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Abstract: To increase the efficiency of assisted reproductive techniques (ART), molecular studies
have been performed to identify the best predictive biomarkers for selecting the most suitable germ
cells for fertilization and the best embryo for intra-uterine transfer. However, across different studies,
no universal markers have been found. In this study, we addressed this issue by generating gene
expression and CpG methylation profiles of outer cumulus cells obtained during intra-cytoplasmic
sperm injection (ICSI). We also studied the association of the generated genomic data with the
clinical parameters (spindle presence, zona pellucida birefringence, pronuclear pattern, estrogen
level, endometrium size and lead follicle size) and the pregnancy result. Our data highlighted
the presence of several parameters that affect analysis, such as inter-individual differences, inter-
treatment differences, and, above all, specific treatment protocol differences. When comparing
the pregnancy outcome following the long protocol (GnRH agonist) of ovarian stimulation, we
identified the single gene markers (NME6 and ASAP1, FDR < 5%) which were also correlated with
endometrium size, upstream regulators (e.g., EIF2AK3, FSH, ATF4, MKNK1, and TP53) and several
bio-functions related to cell death (apoptosis) and cellular growth and proliferation. In conclusion,
our study highlighted the need to stratify samples that are very heterogeneous and to use pathway
analysis as a more reliable and universal method for identifying markers that can predict oocyte
development potential.

Keywords: ART; ICSI; cumulus cell; mRNA expression profiling; CpG methylation profiling; oocyte
competence; epigenetic biomarker; FSH; pathways analysis; upstream regulators

1. Introduction

Infertility is a global concern affecting an estimated 10% of reproductive-age cou-
ples [1]. When sperm motility, morphology, or counts are affected, intracytoplasmic sperm
injection (ICSI) must be used [2]. Despite technological advances, successful live birth
rates are far from 100%. Several markers/parameters are investigated to monitor the entire
process and to select the best embryos for intra-uterine transfer to increase the rate of live
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births. These potential markers are linked to the biological process of follicular and oocyte
development, maturation, and ovulation and include a variety of types: (A) endometrium
wall thickness and volume [3], (B) hormone levels [4], (C) follicle number and size [5],
(D) gene expression in granulosa [6] or mural granulosa cells [7], (E) gene expression in
cumulus cells [6-27], (F) microRNA expression in cumulus cells [28], (G) gene expression
in follicular fluid cells [29], (H) zona pellucida morphology parameters [30], (I) analysis of
polar body chromosome number and structure [31], and (J) morphological appearance of
the oocyte [32].

Of the above-mentioned approaches, gene expression analysis (categories D to G)
offers a promising methodology for monitoring oocyte development due to its relative
simplicity. However, different studies have failed to identify universal markers linked
with good developmental potentials (Supplementary Table S1). This is possibly due to the
heterogeneity of samples and to differences in their preparation because sample sources
could be mural cells, cumulus cells (inner or outer), granulosa cells (precursor of mural
and cumulus cells), or follicular fluid derived cells. The heterogeneity of samples in
biological developmental stage and purity of sample preparation, further contributes to
the inconsistency of results. Moreover, the degree of maturity of the retrieved oocyte
has been found to be associated with a specific expression signature that could further
cause discrepancies when comparing results between different studies [33,34]. Likewise,
differences in methodology also contribute to the variability of results, as a number of
studies have applied broad genomic-based approaches to identify genome-wide expression
using microarrays or RNA-seq, while others have focused on the expression of a limited
number of genes related to specific pathway(s) that were shown to play important roles
in oogenesis. Additionally, different treatment protocols further increase the variability
of results.

Several studies performed controlled experiments to study the effect of parame-
ters/factors that could introduce systematic bias into the results. Indeed, age [35], stim-
ulated in vitro fertilization cycles rather than natural cycles [36], differences in treatment
protocols, as well as medications used during ovarian stimulation [37-39] were seen to
have an effect. Additionally, a patient’s genetic constituents also affect the clinical output
and success of treatment. For example, the influence of polymorphism in the follicle stimu-
lating hormone receptor (FSHR) and the luteinizing hormone (LH) beta subunit [40] and
alternative skipping of exon 2 or 3 in the FSHR [41] have been reported to affect the ovarian
responses to the FSH.

Therefore, it is expected that only an exact comparison among similar samples can
identify reliable biomarkers that can correlate with the clinical outcome. For this reason,
we revisited this theme by analyzing well-controlled samples and stratifying these into
groups according to their molecular signature and known differences in biological and
experimental conditions. This was possible because of our unique experimental design,
which includes: (1) similar age group of patients, (2) comparable male factor infertility
severity defect, and (3) the analysis of multiple non-pooled cumulus-cell clusters from each
donor woman corresponding to individual oocytes being used for simultaneous transfer.
This study design enabled comparisons of single patients with each other and prediction
of the relative activation status of specific biological pathways. In addition, we compared
the generated genomic data to the available clinical parameters: spindle presence, Zona
pellucida birefringence, pronuclear pattern, estrogen level, endometrium size, and lead
follicle size. Our results re-emphasized that the sample type, treatment protocol, and
individual differences can influence gene expression and methylation profiling. Addi-
tionally, we showed that pathway analysis is providing better parameters for predicting
clinical outcomes. We also provide, for the first time, evidence that pregnancy-negative
associated samples are classified based on upstream regulators (like FSH) into two negative
groups that could either be over- or understimulated in comparison to positive samples.
Finally, a correlation between gene expression related to growth and apoptosis and clinical
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parameters like the level of estrogen, provided assurance of the accuracy and relevance of
the results.

2. Results
2.1. Clinical Characteristics of the Collected Samples

The summary of samples characteristics is shown in Supplementary Figure S1A. For
this study, we collected the outer cumulus cells only by mechanical separation from the
inner cumulus directly surrounding the oocyte, and that needed to be done by enzymatic
treatment. The latter could introduce variability to the cumulus cells molecular markers
while the former could be obtained without introducing molecular changes. We grouped
the obtained samples into three subgroups: (1) short protocol negative (there are no positive
samples for the short protocol), (2) long protocol positive, and (3) long protocol negative.
We plotted response-fitting curves representing the main clinical data (estrogen levels,
endometrium thickness, and maximum follicle size) and observed clear differences among
the three groups (Supplementary Figure S1B). We then compared the day-12 responses
(predicted from fitting curves if not available) and the curve slope for all the sample
groups to reflect the personal/individual response of the treatment. A clear difference was
observed in the long positive protocol samples, which showed a clear tendency for a higher,
faster response than the long protocol negative samples (Supplementary Figure S1B).

Supplementary Figure S1C shows the correlations among the available clinical pa-
rameters. When considering the samples generated using the long protocol (right panel)
we found a total of 11 significance correlations out of a possible 55. The top significant
correlations (excluding those that involve slopes) were between estrogen level and lead
follicle at day 12 (p = 1.51 x 10~%; Pear. Corr. = 0.776). Followed by endometrium size and
estrogen levels at day 12 (p = 0.014; Pear. Corr. = 0.57), followed by pronuclear pattern
and estrogen levels at day 12 (p = 0.022; Pear. Corr. = —0.535). Additionally, of interest
is the observed correlation between age and endometrium size at day 12 (p = 0.019; Pear.
Corr. = 0.547).

2.2. Correlation of Clinical Parameters with Both Genome Wide Expression and DNA
Methylation Data

We investigated the correlations between the gene expression/DNA methylation
data and the recorded clinical parameters. First, we considered all samples including
both the long and the short protocol. At p = 0.01, we observed a number of correlated
gene probes ranging from 48 with spindle presence or absence up to 1119 with lead
follicle size (Supplementary Figure S2A; Supplementary Table S2). A significant number of
overlapping correlated genes were observed between estrogen levels, endometrium size,
and lead follicle size (Supplementary Figure S2A). When considering the long protocol
samples, only the range of correlations between the clinical parameters and the gene
expressions ranged from 16 probes/genes for spindle presence to 847 for estrogen levels
(Supplementary Figure S2B; Supplementary Table S3). However, gene overlap correlations
with different clinical parameters were considerably fewer; however, 38 and 233 overlaps
were still observed between estrogen levels and endometrium size and lead follicle size,
respectively (Supplementary Figure S2B). The groups of correlated genes in all cases were
highly enriched with cancer-related genes, thus much related to growth and the cell cycle
(Supplementary Figure S2A,B, lower panels).

Similarly, we determined the methylation at CpG sites that correlated with clinical
parameters and observed a similar pattern to the correlation of gene expression and clinical
parameters (Supplementary Figure S3). For example, the highest number of correlated
CpG methylations or gene expressions with clinical parameters were for estrogen levels
and endometrium size, while the lowest numbers for both expression and methylation
correlated with spindle presence and zona pellucida birefringence (for long protocol only
samples, correlation between the number of correlated probes and correlated genes = 0.93,
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p = 0.0003). However, when comparing CpG sites and genes we observed little overlap for
the same clinical parameters ranging from 10 to 22%.

2.3. Inter-Individual Differences Order/Separate Samples According to Donor Identity Showing
High Significance in Genes Related to Protein Metabolism

As a first step after generating expression and methylation profiles of the individual
non-pooled 24 cumulus samples, we investigated whether we could recognize the samples
and group them based on their original female donor, i.e., if there were an inter-individual
signature. Unsupervised clustering illustrated in heatmaps and 3D-PCA plots showed
this to be the case (Figure 1A). In fact, the expression data clearly demonstrated that the
cumulus clusters samples from the same donor were grouped together and were closer to
each other than the samples from other donors (represented by the nearest neighboring
lines connecting the spheres in Figure 1A, upper left, and the unsupervised hierarchical
clustering on the heatmaps, lower left). What emphasized the inter-individual signature
effect and excluded the effect of experimental procedure(s) was the fact that the samples
were derived from two different treatments but from the same donor (i.e., donated at
different hormone stimulation cycles) and were still grouped closely together. This held
true for donor 1 (eight cumulus samples from two treatments: blue annotation) and
donor 2 (four cumulus samples from two treatments: pink annotation). The latter results
emphasized the accurate experimental procedures that maintained individual sample-
specific information.

While correlation analysis between expression and methylation showed negative
as well as positive correlations, at the transcription start site (TSS) a clear tendency was
found for negative over positive correlations (Figure 1B). In total, 1043 CpG methylations
overlapped with 659 annotated genes. The highest positive correlation was found at GAA
(with cg16464924: p = 0.84 x 10~°; Rho = 0.88), while the lowest negative correlation was
seen at C20o0rf24 (with cg19216162: p = 1.5 x 107°; Rho = —0.88) (Figure 1B).
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F) Disease and Function

Categories Diseases or Functions Annotation p - Value # Molecules
1 Protein Synthesis Synthesis of protein 7.01x10™ 186/ 1124
2 Protein Synthesis Translation 8.46x10™ 133 /574
3 Protein Synthesis Metabolism of protein 1.08x 10 384 /2226
4 Cell Death and Survival Cell death of tumor cell lines 1.21x10™ 540/ 4071
5 Cell Death and Survival Necrosis 5.98x 10 796 /6777
6 Protein Synthesis Translation of protein 8.31x10™" 124 / 552
7 Protein Synthesis Expression of protein 8.62x10" 146 /732
8 Cell Death and Survival Apoptosis 1.59x 10™ 784 /6426
9 Protein Synthesis Initiation of translation of protein 7.59 x 10 58 /151
10 Organismal Survival Organismal death 1.24x 10" 776 /5507

Figure 1. Inter-individual differences in expression and methylation. (A) 3D-PCA (upper part) and heatmaps (lower
part) representing expression and CpG methylation profiling of 24 individual cumulus cells derived from eight different
women. Left and right parts represent expression and methylation, respectively, unsupervised and ANOVA for multiple
comparisons at FDR < 5% analysis are shown. (B) Correlation between expression and methylation. Right upper part shows
Venn diagram of intersection/overlap of DEG and DMC; in total 659 genes overlapped with 1043 investigated CpGs. The
correlation of the overlaps is shown at the left upper part as —logyg (p-values) vs. the relative position to the transcription
start site. In addition, the representative density/fitting curve is shown as a dotted line (red or blue represent negative and
positive correlation, respectively). The lower panel shows correlation graphs of the highest 14 correlations (three positive
and 11 negative) (The color of the dots represents the individual treatment, and only transferred samples were used in
this analysis). (C) Ontology analysis of the group of genes showing strong inter-individual differences (ANOVA analysis
at FDR < 0.5); both biological process and cellular component are shown. The vertical arrow indicates the TSS; others
arrows are linking to the dots with the number(s). (D) Top-10 affected canonical pathways as determined by IPA. The
lower x-axis represents the —log(B-H p-value) for enrichment, while the upper x-axis represents the percentages of variable
genes in a given pathway. (E) Top-10 upstream regulators (predicted by IPA) are listed with the overlapping p-values and
numbers of regulated genes in the data; FSH regulated proteins are represented with symbols reflecting their functions and
in their subcellular localization. (F) The top categories in disease and biofunction (predicted by IPA). The top-10 significant

subcategories according to p-values are listed below together with the p-values.

Supervised clustering by applying a false discovery rate (FDR) of 5% identified 4358
expression probes (corresponding to 3869 genes) and 10,453 CpGs to clearly distinguish
the 24 samples based on female donor origin (Figure 1A). Gene ontology analysis on genes
showing inter-individual differences in expression indicated that ontological terms related
to the following three categories were the most common. The first, cellular metabolism,
included metabolic, biosynthetic, organic acid metabolic, lipid, and catabolic processes.
The second, protein and transport, concerned protein localization, protein complexes,
and transport endosomes. The last category, cellular regulation, included cell death, the
cellular response stimulus, and the negative regulation process (Figure 1C, left panel). The
variably expressed genes showed inter-individual difference codes for proteins localized in
the intracellular organelle, protein complexes, Golgi apparatus, endoplasmic reticulum,
mitochondrial membrane envelope, and matrix (Figure 1C, right panel). The cellular
localization component emphasized the previous biological processes related to protein
metabolism and transport.

Furthermore, to obtain more detailed information on the group of variably expressed
genes and their biofunctions, we performed genomic analysis based on Ingenuity Pathways
Analysis (IPA). The IPA database uses experimental information on protein interaction
and function from the published scientific literature. This analysis can reveal the affected
pathways, the regulators that triggered the majority of changes and what could be predicted
from these; thus, it can show what kind of disease these could lead to.

Canonical pathway: The top-10 enriched canonical pathway analyses showed that
metabolic pathways are mostly affected, and this includes protein synthesis and several
signaling pathways in the categories of cellular growth, proliferation, and development
(Figure 1D).
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Upstream regulator: In this analysis, the IPA database searches for molecules or
proteins, such as hormones and transcription factors, that can influence the expression
of genes in the given gene sets (i.e., in genes showing significant variability). Based on
the set of variable gene expression, this analysis predicted that FSH and LH (two main
hormones used in the treatment) would have the top overlap p-value between the total
possible number of genes regulated by these hormones and the expected genes regulated
by these hormones in the dataset (Figure 1E). This finding reflected a gene expression
signature of a possible quantitative effect of the drugs used either regarding the actual dose
effect in relevant tissue or the metabolic effect influenced by genetic polymorphism.

Disease and function: The third analysis includes calculating the occurrence of variable
genes in known diseases, physiological functions, or biofunctions. (Figure 1F). Here, 7 of
the top-10 significant functions fell into the category of cell death and survival, while
subcategories included apoptosis, necrosis, and proliferation.

2.4. Differences between Two Treatments with the Same Protocol and the Same Individual

One of the donors (number 1 in Supplementary Figure 54) underwent two successive
treatments leading to two sample groups, VSI (first treatment) and VS6 (second treatment).
The second treatment led to a pregnancy and delivery. As both samples were derived from
the same individual this provided the opportunity to study expression differences between
the two treatments on an identical genetic background. Such expression differences could
be responsible for, or at least contribute to, the pregnancy outcome. In comparison to VS6
(positive pregnancy), there were 192 differential expression genes with 122 overexpressed
and 70 under expressed in VSI (negative pregnancy) (Supplementary Figure S4A). General
ontological analysis showed that the affected biological processes included overexpres-
sion in VS1 (negative pregnancy) of the metabolic process, regulation of the metabolic
process, the L-serine metabolic process, and proline transport. Most of these molecules
were localized in intracellular organelles, the mitochondrial envelope, and the nuclear
lumen (Supplementary Figure S4B). Detailed canonical pathway analysis based on the IPA
showed that the top-10 affected pathways included some regulatory/metabolic, cancer,
and autophagy pathways (Supplementary Figure S4C). Coordinated upstream regulators
were also detected, suggesting a common regulatory mechanism for affected molecules,
possibly excluding random stochastic effect(s) (Supplementary Figure S4D). Disease and
biofunction grouping of the affected molecules via IPA revealed the top categories related
to cell death and gene expressions that were predicted to be downregulated in the negative
VS1 samples (Supplementary Figure S4E).

The above-mentioned analysis performed on genetically identical samples provided
a good opportunity to analyze differential expressions that could be directly linked to
a clinical outcome. In fact, the differences highlighted metabolic process, cancer-related
pathways, and apoptosis, revealing the different cellular state found in the two groups. The
highest differentially expressed molecule was FOSB (higher in VS6), an AP-1 transcription
factor subunit involved in cellular proliferation as well as the cellular response to calcium
ions, hormone stimulus, cAMP, corticosterone stimulus, mechanical stimulus, morphine,
progesterone stimulus, female pregnancy, and regulation of transcription from RNA poly-
merase II promoter). Thus, it appears that the VS1 cells were isolated from less proliferative
cells that did not favor complete oocyte maturation. Therefore, these cells had either not yet
reached, or had passed, their optimal developmental state. These differences between the
V51 and the VS6 samples could be induced by differences in hormone treatment (including
human errors of treatment regime compliance) or differences in treatment duration and
timing of sample collection.

2.5. Differences between Long and Short Stimulation Protocols

Of the eight donors, three were treated according to the short protocol and five accord-
ing to the long protocol. As there are basic differences between both protocols regarding
duration and the type of drugs or hormones used, we compared both sample groups for
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major differences. Unsupervised hierarchical clustering of the samples (heatmap and 3D-
PCA plots, Supplementary Figure S5A) using the expression data revealed good separation
between the two groups, suggesting that we can discriminate between the two stimula-
tion protocols samples based on gene expression profile. Similar results were obtained
using CpG methylation data. When applying an FDR < 5%, we obtained 242 differential
expression probes (corresponding to 220 genes) and 83 differential methylated CpGs (Sup-
plementary Figure S5A). In this comparison, general gene ontology analysis also revealed
biological processes related to metabolic and growth regulation. This was further empha-
sized by their localization in internal vesicle organelles, such as the endoplasmic reticulum,
Golgi apparatus, and mitochondria (Supplementary Figure S5B). Detailed IPA analysis
showed canonical pathways that mainly involve metabolic pathways (Supplementary
Figure S5C). Some upstream regulators were also identified but without reaching an acti-
vation Z score above 2 (Supplementary Figure S5D). In the disease and function category,
when taking the Z score and activity prediction into consideration, a clear picture emerged:
categories related to cell death were activated, while cellular growth (in development and
function) was predicted to be inhibited in the long protocol compared to the short protocol
(Supplementary Figure S5E).

2.6. Molecular Profile of Individual Non-Pooled Cumulus Cells Derived from Positive or Negative
Pregnancy Test (Long Stimulation Protocol Only)

Taking into consideration the result of the previous section, we next analyzed the
samples derived via the long protocol only. While analysis of all data from the long and
the short protocols revealed no significant differences, by stratifying the samples according
to the stimulation protocol, we obtained a significant number of differentially expressed
genes from the long protocol samples (Figure 2). Non-supervised hierarchical clustering
did not reveal clear grouping according to pregnancy outcome. However, 3D-PCA plots
showed that the positive samples were largely aligned according to PCA component 3,
yet without suggesting the alignment reason. Moreover, supervised clustering at p = 0.05
revealed 786 and 771 under- and overexpressed probes, respectively, in positive samples.
The most significant results were obtained at FDR < 0.05 with three probes corresponding
to genes NME6 and ASAP1, which were underexpressed in positive samples (Figure 2A,
left panel). These two genes were also found to be top correlated with two of the clinical
parameters: endometrium size and lead follicle size slope (Supplementary Figure S6). More
than 23,000 different CpGs were found to be differentially methylated at p = 0.05, but there
was no significance at FDR < 0.05 (Figure 2A, right panel). The top 10 significant CpG
sites are shown at Supplementary Figure S7A. We next studied the correlation between
the expression of differentially expressed genes and their underlying methylation in a
region covering 10 Kb upstream and 10 Kb downstream of the TSS. Here, we also found an
expected surplus of negative correlations, especially at the TSS (Figure 2B).

In a further step to validate the relevance of differentially expressed genes between
the negative and positive samples, we analyzed the intersection between differentially
expressed genes in a negative/positive and a V51/VS6 comparison. As the latter were
derived from the same individual/donor, they served as a control since differences were
more likely to reflect treatment without genetic interference. We hypothesized that if
the list of differentially expressed genes were relevant to the pregnancy outcome then
(1) the under- or overexpressed genes in both comparison groups (negative/positive
and VS1/VS6) would have considerable overlap and (2) no or little interactions should
be observed between overexpression in one comparison (e.g., negative/positive) and
underexpressed in the second (e.g., VS1/VS6), and vice versa. Indeed, we observed the
expected clear phasing, and the results are illustrated in Figure 2C.
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Figure 2. Differences in expression and CpG methylation profiles between pregnant positive and pregnant negative samples
of the long protocol. (A) 3D-PCA plots and heatmaps of expression and CpGs methylation profiling. Result of unsupervised
and significance at p = 0.05 and FDR < 5%, when applicable, are shown. (B) Correlation between differentially expression
genes and differentially methylated CpGs. The correlation of the two data overlaps is shown on the left as —logg (p-values)
vs. the relative position to transcription start site (TSS = 0; every unit is 1 Kb), representative density/fitting curve is also
shown in dotted line (red or blue represents negative or positive correlation, respectively). The right panel shows individual
data for the highest six correlations (three positive and three negative correlations) (the color of the dots represents the
pregnancy test result with red (positive) and green (negative)). (C) Comparison between results of successive analyses of
two treatments of the same individual (VS1 negative vs. VS6 positive; shown in Figure 2) on one side and comparison
between all pregnancy negative and pregnancy positive samples on the other (part A above). The left part represents the
3D variables of the PCA expression data (part A above), where the overlap of the overexpressed and the underexpressed
genes between the two comparisons is in a near-complete phase. The right part represents a Venn diagram showing the
overlap of the differentially expressed genes for the two comparisons in question. (D) Ontology analysis of the genes with
difference in expression at p = 0.05 for biological process and cellular component are shown. IPA analysis (at p < 0.05%) for
top-10 affected (E) canonical pathway, (F) upstream regulators (details of FSH-affected targets are shown on the left), and
(G) diseases and biofunction.
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Ontology analysis on differentially expressed genes showed overexpression in genes
related to negative regulation (cell death activation in the negative group) in negative
samples. Genes related to protein localization were relatively overexpressed in positive
samples (Figure 2D). A detailed IPA analysis showed affected canonical pathways including
metabolic processes but also genes in mismatch repair that were underexpressed in positive
samples (Figure 2E). Upstream regulators listed FSH as the second from top in the list with
an overlap p-value of 8.76 x 107 and a predicted inhibition Z score (in positive samples)
of —0.724 (Figure 2F). Disease and biofunction distribution of the differentially expressed
genes revealed activated Z scores related to cellular proliferation and negative Z scores to
cell death (Figure 2G).

2.7. Detailed One to One Comparison between Positive and Negative Samples

In the previous section, we showed that the positive samples (designated here as the
red-positive group) settled themselves, as seen by 3D-PCA plot, between two groups of neg-
ative samples designated here as blue-negative and yellow-negative groups (Figure 3A). In
fact, analyzing these three groups for differences using ANOVA (at FDR < 5%) revealed that
they could easily be separated based on 739 expression probes (Figure 3B); the same group-
ing also showed up on a PCA plot when considering differential methylation data of >10%
between positive and negative samples (Supplementary Figure S7B). To clarify the reason
behind this arrangement we looked for systematic differences among the three groups
and performed IPA Z score comparisons for upstream regulators, canonical pathways,
diseases, and biological function (Figure 3C-E) between each sample group. Two samples
corresponded to one patient from the positive group (middle red-positive in Figure 3A),
and each sample was compared to one from the negative group (upper blue-negative
group and lower yellow-negative group in Figure 3A). The term sample here refers to the
corresponding two non-pooled individual cumulus cell clusters of the two used oocytes
from one donor. We calculated the t-test comparison between the two groups’ Z scores:
the first group, red positive vs. blue negative; the second, red positive vs. yellow negative.
The significant findings are depicted in Figure 3C-E. We found significance differences
for 16 upstream regulators, of which five are classified as transcription regulators (SRF,
Hdac, HTT, TP53, TGFBR2), three as ligand-dependent nuclear receptors (PPARA, NR3C1,
ESR1), three as kinases (AKT1, INSR, TGFBR2), two as enzymes (KRAS and MGEAJ5),
two as growth factors (TGFB1 and BMP2), and two as hormones (LH and FSH). These
two hormones are directly related to follicular development and are among those used in
ovarian stimulation. After corrections for multiple testing, 5 out of 16 remained significant:
LH, FSH, HTT, INSR, and TP53. The one-to-one sample individual Z score comparison for
FSH is also shown in Figure 3A.

Moreover, the difference between the Z scores of the middle red-positive vs. upper
blue-negative group on the one hand and the middle red-positive vs. lower yellow-negative
group on the other revealed clear differences based on 14 significant canonical pathways,
of which eight remained significant after correction for multiple testing (Figure 3D) as did
seven disease and four bio functions categories (Figure 3E).

All 14 of the above-mentioned canonical pathways fell into the category of cellular
signaling. Six involved signaling of cellular/organismal growth proliferation and develop-
ment (PI3K/AKT, mTOR, ILK, integrin, ErbB4, and PCP); three were linked to apoptosis
(induction of apoptosis by HIV1, LPS-stimulated MAPK signaling, and apoptosis signaling),
and two were linked to cancer (PI3K/AKT and PCP) (Figure 3D). The above-mentioned
categories clearly indicate the difference in proliferative phases of the two negative groups
in comparison to the positive ones, and in comparison to each other they reflected the
cumulus cell reaction towards hormonal stimulation. In addition, there were groups of
signaling pathways that were part of either intracellular and second-messenger signaling
(PI3K/ AKT, signaling by Rho family GTPase, G alpha q, and integrin signaling) or cellular
immune response (IL-8, leukocyte extravagation, production of NO, and reactive oxygen
species in macrophage). In support of the different state of proliferation phase/apoptosis



Int. . Mol. Sci. 2021, 22, 6377 12 of 21

of both negative groups in comparison to the positive samples, the category of disease

and function showed statistical significance in the category’s life cycle, cell death, and
degeneration (Figure 3E).
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Figure 3. Detailed analysis of differentially expressed genes between positive and negative pregnancy test in the long
protocol. (A) Unsupervised sample 3D-PCA plot (shown also in Figure 2A) overlain with differences in FSH Z score between

1) Cell cycle progression

2) Cell death of ovarian cancer
3) Neuromuscular disease

4) Viral infection

5) Migration of leukemia cell
6) Metabolism of protein

7) Neurodegeneration



Int. . Mol. Sci. 2021, 22, 6377 13 of 21

each of the pregnancy positive samples and each of the pregnancy negative samples. Blue, red, and yellow balls correspond to the
samples with high, middle (pregnancy positive samples), and low FSH Z scores. (B) 3D-PCA and heatmap plots based on ANOVA
(FDR < 5%) of the three sample groups classified by FSH scores. The three groups are effectively separated based on 739 expression
probes and 88 CpGs sites corresponding to 678 genes and 63 genes, respectively (with three gene overlaps: AFAP1, GPBP1L1, and
LIMS2). Comparisons of Z scores between middle-low and middle-high FSH levels for upstream regulators (C), canonical pathways
(D), and disease and biofunction (E). Blue- and yellow-filled circles correspond to Z score differences between each of the middle
FSH level group with each of the high-FSH and low-FSH level group, respectively. t-test p-values are shown above each scatter plot.
Additionally, the significant p-value after multiple corrections is shown in red. The overexpressed gene names contributing to the
significant differences are also shown in the box.

2.8. Comparing our Expression Data with Available Published Datasets

As we have observed that little overlap existed between different studies concerning
the molecular biomarkers that could be linked with the clinical phenotype, we searched for
publicly available genome-wide expression data that were comparable to our present study
(i.e., human, cumulus cells, long protocol treatment). Two available datasets were available
and compatible with our study [26,42]. We aimed to perform comparisons on) the intersec-
tion between differentially expressed genes and on the degree of sample heterogeneity.

The intersection between the differentially expressed genes was minimal among
the three datasets when considered two at a time (33, 34, and 7 intersections between
Borup et al. [42] and Demiray et al. [26], Demiray et al. [26] and the present study, and the
present study and Borup et al. [42], respectively) and zero among all three together (Supple-
mentary Figure S8A). The little intersections were also accompanied by the scrambling of
phases of differentially expressed markers among the three data sets (i.e., what was upreg-
ulated or downregulated in one dataset was distributed in both up- and downregulation
in another).

The degree of heterogeneity of the samples was estimated by calculating the intersec-
tion percentage in the results of 10 different tests between negative and positive samples
after dropping a random 10% of the samples each time. We included the control data sets
from male and female blood samples where differential expression between males and
females was calculated (Supplementary Figure S8B). The global variance between different
tests within one study was calculated and showed relative high variance in both the studies
of Demiray et al. [26] (variance = 156.3) and Borup et al. [42] (variance = 143.9) followed by
the present study’s (variance = 46.7). The blood control group showed a low variance of
15.9%. This, in our opinion, clearly showed the high heterogeneity of the cumulus samples
from all studies and that ours was not particularly higher.

In addition, we analyzed the enrichment of IPA canonical analysis, disease and bio-
function, and Tox function in the differentially expressed genes of the three sets. When
we compared the predicted Z score, we found little consistency among all the studies:
5/22 for pathway analysis; 8/39 for disease and bio-function; and 2/5 for Tox analysis
(Supplementary Figure S8C).

3. Discussion

One of the aims of improving the clinical results of ICSI cycles is to predict the
developmental potential of the transferred embryo, thus choosing the best for transfer
and leading to less psychological stress for the affected couples and cost reductions for
the health system. The use of biomarkers in cumulus cells surrounding the oocyte to
predict the clinical outcome is a possible non-invasive approach. To this end, we performed
molecular profiling, including, for the first time, simultaneous RNA and DNA methylation
profiling on outer cumulus cells retrieved from ICSI cycles.

In order to obtain informative biomarker(s) without false positive influence of in-
terfering factors, we determined, using literature-based knowledge and our experimen-
tally obtained data, conditions that could potentially influence the results (i.e., choice of
biomarkers). The main factors influencing the expression and methylation markers were
inter-individual differences and differences in treatment protocol: short vs. long.
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The first could be a reflection on the genetic setup of individuals and their response
to treatment. The inter-individual differences could be clearly observed (Figure 1A) in
the unsupervised PCA samples and heatmap where the samples derived from the same
individual, even for two different stimulations using the same protocol, were intercon-
nected and clustered close together. This could be explained by genetic polymorphisms
affecting general expression patterns or a response to hormone stimulation treatments. It is
documented that genetic variations affect the global gene expression patterns [43,44] and
that any response to induced hormonal treatment could be modulated by polymorphisms
in the FSH receptor [40,45]. Therefore, an influence of the individual genetic make-up on
the treatment outcome cannot be avoided. However, it could be predicted from previously
known polymorphisms, where the treatment regimens had been precisely adopted for
individual genetic setup. Unfortunately, in this study, we could not investigate whether
the individual-specific SNPs were directly associated with cumulus expression profile, as
patient DNA (from peripheral blood) was unavailable for this study. The second observed
influence was the hormonal stimulation protocol, as the differences in the unsupervised
classification of samples were clearly influenced by the protocol used, short or long, which
reflected the use of different stimulating/treatment regimens (Supplementary Figure S5A).
Therefore, we stratified the samples according to treatment protocol but could not do the
same for the genomic/polymorphism because such information was not available.

We identified individual single markers that were differentially expressed where
NMES6 and ASAP1 were under expressed in positive samples (i.e., continuing pregnancy).
NMES is the nucleoside diphosphate kinase 6, which specializes in the phosphorylation of
nucleotide diphosphate, which regulates on cell growth. NMES$6 is ubiquitously expressed
at low levels in most human tissues but is abundant in the kidney, prostate, ovary, intestine,
and spleen [46]. It has also been found to be particularly abundant in zebrafish ovaries [47].
To date, it has not been experimentally proven whether NMES6 is active in human cells.
However, it seems to be localized in the mitochondria [48], suggesting a possible role in
signaling by contributing to nucleoside metabolism and the ratio of different forms. The
latter could itself regulate the growth of cumulus cells around the oocytes and probably
the oocyte itself. ASAP1 stands for ArfGAP with SH3 Domain, Ankyrin Repeat and PH
Domain 1. It plays a role in shaping the actin cytoskeleton and induces proliferation [49,50].
It is also overexpressed in many tumors and could trigger cellular movement and the
ability of cells to move and thus promote metastasis [51,52]. As the process of oocyte
maturation and ovulation necessitates cellular remodeling surrounding the oocyte it is not
surprising that ASAP1 is considered one of the players indicating a proper maturation
stage. However, we also saw a correlation of these two markers with endometrium size
in the positive samples (Supplementary Figure S6; Supplementary Table S3); therefore, it
is questionable whether this is an effect of endometrium development with an effect on
implantation that was also detected in cumulus cells or is a marker for oocyte development.
It could be that endometrium development is the main determining factor to be considered
and that it overwrites any oocyte factor. Future studies that group large samples based on
endometrium size should be performed to determine if these two markers are endometrium
or cumulus cell specific.

When comparing our gene marker results to previous results obtained from cumulus
cell global expression, very little overlap could be identified (p < 0.05) (Supplementary
Figure S7 and Supplementary Table S1). Assidi et al. (2011) [15] identified seven markers
as the top differentially expressed between positive and negative samples (NRP1, UBQLN1,
PSMDeé, DPP8, HIST1H4C, CALM1, TOM1), most of which were reconfirmed by a second
study by Assidi et al. (2015) [21], except for HIST1H4C and TOM1. Feuerstein et al.
(2012) [17] identified three markers (PLIN2, RGS2, ANG), while Xu et al. (2015) [23]
determined nine that were confirmed by RT-PCR (BAI2, HDAC1, ELOVLS, ITGA6, RAD51,
VCAN, PTGS2, POU5F1, VAMP?) and Demiray et al. (2019) [26] identified five markers
(ZFP57, ARHGEF4, SOX8, FL]39502, CNIH3) according to clinical pregnancy and >2-fold
change. Here, two observations must be highlighted: (1) among the above-mentioned top
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markers, there was no single marker overlap between two research sites, and (2) Assidi
et al. clearly confirmed their initial study. To explain this, we proposed that laboratory-
specific factors may affect results, by making single-gene markers non-transferable from
one site to another. This could be related to (1) the cellular heterogeneity of isolated
materials, (2) specific ethnicity of patient cohorts and genetic make-up, (3) the stimulation
and triggering protocol of hormone treatment, (4) experimental procedures of isolating
the tested materials, (5) data generation methods (i.e., RNA seq, microarrays or even
RT-PCR), and (6) genetic heterogeneity of the patients. The three overlaps from the above-
mentioned potential markers within our data are TOM1 (logpc = —0.28; p = 0.00157),
HDACI (loggc = 0.35; p = 0.00239), and PTGS2 (logrc = —0.61; p = 0.0298).

Although no significant overlap in the single-marker genes from cumulus cells across
different studies was observed, the use of gene expression as a biomarker for embryo
quality was also questioned by others [53]. However, the increasing trend of using pathway
analysis showed common affected pathways. Indeed, IPA and KEGG pathway analyses are
able to show which pathways are controlled by differentially expressed genes and which
distinguish positive from negative samples. In this respect, our data are in accordance with
the general trend of considering apoptotic markers as predictive markers [15,26,54]. Our
results also showed similarly affected pathways, such as cell death and survival in the
category of bio function (for inter-individual differences see Figure 1C,D,F; for differences
between positive and negative samples see Figure 2D E,G).

In this study, for the first time we were able to perform relative classifications among
patient samples. This was possible because we analyzed a minimum of two individual
non-pooled cumulus-cell cluster samples from each donor and took advantage of the
IPA calculated differences in Z scores for a specific pathway or bio function. Therefore,
we were able to classify on a linear scale our positive samples between two negative
groups (Figure 3). Thus, the positive samples showed—in the middle of other signaling
pathway—a response for cell death progression, apoptosis signaling, and several upstream
regulator molecules. Here, identification of either FSH or LH as an upstream regulator
was of particular interest (Figure 3C). Using this as biomarker, along with many others, we
classified the samples based on predicted FSH activity/effect (described here as a response
to FSH) on the expression profile in cumulus cells and classified the samples into three
groups with the positive samples between the two negative groups. This suggests that one
negative group showed a higher response to FSH, while the second group showed a lower
one. In other words, too much FSH (or too long exposure) is as bad as too little (or too short
exposure). We, therefore, suggest that as a first step the samples structure (different groups)
should be determined and that the analysis should take this into consideration. This will
increase the accuracy of biomarker discovery based on multiple group comparisons, not a
simple differentiation between two groups (Figure 3B, Supplementary Figure S7B).

The present study includes limitations and advantages. The former includes a rela-
tively low number of patients as well as the absence of DNA polymorphism analysis that
could be used to investigate/exclude genetic effects and help sort samples into subgroups.
Our several advantages included the study of at least two individual cumulus complexes
from each donor, which allowed Z score calculations to determine inter-patient variations,
the simultaneous analysis of both gene expression and DNA methylation, and a correlation
analysis of both expression and methylation markers with clinical parameters.

4. Materials and Methods
4.1. Patient Samples and Clinical Parameters

For this study, eight couples (mean age, 33 years) undergoing ICSI treatment were
recruited (Supplementary Figure S1A. All the individuals signed written consent for the
study, which was approved by the ethics committee for clinical studies at the University of
Bonn (approval number: 233/10). Two couples underwent repeated treatments separated
by an interval. Therefore, we were able to collect samples from 10 different treatment
cycles: VS51-VS13. There were three and seven sample groups collected after hormonal
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stimulation using the short (GnRH antagonist) and the long (GnRH agonist) protocol of
ovarian stimulation, respectively (Supplementary Table 52). Individual cumulus clusters
surrounding each oocyte were physically separated from the oocyte and further processed
as non-pooled. Sample data on the spindle presence, Zona pellucida birefringence, pronu-
clear pattern, and estrogen level, endometrium size and lead follicle size were available
for this study (Supplementary Table S3). Five cases resulted in a negative pregnancy test
(hCG negatives), while in five cases, the test was positive. Of these, only three continued as
normal pregnancies, whereas two aborted in the early stages.

4.2. Ovarian Hormone Stimulation Protocol and Outer Cumulus Cell Collections

Ovarian hormone stimulation was performed according to either the long or the short
protocol (detailed in Supplementary Table S2). All patients participating in the study had
regular cycles and normal ovarian hormones. The decision to use the long or short protocol
was based exclusively on organizational grounds or the wish of the patient. Briefly, for
the long protocol, the patients were administered 10 ng of GnRH agonist (Decapeptyl®
from Debiopharm) daily for about two weeks. After documentation of hypophyseal down-
regulation, ovarian stimulation was started with a daily dose of 150 TU rFSH (FINOX®
from Finox Biotech, Technikumstrasse 2 Burgdorf, CH-3401, Switzerland, Gonal F® from
Merck-Serono, Merck Serono GmbH, Alsfelder Str. 17, 64289 Darmstadt, Germany or
Puregon® from Merck Sharp & Dohme, Lindenplatz 1, 85540 Haar, Germany) for 11 to
14 days. For the short protocol, patients were administered 150 to 225 IU rFSH (from
Merck or Puregon® from Merck Sharp & Dohme or Bravelle® from FERRING Pharma-
ceuticals, Ch. de la Vergognausaz 50, 1162 Saint-Prex, Switzerland) starting on day 2 of
the menstrual cycle for 9-11 days; GnRH antagonist (Orgalutran® from Merck Sharp &
Dohme or Cetrotide® from Merck-Serono) at a dose of 250 mg was given on days 6 or
7 until ovulation. The triggering/final maturation was performed by injecting 250 ug
hCG (Ovitrelle® from Merck, Frankfurter Str. 250, 64293, Darmstadlt, Germany). Follicular
puncture and cumulus—oocyte complex aspiration were performed about 36 hours post
hCG injection.

Individual cumulus cell clusters were collected from oocytes immediately before
the ICSI procedures. Upon the mechanical isolation of the outer cumulus cells without
enzymatic treatment, the non-pooled individual outer-cumulus cells corresponding to each
oocyte were directly stored at —80 °C in 70 uL of the buffer RLT Plus from Qiagen (cat. no.:
1053393, Hilden, Germany) until further use.

4.3. Isolation of RNA and DNA

Messengers RNA (mRNA), small RNA, and DNA were simultaneously isolated using
a combination of the following two kits: Qiagen All Prep DNA /RNA micro (cat. no. 80284,
Hilden, Germany) and RNeasy Mini Kit (cat. no. 74104, Qiagen, Hilden, Germany). Briefly,
the tubes with the collected outer cumulus cells were further filled to 350 pl of RLT Plus
buffer and vortexed for one minute. The lysate was then loaded to an “All prep” DNA
column and the bounded DNA was processed according to the kit instruction for DNA
isolation. The flow-through containing the RNA was filled with 350 pl of 70% ethanol and
loaded to an RNeasy mini-elute column and further processed according to kit instructions
to isolate the long RNA. DNA and RNA were collected in 45 and 12 pL total volume and
the yield was in the range of 200, 50, and 350 ng, respectively.

4.4. Illumina Array-Based Analysis

We performed genome-wide expression and methylation analysis using the Illumina
platform. Human methylation 450 DNA BeadChip were used for methylation analysis
and human HT-12v4 expression BeadChip was used for expression analysis. The analysis
was performed according to standard Illumina procedure except that the RNA was pre-
amplified before use to ensure an optimum starting amount, using the Target AmpTM-Nano
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labeling kit for Illumina Expression BeadChip (Epicenter, cat. no. TAN07924, Madison,
WI, USA).

4.5. Processing Methylation Arrays Data and Methylation Analysis

The raw Illumina 450K methylation microarray data (two-color IDAT files) were
used to read into the R environment using the function “read.450K.exp”. The following
normalization methods were used to analyze the methylation array data: subset-quantile
within array normalization (SWAN) (Maksimovic et al., 2012 [55]), which performs nor-
malization within the array and allows an Infinium I- and II-type probe on a single array
to be normalized together. After normalization, the dataset was filtered for the detec-
tion of p-values > 0.01. After normalization and initial data processing as above, the data
were passed into the Qlucore Omics Explorer 3.1 software (Qlucore, Ideon Science Park,
Scheelevagen 17, 223 70 Lund, Sweden) for further analysis, visualization, and comparison
against expression data.

4.6. Processing of Expression Array Data and Differential Expression Analysis

Raw IDAT files were obtained from the Illumina human HT-12v4 arrays. These
raw IDAT files were entered into Genome Studio to convert them into readable text files.
Processing of raw text files was carried out in R using the lumi package. (1) LumiR
function was used to read raw .txt data. (2) Data were background corrected, normalized,
and stabilized using the lumiExpresso function. Normalization was performed using
quantile normalization, whereby variance was stabilized using the variance stabilization
transformation (VST) method. (3) Processed data were further filtered for detection of
p-values. Samples that were not expressed in comparison to background noise were filtered
out of the processed data. Final processed data were entered into Qlucore Omics Explorer
for differential expression analysis. A t-test was used for a two-sample comparison, while
ANOVA was used for multiple-sample comparisons. A threshold of p < 0.05 or 5% of a
false discovery rate (FDR) was considered statistically significant for both comparisons.

4.7. Gene Ontology and Pathway Analysis

Gene ontology analysis was carried out using the “Bingo” plugin in Cytoscape 3.
Biological process was identified at 5% of FDR for the differentially expressed genes. The
“EnrichmentMap” plugin in Cytoscape 3 was used for the visualization of gene ontology.
Pathway analysis and upstream regulator analysis were performed using Ingenuity Path-
way Analysis (IPA) from Qiagen. Regarding plot and visualization, heatmaps and principal
component analysis (PCA) plots were created in Qlucore Omics Explorer. Volcano plots
and other statistical plots were visualized using R, Graphpad prism or Cytoscape 3.

5. Conclusions

In conclusion, this study showed that experimental and clinical parameters and
the heterogeneity of samples affect expression profiling in cumulus cells. Therefore, to
determine reliable biomarkers associated with a positive pregnancy, variable results that
could be introduced by experimental and clinical parameters should be excluded by
stratifying the samples. For this, we recommend using ontology and results of pathway
analysis involving upstream regulators as ubiquitous universal markers rather than the
expression of single-gene markers. Finally, we recommend that future studies perform
single cell analysis on cumulus cell complexes to solve the heterogeneity of cells in the
cumulus complex.
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