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Purpose: Orexin receptors (OXRs) play a crucial role in modulating various physiological and neuropsychiatric functions within the 
central nervous system (CNS). Despite their significance, the precise role of OXRs in the brain remains elusive. Positron emission 
tomography (PET) imaging is instrumental in unraveling CNS functions, and the development of specific PET tracers for OXRs is 
a current research focus.
Methods: The study investigated MDK-5220, an OX2R-selective agonist with promising binding properties (EC50 on OX2R: 0.023 
μM, Ki on hOX2R: 0.14 μM). Synthesized and characterized as an OX2R PET probe, [11C]MDK-5220 was evaluated for its potential 
as a tracer. Biodistribution studies in mice were conducted to assess OX2R binding selectivity, with particular attention to its 
interaction with P-glycoprotein (P-gp) on the blood-brain barrier.
Results: [11C]MDK-5220 exhibited promising attributes as an OX2R PET probe, demonstrating robust OX2R binding selectivity in 
biodistribution studies. However, an observed interaction with P-gp impacted its brain uptake. Despite this limitation, [11C]MDK-5220 
presents itself as a potential candidate for further development.
Discussion: The study provides insights into the functionality of the OX system and the potential of [11C]MDK-5220 as an OX2 

R PET probe. The observed interaction with P-gp highlights a consideration for future modifications to enhance brain uptake. The 
findings pave the way for innovative tracer development and propel ongoing research on OX systems, contributing to a deeper 
understanding of their role in the CNS.
Conclusion: [11C]MDK-5220 emerges as a promising OX2R PET probe, despite challenges related to P-gp interaction. This study 
lays the foundation for further exploration and development of PET probes targeting OXRs, opening avenues for advancing our 
understanding of OX system functionality within the brain.
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Introduction
Orexins (also known as hypocretins) are endogenous neuropeptides secreted by the hypothalamus, consisting of two 
subtypes: orexin-A and orexin-B.1,2 These neuropeptides interact with G protein-coupled receptors, orexin 1 receptor 
(OX1R) and orexin 2 receptor (OX2R),3,4 respectively, to regulate various physiological functions, including energy 
homeostasis, the sleep-wake cycle, stress response, and brain reward mechanisms.5–8 Studies have highlighted the close 
association of orexin-signaling abnormalities with numerous diseases, especially sleep disorders. Further investigations 
have revealed that OX1R and OX2R exhibit distinct expressions and distributions in the brain, indicating specific 
physiological functions.9 While OX1Rs are predominantly situated in the limbic system, paraventricular thalamic 
nucleus, and locus coeruleus, overseeing emotions, rewards, and autonomic regulation,10,11 OX2Rs exhibit a more 
exclusive expression pattern, predominantly found in regions crucial for the control of arousal, thereby playing 
a pivotal role in the regulation of sleep and wakefulness.12,13
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Agonism of orexin receptors has emerged as a promising therapeutic approach for various diseases, particularly in the 
treatment of narcolepsy.14,15 The development of OXR agonists, including dual OXR agonists and selective OXR 
agonists, has sparked significant interest in this field.16 However, despite notable progress in the synthesis of OXR 
PET probes, the development of specific OX2R PET radioligands remains a challenging endeavor.17 Despite these 
developments, the biological mechanisms of OX1R and OX2R in CNS-related diseases have not been fully elucidated to 
date.18 Further research is essential to unravel the precise roles and functions of these receptors in the context of central 
nervous system diseases. By gaining a comprehensive understanding of the OX1R and OX2R pathways, researchers can 
potentially advance the development of targeted therapies using selective OXR agonists and antagonists, leading to 
improved treatment strategies for various medical conditions.19

Molecular imaging, specifically positron emission tomography (PET), is a nuclear medicine imaging technology known for 
its noninvasive nature, high sensitivity, and capacity for functional imaging, offering valuable biological insights at the molecular 
level.20–23 PET imaging utilizing appropriate OXR radioligands holds tremendous potential to shed light on the biological 
functions of the orexin system and facilitate the discovery of novel selective OXR agonists.24,25 Notably, significant efforts have 
been dedicated to validating promising orexin-2 receptor PET tracers, as illustrated in Figure 1. Despite substantial progress in 
this area, the development of PET tracers targeting the orexin-2 receptor is still in its early stages. Consequently, the therapeutic 
potential of orexin-2 receptor-modulating pharmacotherapy, coupled with the unmet needs for clinical orexin-2 receptor PET 
tracers, serves as a powerful driving force for further advancements in PET tracers directed toward this target. However, it is 
worth noting that existing OXR PET probes have encountered limitations such as limited brain uptake or non-specific binding, 
which impedes their translation for effective OX2R imaging in preclinical or clinical applications. For instance, Watanabe et al 
reported F18-labeled tetrahydroisoquinoline derivatives as OX1R PET tracers with low brain uptake in mice.26 Similarly, C11 and 
18F-labeled OX2R PET radioligands, including [11C]CW4,27 [11C]EMPA,28 [18F]Seltorexant29 and [18F]DAN-1,30 have shown 
limited brain uptake or inactivation in studies involving rodents and nonhuman primates (NHPs). The unexpected nonspecific 
binding observed in these studies has hindered their further translation to OX2R imaging. While we recently reported [11C] 
CW24,31 a nonselective PET radioligand for OXRs, which exhibited good brain uptake in rodents and NHPs, its moderate 
binding affinity and specificity for OXRs required optimization. Additionally, we explored [18F]Seltorexant29 as a potential brain 
OX2R PET imaging probe, providing some groundwork for the development of new OX2R PET probes and further research on 
the OX system. However, the exploration of more PET radioligands for OXRs is essential to comprehensively understand their 
roles in various physiological and neuropsychiatric processes. As of now, there are no PET radioligands specifically targeting 
OX2R for neuroimaging in either preclinical or clinical applications. Therefore, the development of highly selective and efficient 
PET radioligands targeting OX2R remains a key goal to advance research in this field and holds the potential for future clinical 
applications. Advancements in this area could lead to significant breakthroughs in the understanding and treatment of various 
disorders associated with OX2R signaling.

Figure 1 Structures of orexin receptor radiotracers.
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Radiolabeled potent known OX agonists and antagonists with short half-lives isotopes, such as carbon-11 (t1/2 = 20 
min) and fluorine-18 (t1/2 = 109 min),32–34 offer a practical and efficient approach for the specific development of PET 
imaging probes targeting OXRs, including [11C]CW4, [11C]EMPA, and [18F]Seltorexant. As part of our ongoing efforts 
in the development of OXR PET radioligands, we conducted a screening process to identify selective OXR agonists that 
could be labeled with radioisotopes. Our selection criteria focused on two key aspects. First, selected OXR agonist 
candidates must exhibit excellent binding affinity and selectivity for OXR to ensure accurate target measurement in vivo. 
Second, since the brain is our main region of interest, candidates should possess appropriate physicochemical properties 
to effectively penetrate the blood-brain barrier (BBB).35,36 One of the exceptional drug candidates meeting stringent 
criteria is MDK-5220, an Orexin 2 Receptor (OX2R)-selective agonist discovered by Takashi Nagahara et al. With 
a potent EC50 on OX2R at 23 nM and an OX1R/OX2R EC50 ratio of 70, MDK-5220 demonstrates remarkable specificity 
and activity. The compound’s IC50 value (23 nM) further underscores its potency, specifically targeting the Orexin 2 
Receptor. In both CHO cells overexpressing human OX1R and HEK-293 cells overexpressing human OX2R, MDK-5220 
displaces orexin-A in a concentration-dependent manner. The compound exhibits a high affinity for hOX2R with a Ki of 
0.14 μM, emphasizing its selectivity for OX2R over OX1R, where the Ki is 0.77 μM.37 These findings underscore MDK- 
5220’s dual strength in potency and selectivity, positioning it as a promising candidate for further exploration and 
development in the realm of OX2R-targeted therapeutics. Previous studies have demonstrated that MDK-5220 exhibits 
favorable properties, including good binding affinity and selectivity for OX2R, suitable brain uptake, and favorable 
pharmacokinetic characteristics, making it an ideal candidate for radiolabeling and OX2R PET imaging in the brain. By 
utilizing MDK-5220 as a radioligand, our aim is to deepen our understanding of the OX system and potentially advance 
the development of novel PET imaging probes. This advancement will further enhance research in this field and open 
new possibilities for potential clinical applications. The combination of radiolabeling strategies and the use of promising 
candidates like MDK-5220 holds great potential in advancing our knowledge of OXRs and their role in various 
physiological and neuropsychiatric processes. This progress may lead to the development of more effective therapeutic 
strategies and the discovery of novel treatments for disorders involving the orexin system.

Materials and Methods
The animal studies described in this paper were conducted at Massachusetts General Hospital under the oversight of PHS 
Assurance of Compliance No. A3596-01. The Institutional Animal Care and Use Committee (IACUC) for Massachusetts 
General Hospital (MGH), represented by the Subcommittee on Research Animal Care (SRAC), diligently reviewed and 
granted approval for all procedures detailed in this paper, ensuring the highest standards of ethical conduct in our 
research. For this study, a total of eight male C57BL6 mice, aged 5 months, were employed.

For this study, we sourced all reagents and solvents from reputable commercial suppliers, including Sigma- 
Aldrich (St. Louis, MO) and Acros Organics, to ensure the highest quality and purity standards. Analytical 
separation was carried out using an Agilent 1100 series High-Performance Liquid Chromatography (HPLC) system 
equipped with a diode-array detector, quaternary pump, vacuum degasser, and autosampler. Analytical thin-layer 
chromatography (TLC) was performed using silica gel GF254 as the stationary phase. Mass spectrometry data 
were meticulously recorded using an Agilent 6310 ion trap mass spectrometer (ESI source) connected to an 
Agilent 1200 series HPLC system with a quaternary pump, vacuum degasser, diode-array detector, and auto-
sampler. These state-of-the-art analytical techniques were employed to ensure the accuracy and reliability of our 
experimental results.

Results and Discussion
In this study, we present the synthesis of the precursor for [11C]MDK-5220 preparation. Comprehensive evaluations of 
[11C]MDK-5220, including binding specificity and brain permeability, were conducted using and in vivo dynamic PET 
imaging in rodents, providing essential information for the future development of OX2R PET radiotracers. These efforts 
hold promise for advancing our understanding of OXR-related diseases and facilitating the development of targeted 
therapies using OX2R agonists.
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As presented in Scheme 1, straightforward method was performed for the preparation of precursor 2. The MDK-5220 
was demethylated to form precursor 2 in 92% yield by using BBr3 at −78 °C.38 The purity of precursor 2 was >99% (see 
Supporting Information and Figure S1). No traces of MDK-5220 or reagents used in the synthesis were found in 
precursor 2. Then, the radiosynthesis of [11C]MDK-5220 was implemented by a standard methylation method. The 
prepared [11C]CH3I was trapped in anhydrous DMF (300 μL) involving precursor 2 (2.0 mg) and K2CO3 (18.0 mg). The 
reaction bulb was heated at 80 °C and kept for 5 min. HPLC mobile phase (0.5 mL) was used to quench the radioactive 
mixture containing [11C]MDK-5220 and then applied to a reverse phase semipreparative HPLC to afford [11C] MDK- 
5220 in 10% yield (n = 3). [11C]MDK-5220 was collected in a flask with the retention time of 11.5 min and diluted in 
water (30 mL). [11C]MDK-5220 was loaded onto a solid-phase exchange (SPE) C-18 cartridge, rinsed with water (4 × 
5 mL), and eluted with EtOH (0.3 mL). The radiochemical purity was >98% (n = 3, see Supporting Information and 
Figure S2), and the molar activity at the time of injection was 6.3 Ci/μmol on average. The identity of [11C]MDK-5220 
was confirmed by co-injection with MDK-5220 as a reference standard. The obtained [11C]MDK-5220 was formulated 
into sterile saline (2.7 mL) and testified stability competent for succedent in vivo studies.

Following encouraging radiosynthesis results, we conducted PET-CT imaging in 6-month-old male C57BL/6 mice to 
evaluate the in vivo properties of [11C]MDK-5220 as an OX2R PET probe. [11C]MDK-5220 was administered as an 
intravenous bolus at a dose of 100–150 μCi (0.1–0.15 mL), followed by a 60-minute dynamic PET imaging scan and 
a 10-minute Magnetic Resonance Imaging (MRI) scan. The brain permeability of [11C]MDK-5220 was first examined. In 
vivo PET imaging of [11C]MDK-5220 in mice revealed proper BBB permeability, reaching a maximum %ID/g of 5.1 at 2 
minutes after whole brain injection (Figure 2). Time-activity curves (TAC) demonstrated rapid brain penetration, binding 
to OX2R, and gradual clearance, suggesting plausible brain kinetics.

The modest radiotracer uptake of [11C]-5220 in the brain could be attributed to its interaction with efflux transporters 
such as P-glycoprotein (P-gp) located at the blood-brain barrier. To investigate this theory, we conducted PET imaging 
experiments in mice that were pre-treated with [11C]MDK-5220 along with the competitive P-gp inhibitor Cyclosporin 
A (CsA, 0.5 mg/kg). Both brain biodistribution analysis and blocking studies confirmed the robust binding selectivity and 
specificity of this probe for OX2R. Notably, however, pretreatment with unlabeled MDK-5220 and the P-gp competitor 
CsA led to a significant increase in the brain uptake of [11C]MDK-5220. This discovery implies a potential interaction 
between [11C]MDK-5220 and P-gp at the blood-brain barrier (Figure 2). Nonetheless, our study underscores the promise 
of [11C]MDK-5220 as a PET imaging probe for brain OX2R, thereby laying the groundwork for the creation of novel 
OX2R PET probes and the advancement of research on OX systems.

Blocking studies were performed to confirm the specificity of [11C]MDK-5220 by preadministering unlabeled MDK- 
5220 (1.0 mg/kg) and MDK-5220 (0.1 mg/kg) 5 minutes prior to radiotracer administration. TAC showed a significant 
increase in brain uptake of [11C]MDK-5220 when pretreated with the blocking agent (Figure 3A). To account for 
potential baseline differences, brain uptake was normalized based on the highest radioactivity in the blood at each time 
point. Normalized TAC curves revealed a blocking effect in the MDK-5220-pretreated group of mice (Figure 3B), 
supporting the binding specificity of [11C]MDK-5220 to OX2R.
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Scheme 1 Radiosynthesis of [11C] MDK-5220. Reagents and conditions: (a) BBr3, DCM, −78 °C to RT, 12 h; (b) [11C]CH3I, DMF, K2CO3, 80 °C, 5 min.
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Subsequently, we investigated the biodistribution of [11C]MDK-5220 in major organs of mice using in vivo PET/MR imaging. 
Figure 4 illustrates the radioactive absorption in the brain and major organs at different time points (5, 15, 30, 60 min). Among the 
peripheral organs examined, the kidney uptake was observed to be low, while the heart, liver, and lung exhibited high initial 
uptakes. The blood exhibited a high initial uptake with 2.82% ID/g at 5 min, followed by rapid clearance with 1.83% ID/g at 30 
min and further reduced to 1.03% ID/g at 60 min. Remarkably, the liver displayed a relatively delayed clearance with 3.41% ID/g 
at 60 min. This high liver uptake and slow clearance collectively indicate that [11C] MDK-5220 is primarily excreted by the liver.

Conclusion
In this study, our primary aim was to screen known selective OX2R agonists and, among them, identify MDK-5220 
as a highly promising drug candidate for OX2R imaging. With the successful synthesis of the labeled precursor, we 
successfully produced [11C]MDK-5220. In vivo, PET imaging in rodents revealed that [11C]MDK-5220 exhibits 
suitable blood-brain barrier penetration for OX2R imaging in the brain. The probe’s excellent binding selectivity and 
specificity were further corroborated through regional brain biodistribution analysis and blocking studies. An 
intriguing observation emerged from our investigations as pretreatment with the competitive P-gp inhibitor CsA 
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Figure 2 (A) Time-activity curve (TACs) of whole brain uptake of [11C]MDK-5220 (Baseline and Pretreatment with Cyclosporin A). (B) Coronal and sagittal PET/MR 
imaging (20–60 min) of [11C]MDK-5220 (n = 3).
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led to an increase in brain uptake of [11C]MDK-5220. This finding strongly suggests that the probe might interact 
with efflux transporters, warranting further investigation in future studies. Furthermore, in vivo PET/MR imaging 
studies exploring the biodistribution of [11C]MDK-5220 in major organs of mice demonstrated that [11C]MDK-5220 
is primarily excreted by the liver, providing valuable insights into its metabolism. Moreover, this research lays the 
groundwork for advancements in the development of OX2R PET probes, furthering our understanding of neurop-
sychiatric functions and physiological processes.
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Figure 3 (A) TACs of whole brain uptake of [11C] MDK-5220 (Baseline and Pretreatment of unlabeled MDK-5220 at different doses 0.1 mg/mL and 1 mg/mL). (B) Coronal 
and sagittal PET/MR imaging (20–60 min) of [11C]MDK-5220 (n = 3).
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Figure 4 Biodistribution of [11C] MDK-5220 in selected organs of mice at 5, 15, 30, and 60 min after intravenous administration of radioligand (n = 3 for each time point).
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