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Video-based markerless motion capture permits quantification of an animal’s pose and

motion, with a high spatiotemporal resolution in a naturalistic context, and is a powerful

tool for analyzing the relationship between the animal’s behaviors and its brain functions.

Macaque monkeys are excellent non-human primate models, especially for studying

neuroscience. Due to the lack of a dataset allowing training of a deep neural network

for the macaque’s markerless motion capture in the naturalistic context, it has been

challenging to apply this technology for macaques-based studies. In this study, we

created MacaquePose, a novel open dataset with manually labeled body part positions

(keypoints) for macaques in naturalistic scenes, consisting of >13,000 images. We also

validated the application of the dataset by training and evaluating an artificial neural

network with the dataset. The results indicated that the keypoint estimation performance

of the trained network was close to that of a human-level. The dataset will be instrumental

to train/test the neural networks for markerless motion capture of the macaques and

developments of the algorithms for the networks, contributing establishment of an

innovative platform for behavior analysis for non-human primates for neuroscience and

medicine, as well as other fields using macaques as a model organism.

Keywords: non-human primate, deep learning, pose estimation, large-scale dataset, behavior analysis

INTRODUCTION

Behavior analyses are fundamental for understanding brain functions and malfunctions (Datta
et al., 2019). Motion capture technologies allow the quantification of animal’s pose and motion
with a high spatiotemporal resolution enabling the study of the relationship between various brain
functions and behaviors (Vargas-Irwin et al., 2008; Nagasaka et al., 2011; Mathis and Mathis, 2020).
However, attaching the physical markers for the motion capture is often not practical for animal
studies, as the markers themselves disturb/change the subject’s behavior (Nakamura et al., 2016;
Mathis et al., 2018; Berger et al., 2020). Thanks to recent advances in machine vision using deep
learning, the video-based markerless motion capture has been developed to a level permitting
practical use (Mathis and Mathis, 2020), in which an artificial neural network predicts the location
of body parts in a video without the requirement for physical markers, and enabled successful
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behavioral studies in rodents (e.g., Cregg et al., 2020; Dooley
et al., 2020; Mathis and Mathis, 2020). Macaque monkeys are an
important non-human primate model, particularly in the field of
neuroscience (Kalin and Shelton, 2006; Capitanio and Emborg,
2008; Nelson and Winslow, 2008; Watson and Platt, 2012).
The robust markerless motion capture using deep learning will
allow studying various complex naturalistic behaviors in detail,
and permit investigation of relationship between naturalistic
behaviors and brain functions (Datta et al., 2019; Mathis and
Mathis, 2020). Analyzing naturalistic behavior is crucial in brain-
science, since the brain evolved from natural behaviors, and
various behaviors, such as complex social behaviors, can be
observed only in the natural situations (Datta et al., 2019; Mathis
and Mathis, 2020). The deep neural networks usually require
manually labeled body parts positions in thousands of pictures
to learn prediction of the body parts positions in an arbitrary
picture. However, such a large labeled dataset for macaque
monkeys in the naturalistic scene has not been developed.
The lack of this dataset limits the markerless motion capture
technology applications for macaque studies (Bala et al., 2020;
Berger et al., 2020).

To overcome this limitation, we created a novel open dataset
of the manually labeled body part positions (keypoints) for
macaques in naturalistic scenes, consisting of >13,000 pictures.
We also validated the usefulness of the dataset by training and
evaluating an artificial neural network with the dataset. The
results revealed that the keypoint estimation performance of
the trained network was close to that of a human level. Our
dataset will provide basis for markerless motion capture on the
naturalistic behaviors.

MATERIALS AND METHODS

Image Data Collection
A total of 13,083 images of macaque monkeys were obtained
from the internet or were captured in zoos or the Primate
Research Institute of Kyoto University. Images on the internet
were obtained through Google Open Images (https://storage.
googleapis.com/openimages/web/index.html) by searching for
images with a “macaque” tag. Pictures zoos were acquired from
the outside of the breeding areas, with granted permission
provided by the zoos. Images in the Primate Research Institute
of Kyoto University were taken in the breeding fields without
causing any specific interventions to the monkeys. The photo
capturing in the institute was approved by the Animal Welfare
and Animal Care Committee of the Primate Research Institute
of Kyoto University and conducted in accordance with the
Guidelines for the Care and Use of Animals of the Primate
Research Institute, Kyoto University.

Image Data Annotation
The positions of 17 keypoints (nose and left and right ears,
eyes, shoulders, elbows, wrists, hips, knees, and ankles) and
instance segmentation for each monkey in each of the pictures
were first annotated by non-researchers employed by Baobab
Inc. (Chiyoda-ku, Japan). As further expertise was required for
high-quality monkey annotation, the keypoint labels were then

further refined with eight researchers working with macaques at
Kyoto University and the University of Toyama, using a custom-
made Python script. The keypoints were labeled according to the
following guidelines: (1) The keypoints of the limbs (shoulder,
elbow, wrist, hip, knee, and ankle) should be located at the center
of the joint rotation. (2) Ear, eye, and nose keypoints should be
located at the entrance of the ear canal, the center of eye ball,
in the middle position between the entrances of the two nostrils,
respectively. (3) A keypoint was annotated, if its position was
predictable despite being occluded, except for ears, eyes, and
nose facing the back side of the picture. The resultant labels
were compatible with the Microsoft COCO Keypoint Dataset
(Lin et al., 2014).

Performance Evaluation of an Artificial
Neural Network Trained With the Present
Dataset
To validate the present dataset, we trained an artificial neural
network estimating keypoint positions by using the DeepLabCut
algorithm proposed for markerless pose estimation in animals
(Mathis et al., 2018). Briefly, DeepLabCut is a versatile and
straightforward algorithm in which the 50-layer ResNet pre-
trained for the ImageNet object recognition task (He et al.,
2016) is transferred for the keypoint estimation by replacing
the classification layer at the output of the ResNet with the
deconvolutional layers (see Supplementary Figure 1 for the
network architecture of the DeepLabCut). The utilization of
transfer learning allows DeepLabCut algorithm to require a
relatively small number of training data (Nath et al., 2019).
The accuracy of keypoint prediction with the DeepLabCut
algorithm has been shown to be comparable or superior to similar
algorithms recently suggested for the animal pose estimation
(Graving et al., 2019). DeepLabCut is a widely used algorithm
in the field of neuroscience, because of its user-friendly interface
and documentations, and a well-established community, as well
as its good performance. Due to DeepLabCut (version 2.1.6)
currently not supporting the estimation of keypoints in multiple
animals in a picture, we first generated single monkey images
by masking the monkeys in the images except for one monkey
and used these masked images as the input. Some monkey
images in the dataset were excluded due to technical reasons
(e.g., a keypoint of one monkey is covered by the mask of
the other monkeys). Then, the images were resized to adjust
the length to 640 pixels while maintaining the images aspect
ratio, before inputting it into the network. In total, 15,476 single
monkey images were generated. Among the images, 14,697 single
monkey images were used to train the network and the rest (779
images) were used to evaluate the trained network. The network
model was implemented using Python scripts with Tensorflow
support. The network is trained up to a million iterations. The
training took 20 h to complete on a Nvidia GTX 1080 Ti graphics
processing unit workstation.

The keypoint prediction by the trained network was evaluated.
A predicted keypoint with confidence level > 0.4 was defined to
be detected. First, minor cases showing the keypoint(s) detected
outside the monkey segment were eliminated. True positive,
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FIGURE 1 | Examples of pictures and labels in the present dataset.

true negative, false positive, and false negative detections were
counted. A keypoint was defined as a correct detection by the
network (true positive detection) if there was the corresponding
ground truth keypoint in the same image, regardless of its
location in the image. For true positive cases, the Euclidean
distance between the predicted and ground truth position was
calculated as the error of position estimation. The error value
represented the normalized value with respect to the length
of the monkey’s bounding box due to variations in the size
of the monkey in the images. To check the accuracy of the
predicted pose, the root-mean-square error (RMSE) was also
calculated with all keypoints in each image (Mathis et al.,
2018). To evaluate the error values of the keypoint position
predictions, we investigated human variability by calculating the

errors between the keypoint positions annotated by two humans.

Finally, among the true positive cases, numbers of limb keypoints
misattributed as the homologous keypoint on another limb (e.g.,
left wrist misattributed as right wrist, left ankle, or right ankle)
are also counted. Specifically, i-th keypoint were defined as being
misattributed to a homologous j-th keypoint on another limb, if
the keypoint satisfies both of the following two conditions: (1)
the normalized position error of the i-th keypoint was >20%;
(2) the ground truth positions of j-th keypoint was closest to
the predicted position of i-th keypoint among the ground truth
positions of homologous keypoints. Note that these keypoint
predictions obtained with the trained network were evaluated

on set of test images which are not included during training of
the network.

RESULTS

In total, the present data set contains keypoints and instance
segmentation of 16,393 monkeys in 13,083 pictures. Each picture
captures 1–5 monkeys; 10,630 pictures with a single monkey and
2,453 pictures with multiple monkeys (Figure 1).

To validate the dataset, we trained an artificial network
with 14,697 single monkey images in the dataset using the
DeepLabCut algorithm (Mathis et al., 2018). The performance of
the keypoint prediction of the trained network was evaluated on
779 test images unseen during training. Figure 2 shows examples
of the keypoint predictions (see Supplementary Video 1 for
keypoint prediction for movies). Among 779 images, 24 images
had keypoint(s) detected outside the target monkey. Most of
them (17 images) were due to imperfect masks of the other
monkeys in the picture (Supplementary Figure 2). The “out of
monkey” cases were removed from the analysis.

We investigated the performance of keypoint detection
(judging whether a keypoint exists anywhere in the picture
or not) of the trained network (Supplementary Table 1).
Both precision and recall of the keypoint detection were
approximately 90% in most of the keypoints, suggesting good
detection performance.
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FIGURE 2 | Examples of test image predictions. Test images (left), the ground truth keypoint positions (center) and the position predicted by the artificial neural

network trained with the present dataset using the DeepLabCut algorithm (right; a–h). The inset (top right corner) shows color codes of the keypoints. Red arrows in

(h) indicate a misattribution error.
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FIGURE 3 | Averaged error of predicted (gray) and manual labeled (white) positions of each keypoint comparing with the ground truth positions. Error bars represent

standard error of the mean (s.e.m).

To further investigate the accuracy of the detected keypoints,
the error of predicted position was calculated for each keypoint
(Figure 3, gray bar). The prediction’s RMSE values (6.02 ±

0.18%; mean ± s.e.m) were comparable to those between the
positions manually labeled by two different people (5.74 ±

0.16%; p = 0.250, student’s t-test), suggesting that the trained
network’s performance in the keypoint position estimation was
close to the human level. The effect of the label refinement by
researchers was also examined. The error values for the dataset
before the refinement were calculated as previously mentioned.
The analyses revealed that the averaged RMSE values after the
refinement (6.02 ± 0.18%) were significantly smaller than the
one before the refinement (7.83 ± 0.23%; p = 9.13 × 10−10,
Student’s t-test; see Supplementary Figure 3 for the error value
of each keypoint). The result suggests that the network trained
with the dataset refined by the researchers predicted the keypoint
more consistently.

In some cases, we observed that the predicted positions
of monkey’s keypoints on a limb were located on
homologous keypoints on another limb (Figure 2h, see
also Supplementary Video 1).

We then quantified the frequency of such misattribution
errors (Table 2). The misattribution errors were relatively
frequent in the distal keypoints (elbow, knee, wrist, and ankle),
especially on the hind limbs. The total number of images having
at least one misattribution error was 114 (15%). The result shows
that there is still room for improvement, although the RMSE
indicates human-level performance.

DISCUSSIONS

In this study, we created a novel large dataset of labeled
keypoints of macaquemonkeys (Figure 1,Table 1). The keypoint
estimation performance of the neural network trained with
the dataset was close to that of human level (Figures 2, 3;
Supplementary Video 1), demonstrating the usefulness of the
present dataset. We also found a significant improvement of
the network prediction after the label refinement by researchers
using macaques (Supplementary Figure 3), suggesting that the
refinement successfully enhanced the quality of the dataset.
Although we tested only single monkey images due to the
limitation of the algorithm, the present dataset should be useful to
train/test the network for multi-animal motion capture. The label

formats in the present dataset are compatible with those used in
the COCO dataset for humans (Lin et al., 2014), allowing users
to try a direct application of algorithms developed for human
motion capture. A recent study also proposed a similarly sized
labeled dataset of rhesus monkeys (Bala et al., 2020). In the
study, they captured freely moving monkeys in a 2.5m cubic
cage with 62 cameras surrounding the cage. The multi-camera
system allows to reconstruct 3D pose after manually labeling
images simultaneously captured from 3 to 4 views. Interestingly,
the reconstructed 3D pose is projected to the other around
60 views and enables automatically labeling the images from
all the views. This cross-view data augmentation allowed them
to get labels of around 200,000 monkey images with 33,192
images labeled manually. The critical difference between the two
datasets is that pictures in their dataset were taken in a single
laboratory environment, our dataset consists of pictures taken
in many different naturalistic environments. Thanks to the “in-
the-wild” aspect of the collected pictures, the present data set has
rich variations in pose, body shape, lighting, and background in
naturalistic contexts. The rich variation will help to train and test
artificial neural networks with high generalizability (Mathis et al.,
2019). Thus, the two datasets will compensate each other to train
or test better neural networks in future studies. As the dataset
formats (i.e., which keypoints are labeled) were slightly different
among the two datasets, some additional efforts are necessary to
combine or compare these two datasets directly.

To understand how the brain generates our behavior,
analyzing naturalistic behaviors is crucial. The brain evolved
from natural behaviors, and various behaviors, such as complex
social behaviors, can be observed only in the natural situations
(Datta et al., 2019;Mathis andMathis, 2020). The high-resolution
spatiotemporal data obtained with themarkerlessmotion capture
will also aid in understanding brain dynamics underlying the
behavior (Berger et al., 2020). Specific posture and motion
are informative for studying animals’ emotions and intension
(Nakamura et al., 2016), and the motor functions (Berger et al.,
2020). Furthermore, the automatic and long-term analyses of
naturalistic behavior from a large number of subjects permit new
data-driven approaches to find unusual behaviors, personalities
and, underlying genetic and neural mechanisms (Vogelstein
et al., 2014; De Chaumont et al., 2019). For instance, the
recently discovered autistic traits exhibited by macaque monkeys
(Yoshida et al., 2016) was identified by such a behavioral
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TABLE 1 | The number of pictures and monkeys in the present dataset from

each source.

Source Monkey

Species

No. of

Pictures

No. of

Monkeys

Toyama Municipal

Family Park Zoo

Japanese

Macaque

3,784 4,952

Itozu no Mori

Zoological Park

Japanese

Macaque

1,312 1,622

Primate Research

Institute

Japanese

Macaque

1,641 2,131

Inokashira Park

Zoo

Rhesus

Macaque

2,747 3,203

Tobu Zoo Rhesus

Macaque

2,461 2,755

Google Open

Images

Various 1,138 1,730

Total 1,3083 1,6393

TABLE 2 | Number of the misattribution errors.

Keypoint

pairs

Correct L-R

incorrect

F-H

incorrect

L-R and

F-H

incorrect

Total

Shoulder 1,225 5 1 3 9

Hip 1,062 7 2 3 12

Elbow 1,134 11 5 4 20

Knee 1,066 45 11 3 59

Wrist 1,049 14 7 6 27

Ankle 1,045 29 11 5 45

L-R incorrect referring to left or right predicted keypoint was incorrect; F-H switch, forelimb

or hindlimb label was incorrect.

observation. Thus, the markerless motion capture for macaque
monkeys developed based on the present dataset will be of great
use for many neuroscience studies.

The performance evaluation of the network trained with
the present dataset revealed that there is still room for
improvement regarding the misattribution of the limb keypoints
(Figure 2h, Table 2), although the RMSE indicates the human-
level performance (Figure 3). The DeepLabCut algorithm
(Mathis et al., 2018) used in the present evaluation does
not explicitly utilize the prior knowledge about the animal’s
body, whereas the other algorithms were suggested to use the
connection between keypoints (Insafutdinov et al., 2016; Cao
et al., 2017) or 3D shape of the subject (Biggs et al., 2018;
Zuffi et al., 2019). Such utilization of the prior knowledge may
help to improve the estimation. However, even the state-of-
the-art human motion capture algorithms also have difficulties
in analyzing the pictures with severe occlusion or crowded
people (Mathis and Mathis, 2020). Due to severe occlusions
more frequently being observed in naturalistic behaviors in
monkeys than in humans, better algorithms may be required in
the future. An alternative approach for the improvement will
be enriching the dataset itself. Although we tried to capture
many different poses in various contexts, the sampling was biased
to the frequently observed poses. Adding data selectively for

the rarely observed poses may improve the performance of the
trained network. Combining with the other monkey datasets
made for laboratory environments (Bala et al., 2020; Berger
et al., 2020) or transfer learning of the network trained with
the human dataset (Sanakoyeu et al., 2020) are also interesting
approaches. Nevertheless, in practice, the performance of the
network shown in the present study may be sufficient for many
applications, after appropriate temporal filtering of the motion
data (Berman et al., 2014; Nath et al., 2019) and additional
training with the labels made on the pictures in the target
experiment (Mathis et al., 2019).

In the present study, we evaluated the keypoint estimation in
2D images by the neural network. However, for the next step of
behavior analysis, the researchers would need to reconstruct the
3D pose and motion of the animals (Nath et al., 2019; Bala et al.,
2020) then label the behaviors that the animals are exhibiting
based on the estimated pose and motion (Datta et al., 2019). The
post-processing methods for converting the high-dimensional
motion data into meaningful and interpretable behavioral events
and parameters of a single animal or interacting animals are still
under active developments (Berman et al., 2014; Datta et al.,
2019; Dviwedi et al., 2020). The present dataset will permit simple
access to motion data of macaques in various environments, and
this could accelerate the development of post-processing method
by accumulating the motion data associated with various natural
behaviors. It is also interesting to add labels of monkey behavior
(e.g., running, eating, sleeping, grooming, fighting, etc.) engaged
in each picture in the present dataset, for the development of the
behavioral event detection methods.

CONCLUSION

We created a novel large open dataset of keypoint labels of
macaques in naturalistic scenes. The dataset will be instrumental
to train/test the neural networks for markerless motion capture
of the macaques and developments of the algorithms for the
networks, contributing to the establishment of an innovative
platform of behavior analysis for non-human primates for
neuroscience and medicine, as well as the other fields using
macaques (Carlsson et al., 2004).
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