cells will undergo abortive infectious cycles without
releasing the complete virus particles. Specific host or tissue
cells may provide restrictions at multiple steps of the virus
life cycle including binding, entry, uncoating, synthesis and
transport of viral components as well as assembly and bud-
ding. Each of these steps is an important target for antiviral
prophylaxis and therapy. Furthermore, since a host is usu-
ally infected at a very low multiplicity of infection (MOI), an
efficient multicycle replication including virus release and
infection of new cells is obligatory for virus survival and
pathogenesis. In addition, the site of virus budding may de-
termine, at least partially, the nature of viral diseases. For
example, most viruses causing viremia and systemic dis-
ease usually bud from the basolateral surface or cause cell-
to-cell transmission by cell fusion forming heterokaryons.
These viruses are usually pantropic and can infect multiple
internal organs. On the other hand, viruses like influenza
virus, which bud apically and cannot cause cell-to-cell fu-
sion, are usually restricted to lungs and are pneumotropic in
mammals.

Influenza viruses are negative stranded, segmented, en-
veloped RNA viruses containing helical ribonucleocapsid
(also called viral ribonucleoprotein [vRNP]) and belong to
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(for review, seeElton et al., 2002; Portela and Digard,
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Influenza virus particles bind to cell surface sialic acid,
ubiquitously present on glycoproteins or glycolipids. The
specificity of the sialic acid (�2,3-linked or�2,6-linked sialic
acid) and preferred binding of a particular strain of influenza
virus to a specific sialic acid receptor are important determi-
nants for species-specific restriction of influenza viruses (for
review, seeMatrosovich and Klenk, 2003).

During the infectious cycle, virus particles, bound to cell
surface sialic acid, are internalized by receptor-mediated en-
docytosis and viruses possessing cleaved HA undergo fu-
sion with the endosomal membrane (for review, seeSkehel
and Wiley, 2000; Stegmann, 2000) at low pH (pH ∼5.0).
Cleavage of HA is an absolute requirement for infectivity
and the nature of the HA cleavage site is an important viru-
lence determinant for influenza viruses. Cleavage efficiency
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ple basic residues at the cleavage site of HA1 and HA2 and
the plasminogen binding ability of NA. Viruses containing
HA with a single positive charge at the cleavage site can be
cleaved by specific enzymes such astryptase Clarapresent
in the lungs, whereas HA containing multiple basic residues
at the cleavage site are cleaved ubiquitously by proteases
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onformational changes releasing the NH2 terminal fusion
eptide of HA2 and causing fusion of viral and endoso
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2. Steps involved in the assembly and morphogenesis
of influenza virus

Morphogenesis of influenza virus is a complex multi-step
process, which involves not only nucleocapsid (vRNP) for-
mation but also envelopment of the nucleocapsid and release
of viral particles into the external environment. Assembly
and morphogenesis of influenza virus require a number of
obligatory steps: firstly, all viral (or subviral) components
must be directed and brought to the assembly site, i.e. the
plasma membrane in non-polarized cells or the apical plasma
membrane in polarized epithelial cells. Secondly, all viral
components must interact in an orderly fashion to assemble
into infectious virions. Thirdly, interaction and concentra-
tion of subviral components at the assembly site must initi-
ate bud formation, i.e. an outward curvature of the plasma
membrane. Finally, apposing membranes at the stalk of the
bud must fuse causing separation of the virus particle (bud)
from the host cell and release of virions into the extracellular
environment.

These sub-viral components are: (a) the viral core or vRNP
containing vRNA, NP, NEP, and 3P proteins; (b) M1, forming
the bridge between the envelope and vRNP; and (c) the enve-
lope, containing the viral transmembrane proteins (HA, NA,
and M2) and lipids derived from host cells. Moreover, since
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M1 provides a critical function in the nuclear-to-cytoplasmic
export of vRNP since the vRNP remains bound to nucleus in
the absence of M1 (Bui et al., 2000). It has also been shown
that NP and vRNP remain in the nucleus of cells infected
with virus particles either lacking NS vRNA or possessing
the mutant NS vRNA encoding only NS1 but not NEP pro-
tein (Neumann et al., 2000) indicating the essential role of
NEP in nuclear export of vRNP. However, NEP does not inter-
act directly with vRNPs. NEP mediates RanGTP-dependent
binding to the cellular protein Crm1 via its leucine-rich nu-
clear export signal present at the N-terminal domain. NEP
also interacts with the N-terminal domain of M1 via its C-
terminal domain. An exposed tryptophan (Trp78) surrounded
by a cluster of glutamate residues on NEP, and the basic
nuclear localization signal (NLS) of M1, is responsible for
this NEP–M1 interaction (Akarsu et al., 2003). On the other
hand, M1 binds to vRNP via its C-terminal domain (Baudin
et al., 2001). It was therefore suggested that a “daisy-chain”
complex of (Crm1–RanGTP)–NEP–M1–vRNP mediated the
export of vRNP across the nuclear envelope (Akarsu et al.,
2003). However, NP alone has also been proposed to medi-
ate vRNP export, as it interacts directly with Crm1 in vitro
(Elton et al., 2001).
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.1. Transport of viral components to the assembly site

Since influenza viruses assemble and bud from the pl
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2.1.2. Transport of viral envelope proteins to the apical
cell surface

Among the viral components, most information is avail-
able about the transport, sorting and targeting of viral enve-
lope proteins (HA, NA, and M2) to the virus assembly site.
In virus-infected cells as well as in cells expressing envelope
proteins individually from cloned cDNAs, each viral enve-
lope protein (HA, NA, and M2) preferentially accumulates
at the virus assembly site, i.e. the apical plasma membrane
in polarized epithelial cells (Hughey et al., 1992; Jones et al.,
1985; Roth et al., 1983). These and other studies showed that
HA, NA, and M2 possess the determinants for sorting and
targeting to the apical plasma membrane in polarized epithe-
lial cells. Although the apical sorting signal of M2 is yet to be
defined, the apical sorting signals for HA and NA have been
studied in detail. Both HA and NA possess two apical deter-
minants: one in the ectodomain, which is likely to be glycan,
and other in the transmembrane domain (TMD). Unlike the
basolateral signals, the cytoplasmic tail (CT) of either HA or
NA does not contain the apical signal. Moreover, both HA
and NA have been shown to interact with non-ionic detergent-
resistant lipid microdomains (lipid rafts) and the determi-
nant(s) for raft-association resides in their TMDs (Kundu et
al., 1996; Lin et al., 1998). Furthermore, it has been shown
that both apical (e.g. influenza HA and NA) and basolateral
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facilitated apical sorting and both resided in the TMD of HA
and NA.

2.1.3. Transport of M1 and vRNP to the assembly site
M1, the most abundant viral protein in the virus particle,

plays a critical role in the processes of virion assembly and
budding. For assembly and budding, both M1 and the vRNP
must be transported to the assembly site. However, how M1
and the vRNP individually or jointly are transported to the
budding site remains unclear. Nuclear translocation of M1 in
virus-infected cells unlike that observed in cDNA-transfected
cells, does not depend on the function of the M1 NLS, since
a mutant M1 protein lacking an NLS can enter the nucleus
when expressed with other viral components, particularly NP
and vRNA (Huang et al., 2001; Perez and Donis, 1998). Nei-
ther HA nor NA is absolutely required for virus budding, since
virus particles lacking either HA or NA can bud in HA or NA
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.2. Interaction among the viral components
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nteract with each other. Virion structure implies that M1 a
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ust interact with both the viral envelope on the outer
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and the vRNP on the inner side. As stated earlier, M1 was
shown to interact with viral NEP (Akarsu et al., 2003; Ward
et al., 1995; Yasuda et al., 1993), and vRNPs (Watanabe et
al., 1996; Ye et al., 1999; Zvonarjev and Ghendon, 1980).
The M1–vRNP complex can be isolated from either infected
cells or purified virions by non-ionic detergent treatment un-
der conditions where membrane glycoproteins are dissoci-
ated. M1–vRNP complexes are stable at neutral pH and low
salt and can be dissociated only by high salt and acidic pH
treatment (Zhirnov, 1992). However, the nature of M1–vRNP
interaction is unclear at present since, as mentioned earlier,
M1 does not interact with NP when expressed from cloned
cDNAs (Zhao et al., 1998). It is likely that the M1–vRNP
complex is formed by the interaction of M1 with the RNA
of the vRNP. It has been shown that M1 interacts with the
vRNP and inhibits transcription (Watanabe et al., 1996; Ye
et al., 1987, 1999). Furthermore, M1 has been shown to bind
ssRNA in vitro (Elster et al., 1997) and to vRNP in virus-
infected cells (Lopez-Turiso et al., 1990; Ruigrok and Baudin,
1995) and in virus particles (Schulze, 1972), but M1 does not
bind to NP expressed alone (Huang et al., 2001; Zhao et al.,
1998). Also, the vRNA in the helical vRNP complex of in-
fluenza virus is exposed outside of the NP and is therefore
available for interaction with M1. It was therefore postulated
that M1 binds to the vRNP via negative charges on the ex-
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1991). Subsequently, Triton X-100 (TX-100) detergent treat-
ment at low temperature was used to demonstrate the specific
interaction of M1 with both HA and NA (Ali et al., 2000).
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not raft-associated and was TX-100 soluble. However, when
M1 was coexpressed with HA and NA, the membrane-bound
M1 interacting with mature HA and NA became resistant to
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lipid rafts. Moreover, the interaction of M1 with HA and NA
was shown to be specific for TX-100 resistance of M1 since
the membrane-bound M1 in cells coexpressing M1 with a
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nteraction is critical in many aspects of virus budding,
luding concentration of viral components at the budd
ite, exclusion of host proteins from virions, formation of
symmetry in lipid membrane at the budding site, initia
f membrane bending and bringing host components t
udding site for closure of virus buds.

.2.2. Interaction of M1 with envelope proteins
As mentioned earlier, the position of M1 in the viral str

ure implies that M1 forms a bridge between the enve
eterologous protein such as Sendai virus F protein, wa
X-100 resistant (Ali et al., 2000).

Furthermore, chimeras between HA and Sendai vir
roteins showed that both CT and the TMD of HA rende

he membrane-bound M1 resistant to TX-100, suppo
he interaction M1 with both CT and TMD of HA. Analys
y confocal microscopy also demonstrated that in influe
irus-infected cells, a fraction of M1 was colocalized w
A both in the presence and absence of monensin (Ali et al.,
000). In the presence of monensin, an inhibitor of exoc

ransport, HA was present predominantly in the perinuc
olgi region and was absent from the plasma membrane
as also more concentrated in the perinuclear region an
n the cell periphery, supporting colocalization of M1 and

n the Golgi region of influenza virus-infected cells (Ali et
l., 2000). Fractions of M1 and NP also colocalized in vir

nfected cells (Avalos et al., 1997). These biochemical an
orphological analyses demonstrated the interaction o
ith lipid membranes, HA, NA, and the vRNP in influen
irus-infected cells.

. Selection of the budding site

It is generally believed that viral glycoproteins determ
he site of virus assembly and budding. This notion co
rom the fact that viral glycoproteins accumulate at the
f virus budding even when expressed alone. For exam
lycoproteins of viruses such as hepatitis B virus, b
aviruses, coronaviruses, and others that bud from th
ernal sub-cellular organelles, possess intrinsic determi
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for the same sub-cellular localization as the site of virus bud-
ding (for review, seeHobman, 1993). On the other hand, for
viruses budding from the plasma membrane, the viral glyco-
proteins possess either apical or basolateral sorting signals
and are directed to the specific site where virus assembly and
budding occur in polarized epithelial cells. Furthermore, in
different cells and tissues where some viruses bud from the
opposite domains of the plasma membrane, their glycopro-
teins are distributed accordingly. For example, Semliki Forest
viruses (SFV) buds apically from FRT cells but basolaterally
from CaCo-2 cells; similarly, in the absence of any other viral
protein, p62/E2, the envelope glycoproteins of SFV, are tar-
geted apically in FRT cells but basolaterally in CaCo-2 cells
(Zurzolo et al., 1992). For retroviruses, particularly the hu-
man immunodeficiency virus (HIV) that buds from the baso-
lateral surface in polarized epithelial cells, the HIV envelope
protein is also directed basolaterally. HIV capsid proteins ex-
pressed alone released virus-like particles (VLPs) randomly
from both apical and basolateral surfaces, whereas upon ex-
pression of the envelope protein gp160, particles were re-
leased predominantly from the basolateral surface (Owens
et al., 1991). The authors concluded from these studies that
the HIV envelope protein, which is targeted to the basolat-
eral surface in polarized epithelial cells, determines the site
of virus budding.
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other viral components including M1 and vRNP as well as
host components may be involved in determining the budding
site.

4. Bud formation and completion

Budding requires the selection of an assembly site where
viral components are transported and assembled leading to
the initiation of the budding process, growth of the bud and
finally, completion of the bud with the release of the virus
particles. Each of the steps in the budding process is complex
and requires involvement of both host and viral components.
Influenza viruses not only bud from the plasma membrane,
but they bud from the apical domain of the plasma membrane
in polarized cells. In addition, influenza viruses do not bud
randomly from the plasma membrane but discretely from pre-
ferred sites in the membrane. Alternatively, as proposed for
murine leukemia virus (MuLV), budding of one virion may
seed for the next in the same site and a defect in bud release
could lead to joining of multiple particles forming filaments
and this process may be coupled with the recruitment of host
cytoskeletal elements at the preferred site of budding (Yuan
et al., 2000). With influenza virus, cytoskeletal-disrupting
agents caused an increased release of spherical over fila-
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Influenza virus, which assembles and buds from the
al plasma membrane in polarized epithelial cells, has
sed extensively as a model for studying protein targe
f the three transmembrane envelope proteins, HA is
ajor glycoprotein, comprising over 80% of the envel
roteins present in the virus particle. In transfected ce
ingle amino acid change (Cys543→ Tyr543) in HA (HAtyr)
as shown to direct HAtyr predominantly to the basolat
ide without significantly affecting the intracellular transp
nd cell surface expression of the mutant protein (Brewer
nd Roth, 1991). Recently, using transfectant influenza vi
ontaining basolaterally targeted HA (Cys543→ Tyr543), it
as shown that the basolateral targeting of HA did not
ificantly alter the apical budding of influenza virus (Barman
t al., 2003; Mora et al., 2002). Over 99% of the virus pa

icles containing the HAtyr were released from the ap
ide even though the majority of HAtyr was directed to
asolateral side. However, the role of NA and M2 in po

zed budding of influenza virus has not been examined
imilarly, when a mutant vesicular stomatitis virus (VSV
rotein was targeted apically, it did not affect the basola
udding of VSV (Zimmer et al., 2002). It was also demon
trated that although measles virus glycoproteins H a
ere transported in a random fashion or to basolateral m
rane, respectively, virus budding occurred predomina

rom the apical surface of polarized MDCK cells (Maisner
t al., 1998). Similarly, although Marburg virus buds pr
ominantly from the basolateral surface, its glycoprotein

ransported to the apical surface (Sanger et al., 2001). These
tudies suggest that viral glycoproteins may not be the on
ajor determinant for selecting the site of virus budding
entous particles in MDCK cells (Roberts and Compan
998) and release of virus particles in a few localized reg
f the plasma membrane in abortively infected HeLa c
Gujuluva et al., 1994).

Bud formation and bud release are the last steps in
eplication and production of new infectious virions. In
tion of bud formation requires bending of membrane

nvolves a transition from more planar membrane struc
o a curved structure (for review, seeFarsad and De Camil
003; Lippincott-Schwartz and Liu, 2003). Recently, a newl
ecognized BAR (Bin/Amphiphysin/Rsv) domain has b
emonstrated to be involved in membrane curvature (Peter
t al., 2004). This domain is present in a number of prote

nvolved in vesicle formation and recycling, such as
hiphysins, endophilins, arfaptins, nadrins, beta-centa
nd oligophrenins (for review, seeHabemann, 2004; Lee a
chekman, 2004; Zimmebeg and McLaughlin, 2004). How-
ver, the role of any of these proteins in virus buddin
nknown. Both lipids and proteins are likely to contrib

o causing membrane curvature. Asymmetry in lipid bila
an cause intrinsic curvature of one monolayer relative t
ther monolayer leading to membrane bending (Holopainen
t al., 2000). Therefore, assembly of lipid bilayers into s
ific lipid microdomains such as lipid rafts at the site
udding is likely to contribute to virus budding. In addit
o specific lipid microdomains, virus bud formation requ
pecific viral proteins.

Two types of proteins that are associated with the vira
elope, namely (i) the transmembrane proteins HA, NA
2 forming the outer spikes and (ii) the matrix protein

nteracting with the inner leaflet of the lipid bilayer, appea
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play a critical role in budding. Clustering of M1 on the inner
bilayer can cause membrane bending and initiation of bud-
ding. Finally, pinching off of the virus buds requires fusion of
the apposing viral and cellular membranes leading to fission
and separation of the bud from the cell (for review, seeNayak
and Hui, 2004). Furthermore, influenza virus particles are
pleomorphic. Although laboratory-adapted viruses are usu-
ally spherical, viruses freshly isolated from the field are gen-
erally filamentous. However, some laboratory-adapted strains
(e.g. A/Udorn/72 [H3N2]) are also filamentous (Bourmakina
and Garcia-Sastre, 2003; Roberts et al., 1998). Factors af-
fecting the fusion of the lipid bilayers and fission of the bud
will affect the size and shape of the virus particles. Among
the viral components, M1 proteins have been shown to be the
key component in both bud formation and pinching off (for
review, seeNayak and Hui, 2002, 2004). In addition to viral
components, a number of host components play a critical role
in bud completion and virus release (for review, seeFreed,
2002, 2003; Luban, 2001; Pornillos et al., 2002).

5. Role of M1 in virus budding

M1 is the most abundant protein in the influenza virion
and plays critical roles in many aspects of the virus life cycle
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sembling viral and host components required for budding at
the assembly site of the plasma membrane (for review, see
Lamb and Krug, 2001; Nayak, 2000; Nayak and Hui, 2002).
M1–M1 interaction facilitates the formation of an M1 protein
patch and the exclusion of host proteins from the assembly
and budding site. M1 was shown to be a determinant for
morphological shape and size (filamentous versus spherical)
of influenza particles (Bourmakina and Garcia-Sastre, 2003;
Hughey et al., 1995; Liu et al., 2002; Roberts et al., 1998).
Since the M1 protein alone in the absence of any other vi-
ral proteins becomes membrane-associated (Ali et al., 2000;
Kretzschmar et al., 1996) and produces VLPs in the extra-
cellular medium (Gómez-Puertas et al., 2000; Latham and
Galarza, 2001), the M1 protein has all the structural infor-
mation needed for self-assembly, interaction with the plasma
membrane, as well as initiation, completion and release of
the bud. However, the interaction of M1 with both viral in-
tegral membrane proteins and newly assembled vRNP in the
plasma membrane is believed to increase the efficiency of
viral budding.

The matrix proteins of many negative strand viruses and
the Gag proteins of retroviruses possess specific motifs called
late (L) domains which are involved in recruiting the host
components required for bud completion and virus release
(for review, seeCimarelli and Darlix, 2002; Freed, 2002,
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ncluding virus budding (for review, seeNayak, 1996; Naya
nd Hui, 2002). These include: (i) M1 interaction with vRN
nd NEP and regulation of vRNP transport between th

oplasm and the nucleus (for review, seeCros and Palese
003; Portela and Digard, 2002); (ii) regulation of vRNP

ranscription and replication; (iii) interaction with viral e
elope proteins (HA, NA, and M2); (iv) recruitment of vir
omponents at the assembly site and initiation of budd
v) recruitment of host components for bud completion
irus release.

The M1 monomer is 60̊A long and possesses two globu
egions (aa 1–164 and 165–252) linked by a protease s
ive loop. The structure consists mostly of helix and loops
s devoid of�-strands (Shishkov et al., 1999). The N-termina
ragment (aa 1–164) has been crystallized at both acidi
eutral pH and the 3-D structure has been determined b
ay diffraction analysis (Arzt et al., 2001; Harris et al., 200
999; Sha and Luo, 1997). This fragment contains eight loo
L) and nine helices (H) but the last loop (aa 159–164)
ot resolved in the X-ray diffraction study. The H6 dom
aa 91–105) of M1 provides multiple functional domains
luding a nuclear localization signal, an RNA-RNP bind
ite, transcription inhibition motifs, and others.

M1 is the major driving force of influenza virus buddin
ince in the absence of M1 VLPs are not formed (Gómez-
uertas et al., 2000; Latham and Galarza, 2001). M1 aids in

he assembly and budding process in multiple ways. M
eracts with the inner leaflet of the lipid bilayer and ther
reates asymmetry in the membrane bilayer causing ou
ending for the initiation of bud formation. M1 is believ

o be the key protein in recruiting, concentrating, and
003; Luban, 2001; Perez and Nolan, 2001; Pornillos e
002; Yap and Stoye, 2003). So far, three different L doma
otifs, namely PP(P/X)Y (PY motif or proline-rich moti
(T/S)AP, and YP(D/X)L motifs have been found in the m

rix proteins of negative strand viruses as well as retrovir
ncluding HIV. These motifs have been shown to interact
number of cellular proteins involved in bud completion

eview, seeFreed, 2002, 2003; Luban, 2001; Perez and No
001; Pornillos et al., 2002; Yap and Stoye, 2003). Recen
tudies using site-directed mutagenesis and rescuing m
iruses by reverse genetics have shown that the helix 6
omain of influenza A virus M1 also possesses a L domain

ike motif (Hui et al., 2003a). Mutation in H6 (R101A) wa
hown to reduce virus yield due to a budding defect pro
ng filamentous particles (Fig. 1). The morphological phe
otype of the R101A M1 mutant was strikingly similar

hat observed for MuLV Gag mutants with L domain defe
Yuan et al., 2000). Both the R101A influenza virus muta
nd the MuLV mutant exhibited elongated filamentous m
hology. Many filaments contain multiple spherical unit
daisy chain like structure” (Fig. 2B), suggesting a defe
n releasing spherical particles during budding as was
een with MuLV (Yuan et al., 2000) and other retrovirus
otif mutants (Garrus et al., 2001). Furthermore, the YRK

equence of influenza M1 H6 domain can be replaced
oreign L motif such as PTAP or YPDL but not by PPP
nsertion of the YRKL into different locations of the m
ated M1 protein restored normal budding but not the N
unction (Hui and Nayak, unpublished data). These re
howed the interchangeable nature of the L domain mo
nfluenza virus M1. Taken together, these data indicate
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Fig. 1. Mutations in M1 and NA produce elongated influenza virus particles in MDCK cells. MDCK cells grown on polycarbonate filters were infected with
different viruses at 3.0 MOI. At 12 h p.i., infected cell monolayers were examined by thin section electron microscopy. Results show that cells infected with
an M1 mutant (R101A, panel B), and NA CT mutant (NA3A2, panel D) and NA TMD chimeras with TR [NATRNA and NA(1T2N)NA, panels C and E,
respectively], produced elongated particles (→), whereas cells infected with WT virus produced mostly spherical particles (panel A). This figure was adapted
from (Hui et al., 2003a) and (Barman et al., 2004) with the permission of American Society for Microbiology.

YRKL sequence and the neighboring region function as the
L domain in influenza virus budding. Although the precise
sequence and boundary of the L domain motif of influenza
virus M1 are yet to be determined, the influenza L domain
consists at least partly of the positively charged residues of
the NLS sequence. Furthermore, since the Y and L of YRKL
sequence can be replaced (Hui et al., 2003a), it does not rep-
resent a known L motif.

Like other viral L domains, the influenza virus L domain
appears to function in bud completion rather than bud initia-
tion and may be involved in recruiting host proteins required
for bud completion and release of virus particles. In other
viruses, the domains (P[T/S]AP, PP[P/X]Y, and YP[D/X]L)
have been shown to interact with a number of host pro-
teins involved in endocytic vacuolar sorting pathways such
as Tsg101, Nedd4, ubiquitin ligases, AP2, and proteins con-
taining SH3 and WW domains (for review, seeFreed, 2002,
2003; Luban, 2001; Perez and Nolan, 2001; Pornillos et al.,
2002; Yap and Stoye, 2003). However, host protein(s) in-
teracting with the influenza virus L-like motif involved in
budding have not yet been identified. It is likely that posi-
tively charged residues of the H6 domain may interact with
a different set of host proteins which may be involved in api-
cal budding whereas the PTAP and YPDL sequences may
interact with proteins involved in basolateral budding.
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2001b). HA is the most abundant envelope protein (∼80%).
However, HA may also have little role in the process of
virus budding and release. Viruses lacking HA have been
shown to release virus particles efficiently into the extra-
cellular medium (Gómez-Puertas et al., 2000; Latham and
Galarza, 2001; Pattnaik et al., 1986), although such particles
are not infectious. HA lacking the CT did not cause aberrant
virus budding or virus morphology (Jin et al., 1997).

On the other hand, several studies suggest that NA plays
a critical role in virus budding (Jin et al., 1997). Although
NA is not an absolute requirement for influenza viral mor-
phogenesis (Garćıa-Sastre and Palese, 1995; Mitnaul et al.,
1996), NA is clearly an important player in optimal virus
replication. In cells infected with a mutant virus lacking NA,
progeny viruses were not only aggregated on the cell-surface,
but most of the virus particles exhibited an elongated mor-
phology indicating a possible defect in the budding process
(Liu et al., 1995). Moreover, elongated morphology of mu-
tant virus particles suggests that the defect is in bud release
rather than bud formation. Six amino acids of the NA CT are
extremely conserved and are likely to play an important role
in virus budding. Studies using tail minus HA (HAt−) and
NA (NAt−) mutant viruses showed that NAt− (Mitnaul et
al., 1996) but not HAt− (Jin et al., 1994) virus particles were
elongated in shape. In addition, deletion of the CTs of both
H ar-
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.1. Role of transmembrane proteins in virus budding

Among the three transmembrane viral envelope
eins (HA, NA, and M2), M2 is only a minor compone
16–20 molecules/virion) and is therefore unlikely to pla
ignificant role in budding. Moreover, recently it has b
hown that the presence of M2 is not an obligatory req
ent for virus replication. Infectious virus lacking M2 c
e rescued and propagated in cell culture (Watanabe et al
A and NA led to formation of bizarre filamentous virus p
icles (Jin et al., 1997). The authors further observed that
eletion caused a reduction in raft association and conc

hat reduced raft association was responsible for the bu
efects (Zhang et al., 2000). However, complete deletion

he CT of NA could cause structural perturbation leadin
rotein instability and reduced lipid raft association. Re
tudies using mutational analysis of the transmembran
ytoplasmic domains of NA have shown that some TMD
ell as CT residues play critical roles in viral morphogen
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including virus shape, size, and titer (Barman et al., 2004).
When the extreme N-terminal three amino acids of NA were
replaced with alanine, the mutant virus particles exhibited
elongated shape (Fig. 1) although its lipid raft-association
was normal. Similarly, NA/TR chimeras containing complete
or partial replacement of the NA TMD with human transferrin
receptor (TR) TMD also caused a budding defect producing
elongated particles (Fig. 1). Therefore, it is likely that NA
either directly or indirectly may have a role in the budding
process independent of raft-association (Barman et al., 2004)
(Fig. 1).

5.2. Role of the eight vRNP segments in virus budding

Although vRNP segments are not absolutely required for
budding since M1 proteins alone can initiate and release
virus buds (Gómez-Puertas et al., 2000; Latham and Galarza,
2001), incorporation of all eight (influenza A and B) or seven
(influenza C) vRNA segments is required for the formation
of infectious virus particles. However, how these multiple
vRNA segments are incorporated into virus particles remains
unclear. Two models have been proposed for the incorpora-
tion of eight vRNA segments into virions; i.e. “random pack-
aging” and “specific packaging”. The “random packaging”
model predicts the presence of common structural elements
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is as yet not evidence in support of specific vRNP segment
requirement for bud formation and bud closure since M1 pro-
tein alone can form buds and release VLPs (Gómez-Puertas
et al., 2000; Latham and Galarza, 2001).

5.3. Role of lipid rafts in virus budding

Viral morphogenesis is a complex phenomenon requiring
concerted actions of many viral and host components (for
review, seeCadd et al., 1997; Garoff et al., 1998; Nayak,
2000; Pettersson, 1991; Simons and Garoff, 1980). Among
the host components that are intimately involved in regulating
different aspects of the influenza virus life cycle, lipid rafts
play a number of important roles. Lipid rafts are lipid mi-
crodomains enriched in sphingolipids and cholesterol. They
contain lipids in liquid order (lo) and are relatively resistant
to non-ionic detergent at a low temperature (for review, see
Brown and London, 1998; Simons and Toomre, 2000). Lipid
rafts play critical roles in many aspects of the virus life cy-
cle such as virus entry and uncoating, viral protein transport
and targeting, selection of the viral assembly site, interac-
tion among viral components, and finally, the budding pro-
cess including bud initiation and bud completion (for review,
seeBarman et al., 2001; Chazal and Gerlier, 2003; Kielian
et al., 2000; Nayak and Barman, 2002; Nayak and Hui,
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n all vRNPs causing them to be incorporated randomly
irions. Support for this model comes from the observa
hat influenza A virions can possess more than eight vR
9–11 vRNAs per virion) (Bancroft and Parslow, 2002; Ena
t al., 1991). On the other hand, the “specific packagi
odel assumes specific structural features in each v

egment, enabling them to be selectively incorporated
irions. Evidence for this model is deduced mainly from
nding that the various vRNAs are equimolar within v
articles even though their concentrations in infected
ay differ (Smith and Hay, 1982). Earlier studies demo

trating that the DI vRNAs can competitively inhibit t
ackaging of their normal counterparts but not that of o
RNAs argue for the specific packaging model (Duhaut and
cCauley, 1996; Nakajima et al., 1979; Nayak et al., 19
989; Odagiri and Tobita, 1990). Moreover, recent studie
ave shown that in addition to 5′ and 3′ non-coding se
uences, specific coding sequences are required for effi
ackaging of HA (Watanabe et al., 2003), NA (Fuji et al.,
003), M and NS genes (mentioned inWatanabe et al., 2003).
xistence of specific packaging sequences would arg

avor of specific packaging over random incorporation
RNA segments. Specific vRNA–vRNA interaction amo
he vRNP segments intranswould be involved in forming
ulti-segmental vRNA macromolecules for incorporatio

irus particles. However, such a model would require
uch large vRNP complexes containing eight unique vR
roduced by RNA–RNA interactions in vRNPs intransare
table. More importantly, bud closure and virus release
ot occur until such vRNP complexes containing eight
ific vRNP segments are formed. As mentioned earlier, t
004).
Among the three influenza viral envelope proteins, b

A (type I) and NA (type II) proteins use lipid rafts as a p
orm for apical transport (for review, seeNayak and Barman
002; Nayak and Hui, 2004) but M2, although an integr
embrane protein, does not use lipid rafts for apical tran

Zhang et al., 2000). Furthermore, in the envelope of relea
irions, both HA and NA remain raft-associated but M2 d
ot associate with the lipid rafts, indicating that the influe
iral envelope also exhibits a mosaic mixture of both
nd non-raft lipid microdomains even though the majorit

ipids present in the lipid bilayer of the viral envelope ar
he lo phase. Association of HA with lipid rafts is not d
endent on oligosaccharide modification or its associa
ith other viral proteins or its assembly into virus partic
either does the association of HA with lipid rafts dep
n the polarity of cells (Skibbens et al., 1989). The TMD of
A has critical determinants for interacting with lipid ra
ince chimeric proteins containing the TMD of VSV G
SV C proteins and the ectodomain and CT of HA did
ssociate with lipid rafts. Furthermore, the exoplasmic
f the HA TMD was critical for lipid raft-association (Lin
t al., 1998; Scheiffele et al., 1997, 1999). In addition, palmi

oylation of three cysteine residues present in the HA T
nd CT as well as structural features such as the�-helical
onformation of the HA TMD peptide aid its interaction w
ipid rafts (Melkonian et al., 1999; Tatulian and Tamm, 200).
ail-minus HA (HAt−) exhibited markedly reduced TX-10
esistance both in released virus particles and in cDNA tr
ected cells (Zhang et al., 2000). This could be partly due
he loss of two cysteine residues in the CT.
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NA, a type II integral influenza virus protein, also asso-
ciates with lipid rafts via its TMD during intracellular trans-
port (Barman et al., 2001; Barman and Nayak, 2000). How-
ever, unlike HA, interaction of the NA TMD with lipid rafts
was not dependent on acylation of cysteine residues. Like HA,
the CT of NA affected the interaction of NA in the lipid raft
since removal of the conserved CT reduced raft-association
and increased TX-100 solubility of NA (Zhang et al., 2000).

Lipid rafts also play an important role in pseudotyping.
Pseudotyping is a common phenomenon observed in cells co-
infected with two or more enveloped viruses where progeny
viruses containing the genome (and capsid) of one virus and
the envelope proteins of a second virus are formed. This type
of mixing of core (capsid) components with envelope compo-
nents has been observed with many DNA and RNA viruses
(Pickl et al., 2001). This well-documented phenomenon of
pseudotyping is at odds with the common notion that spe-
cific interaction between the core component and envelope
proteins governs the assembly and budding of most viruses.
It appears that lipid rafts facilitate pseudotyping by forming
a common platform for mixing the envelope proteins of dif-
ferent viruses and cellular membrane proteins. Even viruses
belonging to diverse groups such as herpes simplex virus and
VSV can produce pseudotyped viruses. A common property
among all these diverse viral and cellular proteins are that
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lope. Lipid rafts therefore provide the basis for promiscuity in
the incorporation of foreign proteins into a number of virus
particles such as VSV, HIV, and influenza virus and sup-
port the passive incorporation of integral membrane proteins
into virus particles. However, envelope protein and core in-
teractions also play a critical role in selecting incorporation
of specific viral proteins and in excluding most membrane-
associated host proteins from the budding site and from virus
particles. Therefore, lipid microdomains such as lipid rafts fa-
cilitate mixing and interaction among the viral components
required for assembly and budding of infectious viruses as
well as in pseudotype formation.

Lipid rafts, in addition to transporting, targeting and con-
centrating viral and host components to the assembly site,
may have some intrinsic properties for initiating budding and
thereby facilitate budding from specific sites of the mem-
brane for a given virus. Raft association of HA appears to be
responsible for clustering of HA on the plasma membrane
and efficient budding but has no effect on virus morphology
(Takeda et al., 2003). There are a number of reasons why dif-
ferent viruses choose different lipid microdomains for bud-
ding. Influenza virus HA and NA associate with lipid rafts,
and influenza viruses bud from lipid rafts. The presence of
specific peptides in a specific conformation often facilitates
association with lipid rafts and may increase the order of
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nduced patching experiment, it was shown that VSV-G
ially co-patched with the raft-associated marker protein
ental alkaline phosphatase (PLAP) indicating the partia
ssociation of VSV G (Harder et al., 1998). It was observe

hat in mixed infections the envelope proteins of differ
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n the plasma membrane are the common meeting gr

or core and transmembrane envelope proteins of diffe
iruses. Also, these lipid rafts function as a platform for
elopment and budding resulting in the production of p
otyped viruses. Some of the host components such as
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ig. 2. (A) Schematic representation of influenza virus morphogenes
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ail of HA and NA. Ml binds to the cytoplasmic tail and transmembra
he plasma membrane bends at the assembly site containing glycopro
usion of the apposing cellular and viral membranes leads to fission a
he extracellular medium. Lipid raft microdomains in the membrane ar
efective and normal virus budding. Mutant viruses with defective bud

usion and fission of apposing cell and viral membranes. The presen
udding from the plasma membrane is not random but occurs at spec
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viral morphogenesis to occur, all the subviral components must be trrted to
an orderly manner. Both glycoproteins (HA and NA) use the exocytic
n on the plasma membrane containing lipid rafts. Another glycoprotein
complex, consisting of the viral genomic RNA, NP, NEP, 3P and Ml, aed
embrane either via cytoskeleton elements or by piggy-backing on thmic
ain of HA and NA on the outer side, and the vRNP on the inner sid
nd the Ml–vRNP complexes, causing an outward membrane curvatuly,

ching-off of the virus particle, releasing the enveloped progeny virusticle into
n in brown; non-raft regions are depicted in grey. (B) Schematic repreation of
roduce structures joining multiple particles (Hui et al., 2003a) due to incomplet
ultiple incomplete virus-like particles in elongated structures suggehat virus
s, producing multiple virus particles from the same site. Although thrents
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ipids in the lipid raft. For example, the helicity of the H
MD peptide increased in lipid bilayers composed of ac

ipids and in turn, the presence of the peptide also incre
he acyl chain order of the lipid bilayer. Ordered lipids
ract TMDs and TMDs in turn increase the order of the lip
urrounding them. This process may aid in targeting HA
A transmembrane proteins to ordered lipid rafts and o
izing ordered lipid rafts around them (Tatulian and Tamm
000). However, incorporation of HA alone is not sufficie

o organize an ordered lipid environment since HA inco
ated in the VSV envelope is TX-100 soluble (Scheiffele e
l., 1999). Furthermore, raft-dependent protein–protein

eractions may facilitate bringing proteins that are prese
ess-ordered membrane to lipid rafts by interaction with
ssociated proteins. Interaction between influenza viru
nd HA brings M1, a non-raft-associated protein, into l
afts (Ali et al., 2000). Also, raft-ordered membrane doma
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the plasma membrane such as the engaged immune recep-
tors (for review, seeCheng et al., 2001; Mãnes et al., 2001).
The affinity of lo domains can be increased by organization,
acylation, coupling to raft-associated molecules or by con-
formational changes (Harder et al., 1998).

Although viruses can bud and form particles (VLPs) in the
absence of glycoproteins and although the Gag protein of HIV
and the matrix proteins of many negative strand viruses can
bud and acquire envelope, the lipid composition of such VLPs
is not known. Whether these VLPs contain lipid rafts in their
envelope or whether glycoproteins are required for acquiring
lipid rafts in their envelope remains to be determined. The
lipid composition of a VLP’s envelope may indicate whether
virus budding occurs from the plasma membrane outside lipid
raft microdomains or whether budding requires the presence
of lipid raft microdomains.

Finally, involvement of lipid rafts in virus replication may
provide a novel antiviral approach. Topical application of
�-cyclodextrin (�-CD), a lipid raft destabilizer, shows the
promise of antiviral effect in HIV transmission (Khanna et
al., 2002), possibly by preventing virus entry or by disrupting
virus budding or virion structure.

5.4. Role of host proteins in virus budding
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infected cells as well as NP but not M1 alone in cells ex-
pressed from cloned cDNA interacted with F-actin (Avalos
et al., 1997; Bucher et al., 1989; Digard et al., 1999, 2001;
Husain and Gupta, 1997). Furthermore, actin was found in
many enveloped virus particles (for review, seeCudmore et
al., 1997; Eaton and Hyatt, 1989; Falke, 1997; Wang et al.,
1976). Also, actin and actin-binding protein ezrin-radixin-
moesin (ERM) have been found in influenza virus particles
(Sagara et al., 1995). The presence of actin-associated pro-
teins in virions suggests specific functions of the actin fila-
ment during assembly and budding.

Influenza virus budding was shown to be an active, energy-
dependent process requiring ATP hydrolysis (Hui and Nayak,
2001). Metabolic inhibitors (such as antimycin A, CCCP,
FCCP, and oligomycin) and ATP analogues (such as ATP�S
and AMP-PNP) inhibited influenza virus budding (Hui and
Nayak, 2001). Energy is required for biomembrane bend-
ing and shape transition during bud formation (Sackmann,
1994). ATP may play a multifunctional role during influenza
virus budding by maintaining a lipid raft membrane struc-
ture favorable for virus budding, by providing the energy for
membrane shape transition or actin polymerization, and by
functioning as a molecule for protein kinase signaling during
virus budding.

Among the kinases, casein kinase 2 (CK2) is involved in
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In addition to lipids, a number of host proteins, includ
icrofilaments, G proteins, and some protein kinases,
een shown to be involved in the budding of many envelo
iruses (for review, seeLudwig et al., 1999). In addition, the
amily of proteins of the vacuolar protein sorting pathw
ave been shown to interact with the L domains of the
nd matrix proteins of a number of viruses. These inc
sg101, other ESCRT components, and proteins conta
W domains (such as Nedd4 family proteins) (Garrus e

l., 2001; Martin-Serrano et al., 2004; Ono and Freed, 2
track et al., 2000, 2003; von Schwedler et al., 2003). How-
ver, for influenza viruses, host protein(s) that interact
1 and specifically affect virus budding have not yet b

dentified. Furthermore, inhibitors of proteasomes involv
biquitination were found to inhibit budding of a num
f enveloped viruses (for review, seeVogt, 2000) although

he specific role of ubiquitination in virus budding rema
nclear. However, inhibitors of ubiquitination did not aff

nfluenza virus budding (Hui and Nayak, 2001). Cytoskeleta
lements, particularly microfilaments, have been propos
e involved in the maturation of influenza virus including

ormation and bud completion. In abortively influenza vir
nfected HeLa cells, virus particles could be released
ng microfilament-disrupting agents (Gujuluva et al., 1994).
lso, the budding of filamentous influenza virus partic
as converted to spherical particles by inhibitors of a
olymerization such as cytochalasin B (cytoB), cytochal
(cytoD), jasplakinolide, and latrunculin A (Roberts an

ompans, 1998; Simpson-Holley et al., 2002), suggestin
he role of actin microfilaments in bud formation and
elease. In addition, the vRNP–M1 protein complex in vi
nfluenza virus budding since a CK2 inhibitor disrupted v
udding, and increased CK2 activity correlated with the re
ation cycle of influenza virus (Hui and Nayak, 2002). More-
ver, CK2 was found in influenza virus particles (Tucker e
l., 1990) suggesting its presence in the vicinity of the b
ing area of influenza virus and active involvement in
udding process (for review, seeHui, 2002, in press). How-
ver, inhibitors of cAMP-dependent protein kinase (PK
rotein kinase C (PKC), and phosphatidylinositol 3-kin
PI3K) did not affect influenza virus budding. Furthermo
lthough the M1 protein is a phosphoprotein and both p
horylated M1 and NP have been found in virus parti
Gregoriades et al., 1984, 1990), there is no evidence for
pecific requirement for phosphorylation of any viral pro
n the budding process.

.5. Bud completion

Subsequent to bud formation, buds are released by a m
nism of fusion of the apposing membranes and fission o
ud from the cell membrane (Fig. 2B). These processes d
ermine the size and shape of the particles. The mecha
f bud completion is yet unclear and a number of factors
iral and host may affect this process. For some viruses,
s Semliki Forest virus, the icosahedral nucleocapsids d
ine the spherical shape of the released virus particles.

arly, the length of the helical VSV nucleocapsid is critica
etermining the bullet shape and the length of the virus p
les. Defective interfering VSV particles contain smaller
leocapsids, which are responsible for producing small
articles. Therefore, with these viruses, separation of



D.P. Nayak et al. / Virus Research 106 (2004) 147–165 159

buds from host membranes depends on the cargo nucleocap-
sid and occurs immediately after the enclosure of the nucleo-
capsid. However, many viruses such as influenza are flexible
and pleomorphic and can produce spherical or filamentous
particles. With these viruses, a number of factors may play
critical roles in causing the fusion and fission processes and
determining the size and shape of the released virus particles.

As mentioned earlier, among the viral components, matrix
proteins as well as glycoproteins have been shown to affect
virus shape and size. Deletion of the CT of both HA and NA
was shown to generate bizarre filamentous virus particles.
Reduced lipid raft-association of HAt−/NAt− virus was pro-
posed to be the cause of such abnormal virus particles sug-
gesting the role of lipid rafts in both budding and fission of
virus particles (Zhang et al., 2000). In addition, mutation in
the CT of NA was shown to generate spherical to filamen-
tous form not dependent on lipid raft association (Barman
et al., 2004). With some influenza virus strains (A/Udorn/72)
that exhibited filamentous morphology, M1 contributed to the
strain-specific filamentous shape (Bourmakina and Garcia-
Sastre, 2003; Roberts and Compans, 1998). Also, as men-
tioned earlier, influenza virus M1 possesses L domain activity
that affects fission of virus buds (Hui et al., 2003a).

In addition to viral factors, a number of host proteins as
indicated earlier (Section 5.4) including ubiquitin, Tsg101,
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cles from influenza virus-infected HeLa cells with actin dis-
rupting agents (Gujuluva et al., 1994), as well as increase in
spherical over filamentous particles in influenza- and parain-
fluenza virus-infected polarized MDCK cells (Roberts and
Compans, 1998), support the role of actin depolymerization
in bud closure.

Finally, lipid rafts can affect both bud formation and fusion
and fission processes at multiple steps. As indicated earlier,
asymmetry in the lipid bilayer can cause membrane curvature
leading to the formation of buds (Holopainen et al., 2000) and
reduced lipid raft association causes deformed virus particles
(Zhang et al., 2000). Assembly of lipid rafts at the budding
site will affect physical properties of the membrane includ-
ing lipid heterogeneity, lipid–protein interaction, increased
viscosity and rigidity, slow diffusion, etc. The presence of
lipid heterogeneity could cause increased fission and release
of buds. However, a specific role of lipid rafts in bud com-
pletion remains undefined.

6. Release of virus particles

Lastly, after their budding from the host cell, viruses must
be released into the surrounding medium to infect other cells.
With influenza viruses, bud formation and bud closure caus-
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ps4, Nedd4, and other members of the vacuolar protein
ng pathway have been shown to be involved in the bud
rocess (for review, seeFreed, 2002, 2003; Luban, 200
ornillos et al., 2002; Yap and Stoye, 2003). All of these
ost proteins in some way facilitated the fusion and fis
rocesses in bud release so that any defect in the intera
f these virus and host components led to defective o
omplete virus release, often forming multiple VLPs joi
ogether. However, how these host proteins or their inte
ions with viral late domains facilitate the process of fus
nd fission remains unclear. These defective particles
ot completely filamentous or tubular but exhibited clo

eaf-like or tethered structures (Garrus et al., 2001) suggest
ng incomplete membrane fusion and fission. Similar st
ures representing defective budding by joining of mult
articles due to incomplete fusion and fission were foun
utant influenza viruses (Hui et al., 2003a) (Fig. 1). It will
e interesting to determine if these particles represent a
imilar to hemifusion in which only the inner leaflet und
oes fusion and therefore cannot undergo complete fi
nd release from the host membrane and separation
ach other (Fig. 2B).

In addition, as indicated earlier, cytoskeletal compone
articularly actin microfilaments, have been shown to

ribute to filamentous forms of influenza virus partic
Roberts and Compans, 1998). Microfilaments that bind t
he vRNP may provide outward pushing force in bud for
ion. However, if actin is involved in the budding proce
he fusion of membrane at the stalk of the bud and fis
f buds will require disassembly of actin filaments at the
tage of the budding process. Enhanced release of virus
ng pinching off of the virus particle may not be sufficie
o release the virus into the external environment since
eleased particles may still be attached to the infected
ell via sialic acid. The data from ts viruses at restric
emperature, deletion or mutations of NA gene leadin
he loss of NA enzyme activity as well as inhibitors of N
learly demonstrate that NA activity is involved in virus
ease (Barman et al., 2004; Palese and Compans, 1976; P
t al., 1974). The NA removes sialic acid, the receptor for
uenza virus, from the membrane glycolipids and glyco
eins of both the virus particles and virus-infected cells
hus prevents self-aggregation of virus particles and reat
ent to the virus-infected cell. However, as indicated ea
A is not critically required for the infectious cycle in cu

ured cells provided sialidase is present in the mediumLiu
t al., 1995).

. Role of virus budding in pathogenesis

In a natural setting of viral infection, either the hum
r animal host is infected at a very low MOI with relative

ew virus particles. Therefore, multiple cycles of replicat
eading to release of new progeny viruses and infectio
ew host cells by the progeny viruses must be repeated

imes and are critically required not only for the surviva
he virus and cell-to-cell spread but also for producing
isease syndrome in the infected host. In most cases, v
ust kill, destroy or alter the function of a large numbe

ells of a specific organ or tissue before the specific funct
bnormality in the form of a disease syndrome such as p
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monia, hepatitis, or acquired immune deficiency syndrome
(AIDS), etc. is manifested. The site and the nature of budding
can be an important contributory factor in viral pathogenesis
particularly for respiratory viruses like influenza viruses. In-
fluenza viruses bud from the apical surface of polarized ep-
ithelial cells (e.g. bronchial epithelial cells) into the lumen of
lungs and are therefore usually pneumotropic, i.e. restricted
to lungs, and do not cause viremia or invade other internal or-
gans. However, some influenza viruses like fowl plague (H5
or H7) as well as WSN (H1N1) viruses (H1, H5, H7 indicate
the HA subtype specificity of type A influenza viruses) are not
restricted to lungs and produce viremia infecting other inter-
nal organs (pantropism) and cause severe mortality in infected
animals (Mori et al., 1995; Subbarao and Katz, 2000). In hu-
mans, most influenza viruses are pneumotropic and do not
spread to other internal organs. Why the Spanish flu virus of
1918 caused such a devastating pandemic, killing 20–40 mil-
lion people world-wide and affecting young healthy adults,
remains unclear. In addition to pneumonia, some people died
due to massive pulmonary hemorrhage and edema. The 1918
Spanish flu virus, like fowl plague viruses, may have been
pantropic causing viremia and infecting other organs. Why
some influenza viruses are pneumotropic while others are
pantropic and highly virulent is not fully understood. The
severity of viral pathogenesis depends on both viral factors
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remains unknown. The NS1 protein, an interferon antago-
nist, can contribute to virulence in a species-specific manner
(Krug et al., 2003). As indicated earlier, the M gene, encoding
M1 and M2 proteins, can affect virus replication at multiple
stages of the infectious cycle and has a profound effect on
virus virulence. However, the role of the M gene in the viru-
lence of specific virus strains like the 1918 influenza virus is
unknown. Recent studies with M1 mutants have shown that
the M1 gene can have a profound effect on virulence of WSN
virus in mice but no effect on virus replication and growth in
MDCK cells in culture (Hui, Smee and Nayak, unpublished
data). In Sendai virus, the M gene was shown to cause en-
hanced basolateral budding and increased virulence. Sendai
virus mutant F1-R, which exhibited pantropism, possessed
two characteristics: (i) like the H7, H5 HA, ubiquitous cleav-
age of mutant F→ F1 + F2 due to the presence of multiple
basic residues and (ii) altered budding from both the apical
and basolateral surface possibly due to mutations in the M
protein which caused disruption of microtubules and polar-
ized transport (Tashiro et al., 1993, 1996). Therefore, altered
budding could be an important contributing factor in the dis-
semination of virus into blood, invasion of internal organs,
pantropism and consequently, higher virulence of a specific
influenza virus strain.
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inants for virulence of influenza viruses are complex
ultigenic. However, as indicated earlier (see Section1), one

ingle factor critically required for viral growth and virulen
s cleavability of HA→ HA1 and HA2. Normally, influenz
irus is restricted in lungs because its HA can be cle
y tryptase Clara, a serine protease restricted to the lu
Kido et al., 1999b). However, HAs of H5 and H7 pantrop
vian virus subtypes contain multiple basic amino acid
he junction of HA1 and HA2 and can be cleaved by fu
nd subtilisin-type enzymes (Horimoto and Kawaoka, 1995),
hich are present ubiquitously. Such viruses can ther
row in other organs. In addition, the NA of some influe
iruses like WSN binds and activates plasminogen into p
in in the vicinity of HA and the activated plasmin clea
A → HA1 + HA2 rendering the virus infectious. The

ore, WSN virus lacking multiple basic residues in its
an grow and multiply in tissues other than lungs. Howe
he sequences of HA and NA genes from the 1918 pand
uman virus, and predicted HA and NA protein amino a
equences (Reid et al., 1999, 2000) cannot explain the seve
ty of its virulence. It is likely that other viral genes are
olved in the virulence of 1918 “Spanish” flu viruses (
eview, seeReid and Taubenberger, 2003; Taubenberg
l., 2000). The presence of the WSN NA gene alone, wh

s responsible for HA cleavage, could not cause pantro
nd neurovirulence in mice (Ward, 1995). Other WSN gene

ike M, NS and NA, were required to cause neurovirule
Schlesinger et al., 1998; Ward, 1996) and therefore wer
lso required for viremia and pantropism. The specific f

ion of M and NS genes in pantropism and neurovirule
. Conclusion

Influenza viruses bud from the plasma membrane, m
pecifically from the apical domain of the plasma memb
n polarized epithelial cells both in vivo and in tissue c
ure. Assembly and morphogenesis of influenza viruse
uire the transport of the viral components to the asse
ite and interaction among the viral components. Fur
ore, influenza viruses bud from the apical plasma m
rane and from specific membrane microdomains called
afts present on the plasma membrane. Virus morphoge
lso requires an outward membrane curvature at the a
ly site leading to bud formation, eventual fusion of the
osing membranes, fission of buds and separation of
articles from cellular membranes, and virus release t
utside environment. These budding processes are activ
nergy-dependent, and are affected by physical factors
s membrane fluidity and viscosity at the budding site.
idation of the processes involved in the assembly and
hogenesis of virus particles is critical to understanding v
rowth and multiplication is therefore crucial in defining
al infectivity, transmission, virulence, tissue tropism, h
pecificity and pathogenesis, and will contribute to an o
ll understanding of the disease process and progress
isease including morbidity and mortality of infected ho

n addition, the site of budding can also affect virus virule
nd pathogenesis. In this review, we have discussed th

cal steps required for the assembly and morphogene
nfluenza viruses, i.e. directing the viral components to
ssembly site and interactions among the viral compon
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bud formation, closure of buds and release of virus particles.
However, virus budding is among the least understood pro-
cesses in virus biology and requires concerted action by a
number of viral and host factors. Little is known about the
host factors involved in influenza virus budding. A better un-
derstanding of viral replication and morphogenesis will fa-
cilitate the development of novel therapeutic agents capable
of interfering with these critical steps in viral multiplication,
pathogenesis and disease progression.
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