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Increasing body of evidence indicates that proper glial function plays an important role 
in neuroprotection and in organismal physiology throughout lifespan. Work done in 
the model organism Drosophila melanogaster has revealed important aspects of glial 
cell biology in the contexts of longevity and neurodegeneration. In this mini review, we 
summarize recent findings from work done in the fruit fly Drosophila about the role of glia 
in maintaining a healthy status during animal’s life and discuss the involvement of glial 
innate immune pathways in lifespan and neurodegeneration. Overactive nuclear factor 
kappa B (NF-κB) pathways and defective phagocytosis appear to be major contributors 
to lifespan shortening and neuropathology. Glial NF-κB silencing on the other hand, 
extends lifespan possibly through an immune–neuroendocrine axis. Given the evolution-
ary conservation of NF-κB innate immune signaling and of macrophage ontogeny across 
fruit flies, rodents, and humans, the above observations in glia could potentially support 
efforts for therapeutic interventions targeting to ameliorate age-related pathologies.
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inTRODUCTiOn

Organismal aging is a complex phenomenon resulting in the progressive decline of physiological 
functions and increased susceptibility to death (1). Both, genetic and environmental factors are 
believed to contribute to the aging process and lifespan (1–3). Work in several model organisms 
including the invertebrates Drosophila melanogaster and Caenorhabditis elegans have identified 
genes and cellular pathways conserved through evolution that affect longevity such as the insulin-like 
pathway or the target of rapamycin (TOR) pathway (4, 5). Thus, these model organisms proved to be 
of valuable use for studying the molecular mechanisms that underlie aging.

Drosophila, the common fruit fly, is an excellent versatile model organism to investigate the inter-
play between innate immune function and brain physiology among the effects of this interaction to 
host lifespan. There is a high degree of evolutionary conservation of the molecular mechanisms of 
innate immunity between flies and mammals. For instance, the two Drosophila nuclear factor kappa 
B (NF-κB)-based pathways, namely Toll and Immune deficiency (IMD) share similarities with the 
mammalian Toll-like receptor pathways and tumor necrosis factor receptor 1 pathways, respectively 
(6–10). In the context of bacterial and fungal infections, activation of these pathways leads to the 
translocation of NF-κB factors (Relish for IMD and Dif and Dorsal for Toll pathway, respectively) 
from the cytoplasm into the nucleus of the cell allowing transcription and synthesis of potent anti-
microbial peptides (AMPs) (10). Phagocytosis is another powerful mechanism to eliminate cellular 
debris or infection that has been conserved during evolution (11, 12). In mammals, phagocytosis 
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is mediated by cell surface receptors, which bind bacteria or 
apoptotic bodies either directly or via opsonins (13). In flies, 
several phagocytic recognition receptors have been identified 
on hemocytes (the fly macrophage-like cells), among which is 
the EGF-like repeat-containing protein Draper (12). Draper has 
also been implicated in the removal of apoptotic neurons during 
Drosophila nervous system development (14) and metamorphosis 
(15) as well as in phagocytosis of axonal debris after axonal injury 
(16–18). Flies have also significantly contributed to advances in 
studies of neurodegeneration such as the identification of novel 
neuroprotective genes and provided information about conserved 
processes required for maintaining the structural integrity of the 
central nervous system (CNS) (19). Moreover, several human 
neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and 
Huntington’s disease have been effectively modeled in Drosophila 
yielding insights into the molecular base of these disorders (20).

The chronic inflammatory status that accompanies human 
aging, also known as inflammaging, is considered a significant 
risk factor for many chronic pathologies including cancer, car-
diovascular and neurodegenerative disorders (21). In the context 
of aging, increased levels of pro-inflammatory cytokines such 
as TNF-alpha and Interleukine (IL)-6 are found upregulated in 
brain tissue (22). With age, mammalian microglia, which are 
the brain immune cells exhibit primed profile characterized by 
increased activation and enhanced secretion of pro-inflammatory 
cytokines (23, 24). Decline in microglial function, migration 
and chemotaxis are also observed with age (24). For instance, 
microglia’s engulfment capacity of amyloid-beta (Aβ) (25) or 
alpha-synuclein (α-Syn) (26) oligomers, whose accumulation is 
characteristic for Alzheimer’s and Parkinson’s disease, respec-
tively, are compromised in aged animals. Moreover, activated 
microglia and neuroinflammatory profiles are observed in 
most neurodegenerative disorders including Huntington’s (27), 
Alzheimer’s (28, 29), and Parkinson’s (30–32) diseases and are 
believed to underlie the onset, severity, and progression of these 
disorders (24). Similar to mammalian models, both chronic 
innate immune activation (4, 33) as well as decline in phagocytic 
activity of glia (18) are observed in the aging Drosophila brain. It is 
thus apparent that glial immunity is linked to both, healthy aging 
and age-dependent neurodegeneration. In the mammalian brain, 
under normal physiological conditions, microglia provide the 
first line of defense against brain injury and infection. These cells 
are able to sense pathogens via pathogen recognition receptors, 
activate innate immune signaling pathways, phagocytose micro-
organisms, and clear cellular debris (34). Microglia also have the 
capacity to secrete neurotrophic factors and anti-inflammatory 
molecules, therefore, playing a protective role in these contexts. 
On the other hand, the neurodegenerative process itself can trig-
ger inflammation (34–36), leading to detrimental effects on the 
brain. It is, therefore, important to understand the mechanisms 
by which, changes in the same signaling pathway (e.g., NF-kB) 
lead to two distinct phenotypes, namely healthy aging associated 
with neuroprotection and neurodegeneration.

Glial cells are essential players in CNS development and in 
maintaining homeostasis in this tissue (37). Glial cells provide 
trophic support to neurons, regulate ionic homeostasis in the 
brain, and serve as immune cells that are armed to respond to 

injury or infection (37). Increasing body of evidence indicates 
that dysfunction of diverse cellular processes specifically in glial 
cells may have profound impact on animal’s survival and, there-
fore, affect life expectancy. We review here recent discoveries of 
the role played by glial cells in animal’s lifespan, as well as how 
glial innate immune pathways relate to organismal longevity in 
the model organism Drosophila melanogaster.

GLiAL TYPeS AnD THeiR COnTRiBUTiOn 
TO HeALTHY AGinG

Glial cells play major roles in nervous system development, syn-
apse formation, plasticity, and brain homeostasis (38, 39). Five 
major morphologically distinct classes of glial cells with diverse 
functions can be appreciated in the brain of adult Drosophila 
(38–40) and additional glial subtypes in its visual system (40, 41).  
Among brain glia, perineurial and subperineurial glia form 
the blood–brain barrier (BBB) to isolate the brain from the 
potassium-rich hemolymph (insect blood) assuring optimal 
neuronal function (42–44). To meet the high-energy demands 
of neurons, glia supply neurons with metabolites through an 
evolutionary conserved process known as metabolic coupling 
(45). Drosophila BBB glia support neurons by providing them 
metabolic factors derived from the break down of the sugar tre-
halose (45). Glia-, but not neuron-specific silencing of the genes 
encoding the glycolytic enzymes Trehalase and Pyruvate kinase 
substantially shortens flies’ lifespan and leads to neurodegenera-
tion (45). Interestingly, glia-specific knock down of another gene 
encoding an enzyme involved in glycolysis, Aldolase, leads to 
neurodegeneration and shortened lifespan (46). Together, these 
studies indicate that glial glycolysis plays an important role in 
healthy aging and neuroprotection. Along the same lines, muta-
tions in the gene encoding the glia-enriched monocarboxylate 
transporter Chaski, lead to shortened lifespan, synaptic dysfunc-
tion, and locomotor impairment pointing to an important role 
for glial transport of metabolites during the animal’s lifespan 
(47). This work is of particular importance as it is becoming 
increasingly evident that metabolic changes, among which lower 
brain glucose metabolism, accompanies aging and Alzheimer’s 
disease in humans (48). Metabolomics analysis of mouse brain 
samples reveals compromised energy state in the aging brain, 
possibly affecting glial cells that supply glycolytic substrates to 
neurons (49).

Ensheathing glia, which express the engulfment receptor Draper 
are the main subtype of adult Drosophila glial cells that phagocy-
tose axonal debris following nerve injury (50). Cortex glia play 
an important trophic role for neurons in the adult brain (38) and 
are important for neuronal excitability as downregulation of a 
potassium-dependent sodium/calcium exchanger in this glial 
subtype leads to seizures in the adult (51). Astrocytes, which 
share morphological and functional properties with mammalian 
astrocytes (38) are major contributors to the maintenance of 
neurotransmitter homeostasis and are involved in regulating 
circadian rhythmicity in the adult (52). In the Drosophila, adult 
visual system several glial subtypes among, which epithelial 
glia play a role in synaptic transmission and the processing of 
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TABLe 1 | Glial subtypes and their location and functions in the adult.

Glial subtype Function in adult Location Reference

Cortex glia  – Trophic support to 
neurons

 – Regulation of seizure 
susceptibility 

 – Brain 
cortex

 – Wrap 
neuronal 
cell bodies 
and 
processes 

Kremer et al. (39)
Stork et al. (56)
Melom et al. (51)

Astrocyte-like glia  – Maintenance of 
neurotransmitter 
homeostasis

 – Circadian rhythm 
regulation

 – Brain 
neuropil

Kremer et al. (39)
Rival et al. (57)
Stork et al. (58)
Suh et al. (59)
Ng et al. (52)

Ensheathing glia  – Phagocytosis of 
debris after injury

 – Regulation of 
olfactory circuit 
plasticity

– Brain 
neuropil

 – Associated 
with axon 
tracts

Kremer et al. (39)
Doherty et al. (50)
Kazama et al. (60)

Perineurial glia  – Blood–brain barrier 
(BBB) formation and 
chemoisolaion

 – Sugar import into the 
CNS

 – Brain 
surface

Kremer et al. (39)
Featherstone (44)
Hindle et al. (43)
Miller et al. (46)
Volkenhoff et al. 
(45)

Subperineurial  
glia

 – BBB formation and 
chemoisolaion

 – Brain 
surface

Kremer et al. (39)
Featherstone (44)
Hindle et al. (43)

MANF 
immunoreactive 
cells

 – Microglia-like cells  – Pupal 
brain 
neuropil

Stratoulias et al. 
(54)

Adult visual 
system glia

 – Role in synaptic 
transmission

 – Prevent light-induced 
retinal degeneration

 – Optic lobe Chotard et al. (41)
Charlton-Perkins 
et al. (40)
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visual information (41). It was recently reported that lipid droplet 
accumulation in these glia due to mitochondrial dysfunction in 
neurons contributes to neurodegeneration (53). The recently dis-
covered Semper glia, which share functional features with mam-
malian visual system glial cells such as Müller glia, astrocytes, and 
oligodendrocytes provide support to photoreceptors and prevent 
light-induced retinal degeneration (40).

Another, unique, microglia-like glial subtype has been recently 
discovered in Drosophila. These cells, called MANF immunoreac-
tive cells (MiCs) are transiently present in the metamorphosing 
pupal brain, but not in the adult stage, and upon certain conditions 
in glia, including (i) genetic silencing of dmMANF (Mesencephalic 
astrocyte-derived neurotrophic factor), (ii) induction of autophagy 
via overexpression of Atg-1 or the dominant-negative form of 
Target of rapamycin (TORTED), and (iii) challenge of innate immu-
nity by ectopic expression of IMD-pathway receptors PGRP-LC 
or PGRP-LE (54). Although MiCs have features reminiscent 
of mammalian microglia, they were not observed in brains of 
10-day-old fly mutants that exhibit neurodegeneration such as 
ATM8 (discussed later in the text) and swiss cheese or of Drosophila 
α-Syn model of Parkinson’s disease. It appears that MiCs are immu-
noreactive; they express the NF-κB transcription factor Relish in 
their nucleus as well as the phagocytic receptor Draper on their 
surface (54). Interestingly, glia-specific silencing of dmMANF also 
leads to neurodegeneration and shorter lifespan in the adult sug-
gesting a homeostatic role for this gene in glia (55). How exactly 
MiCs contribute to this phenotype is not known. More studies 
are needed in order to fully characterize this intriguing glial cell 
population and how exactly they relate to brain immune function 
and healthy lifespan. Glial subtypes and their function in the adult 
are presented in Table 1.

ROLe OF GLiAL iMMUniTY in 
neURODeGeneRATiOn AnD 
SHORTeneD LiFeSPAn

Prolonged activation of inflammatory responses often translates 
into harmful consequences ultimately leading to reduction of 
animal’s lifespan. In the context of brain aging, persistent IMD 
pathway activation, as well as defective glial clearance function are 
associated with neurodegenerative phenotypes. Several studies  
in Drosophila highlight the role of glial innate immune responses 
(phagocytosis as well as NF-κB activation) in promoting neuro-
degeneration and shortening lifespan. One of the first reports 
correlating glial activation of the NF-κB ortholog Relish with 
neurodegenerative phenotypes and lifespan shortening is a study 
done in a fly model of Ataxia-telangiectasia (A-T) (61). This work 
shows that glial cells in the fly brain are responsible for increased 
innate immune activation when ATM kinase activity is reduced. 
AMPs, which are direct NF-κB transcriptional targets, are up 
regulated exclusively in glial cells in ATM8 mutants leading to 
Caspase-3 activation in neighboring neurons suggesting that 
neurodegeneration could be driven by increase in glial immunity 
(61). Flies in which ATM is specifically silenced in glial cells exhibit 
shortened lifespan, premature defects in locomotor activity, and 
spongiform brain pathology in conjunction with activation of 

Caspase-3 indicative for neurodegeneration (61). Results from a 
subsequent study done by the same group show that the degree 
of activation of the innate immune response correlates with the 
severity of neurodegeneration and lifespan duration in ATM8 
mutants and that glial overexpression of a constitutively active 
form of Relish (Rel-D) leads to neurodegeneration (62). The 
fact that innate immune activation in brain tissue contributes 
to neuropathology is supported by findings from other groups 
that implicate both, activation of the IMD and Toll pathways 
in Drosophila models of light-induced retinal degeneration and 
Alzheimer’s disease, respectively (63, 64). Pan-neuronal activa-
tion of constitutively active Relish results in increased lethality 
at eclosion pointing to a toxic effect of prolonged immunity in 
nerve cells (63); however, glial-specific effects of innate immune 
activation on lifespan and neurodegeneration in these models 
remains to be determined.

Another piece of evidence for direct implication of the NF-κB-
dependent innate immune response in neurodegeneration and 
longevity comes from the finding that mutation in defense repres-
sor 1 (Dnr1), a negative regulator of the IMD pathway acting at 
the level of the caspase Dredd, leads to progressive neurodegen-
eration and reduced lifespan in a Relish-dependent manner (65). 

https://www.frontiersin.org/Immunology/
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FiGURe 1 | Age-dependent changes in innate immune pathways in Drosophila glial cells: immune deficiency (IMD) pathway (on the left) shows age-dependent 
activation resulting in increased levels of antimicrobial peptides (AMPs) in middle and old-aged adults in absence of microbial challenge. Mutations in genes 
encoding specific IMD negative regulators namely Dnr1, trabid, Transglutaminase (Tg,) and pirk release the pathway allowing activation of Relish and subsequent 
transcription of downstream genes including those encoding AMPs. Aging also affects expression of the phagocytic receptor Draper (on the right) leading to 
inefficient phagocytic capacity of glial cells. Draper expression levels in the healthy brain are regulated via phosphoinositide-3-kinase signaling activity that mediates 
TOR-dependent translation of draper mRNA in glial cells. Age related decline in the activity of this signaling cascade leads to reduction in protein levels of Draper  
in glia.
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In the same study, the authors report that bacterially induced 
progressive neurodegeneration and resulting locomotor defects 
are suppressed when Relish is specifically knocked down in glial 
cells. This work goes further by demonstrating that glia-specific 
overexpression of several AMPs also leads to progressive neuro-
degeneration. Intriguingly, the overexpression of single AMP-
coding genes in glia is sufficient to cause neuropathology and this 
effect is direct because glial knock down of Relish does not sup-
press Defensin- nor Drosomycin-induced neurodegeneration (65).  
A sub   sequent study demonstrates that glia-specific overexpres-
sion of individual AMPs results in impaired locomotor activity 
and shortened lifespan providing additional evidence for the 
effect of these NF-κB target genes on fitness and longevity (33).

The fly IMD pathway is tightly regulated at almost every step 
of the signaling cascade from the surface to the nucleus of the cell 
(8, 66). In addition to Dnr-1, mutants for other intracellular safe-
guards of the pathway such as Pirk, Trabid, and Transglutaminase 
(Tg) that act at the level of the adaptor protein Imd, the kinase 
TAK1, and the transcription factor Relish, respectively, also exhibit 

shortened lifespan and neurodegeneration along with brain-
specific upregulation of AMPs (33) (Figure 1). Glial silencing of 
Relish in Trabid mutants suppresses the age-dependent locomo-
tor impairments and neurodegeneration in these flies and also 
restores lifespan to almost wild-type levels (33). Altogether, these 
studies attribute a role for glial NF-κB activation and downstream 
effectors such as the AMPs in lifespan and neurodegeneration.

Equally important to the overactive NF-κB/Relish branch of 
the immune response, are the alterations in glial phagocytosis, 
which are also associated with enhanced neurodegeneration and 
reduction in lifespan. A recent report showed that while protein 
levels of the engulfment receptor Draper are reduced in an age-
dependent manner, glia’s efficiency in removing cellular debris, 
such as the ones deriving from degenerating neurons, declines 
(18). In the context of healthy aging, reduced Draper levels follow 
an age-associated regression of glial phosphoinositide-3-kinase 
signaling that mediates TOR-dependent translation of draper 
mRNA (Figure  1) while in  situations of neuronal injuries a 
STAT92E-dependent transcriptional upregulation of draper has 
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been described (18, 67). Moreover, flies mutant for Draper exhibit 
short lifespan (68) and age-dependent neurodegeneration (69), 
pointing to a neuroprotective role for the phagocytic branch of 
the innate immune response. Flies, in which Draper is silenced 
specifically in glial cells, also exhibit age-dependent neurodegen-
eration (69). Persistent apoptotic neurons throughout the lifespan 
of Draper mutants that are not efficiently processed by glial cells 
due to defects in phagosome maturation appear to be the main 
reason for the observed phenotypes (69). However, how exactly 
corpse processing defects cause neurodegeneration remains to be 
determined.

ROLe OF GLiAL iMMUniTY in LiFeSPAn 
eXTenSiOn

Kounatidis and colleagues (33) describe an age-dependent shift in 
IMD-related AMP transcription in Drosophila including tissues 
like the brain of adult flies that is accompanied by neurological 
impairments such as decreased locomotor performance and 
increased neurodegeneration in 50-day-old wild-type flies (33). 
In the same study, the suppression of age-dependent progressive 
immunity by silencing three components of the IMD pathway, 
namely Imd, Dredd, and Relish in glial cells results in increased 
transcription of the adipokinetic hormone (AKH)-coding gene 
concomitant with high nutrient levels later in life and an extension 
of active lifespan (33). AKH is the fly ortholog of the mammalian 
gonadotropin-releasing hormone (70), which in mice controls an 
NF-κB-dependent immune-neuroendocrine axis that is involved 
in organismal aging (71). A remarkable deceleration of the 
aging process is recorded in mice upon hypothalamic blocking 
of NF-κB and the upstream kinase IKK-β (inhibitor of nuclear 
factor kappa-B kinase subunit beta), followed by an increased 
median longevity by nearly 20% (71). Similarly, in flies, glial-
specific NF-κB immune signaling suppression results in 61% 
increase in median longevity compared to controls, which is also 
accompanied by increased locomotor activity in older age (33).

Recent studies in rodents that employ antiaging drugs link lifes-
pan extension with reduction of age-associated overproduction of 
the pro-inflammatory cytokine TNF-alpha by microglia in both 
hypothalamus and hippocampus (72). Collectively, these studies 
implicate glial NF-κB signaling in lifespan determination and 
point to a role for the immune-neuroendocrine axis in this process.

COnCLUSiOn/FUTURe DiReCTiOnS

It is becoming increasingly evident that glial cells play an important 
role in neuroprotection and in organismal physiology throughout 
lifespan. In the recent years, studies in the model organism Drosophila 
have revealed numerous aspects of glial contribution toward both, 
healthy aging and the development and progression of age-related 

pathologies of the nervous system. Dysregulation of glial innate 
immune reactions such as improper NF-κB signaling or impaired 
Draper-based phagocytosis results in early onset neurodegeneration 
and lifespan shortening. Thus, both branches of the innate immune 
response seem to contribute in host neuroprotection and longevity. 
Additional work is needed to investigate whether these two pieces 
of the innate immune response possess synergistic properties and 
identify possible cellular factors that regulate both the inflamma-
tory and phagocytic pathways in glial cells.

Injection of Alzheimer’s disease-related Aβ oligomers (AβOs) 
into the brains of mice and macaques results in activated pro-
inflammatory IKKβ/NF-κB signaling in the hypothalamus and 
subsequent induction of peripheral glucose intolerance (73). The 
majority of dementia-related diseases share an inflammation-
based branch. Given the evolutionary conservation of innate 
immune signaling in flies, mice, and humans, strategies like 
challenging the inflammatory effect of NF-κB pathways could be 
proved an effective strategy in both “healthy aging” status and in 
cases of predisposition to age-related neurological diseases.

Additional avenues for future research will involve the studies 
of the exact mechanisms by which glial effectors downstream 
of NF-κB such as the AMPs induce neurotoxicity and shorten 
lifespan. Amyloid-β peptides, which are involved in Alzheimer’s 
disease pathology have antimicrobial properties (74) and can 
protect the mouse brain from infection with pathogenic bacteria 
(75). AMPs can exert bactericidal effects by inserting into and 
disrupting bacterial membranes (76, 77). Interestingly, modeling 
studies have suggested that Aβ peptides can also insert into lipid 
bilayers and potentially form pores in cellular membranes, and 
thus can damage cells and lead to neurodegeneration (78). Flies 
can offer an excellent experimental system to address this ques-
tion and provide important new insights into the mechanisms of 
AMP toxicity.

Interpolations that boost glial engulfment activity can delay 
age-dependent processes like delayed clearance of damaged neu-
rons and cellular debris (18). Furthermore, it has been shown that 
enhanced glial engulfment reverses Aβ accumulation as well as 
associated behavioral phenotypes in a Drosophila AD model (68).

Therefore, glial immune signaling will potentially provide a 
new cohort of molecular foci for therapeutic interventions in 
cases of common incurable neurodegenerative disorders in the 
aging population.
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