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macrophages. Finally, the paper addresses the unique fea-
tures of the peritoneal cavity that predispose this body com-
partment to be a niche for cancer metastases, presents issues 
that are topics of an ongoing debate, and points to areas that 
still require further in-depth investigations.
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Introduction

Carcinogenesis is an extremely complex and mysterious dis-
ease, and its most critical and still insufficiently understood 
aspect is the separation of cancer cells from a primary lesion 
and their multistage journey towards various distant organs 
that eventually become colonized and give rise to the forma-
tion of secondary (metastatic) tumors. It has been estimated 
that as much as 90% of deaths in patients suffering from 
cancer is caused by a metastatic disease [1]. According to 
the current state-of-art, the pattern of metastasis distribu-
tion, which is considered a specific feature of a given can-
cer type, is determined by two complementary but plausibly 
not overlapping processes: mechanical (and rather passive) 
cancer cell dispatch by the lymphatic and/or venous systems 
followed by active colonization of the target tissue in accord-
ance with Paget’s “seed and soil” theory [2].

The list of anatomical regions that serve as homing spots 
for secondary tumors is long; bones, for instance, are colo-
nized mainly by breast and prostate cancer, and to a lower 
degree by lung, colon, thyroid, and bladder cancer. The brain, 
in turn, is the site of metastasis for melanoma, breast, lung, 
and colon cancer. Lung metastases are common in melanoma 
and breast cancer, whereas a spread within the liver occurs 
primarily in patients suffering from colorectal and pancreatic 
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cancers [3]. Finally, the peritoneal cavity is a preferential site 
for metastasis of ovarian malignancy, albeit less often also 
other tumors, particularly those originating from the gastro-
intestinal system, give rise to intraperitoneal metastases [4].

Among all the above-mentioned organs serving clini-
cally as metastatic niches, knowledge about the cellular and 
molecular determinants of peritoneal carcinomatosis seems 
to be the most enigmatic. At the same time, it still expands 
and provides certain conceptual challenges.

Seed and soil theory of carcinogenesis

According to a classic and currently considered a very sim-
plistic view, tumor development was the result of the accu-
mulation of a significant number of oncogenic mutations. 
These abnormalities were placed within genes involved in 
cell cycle progression, apoptosis, and telomerase activity 
[5]. Unexpectedly, when this theory was already well rooted 
in the minds of scientists and clinicians alike, it turned out 
that immortal cells bearing a high number of oncogenic 
mutations are frequently unable to form tumors upon their 
transplantation into a laboratory animal’s body in vivo [6].

Stephen Paget, an English surgeon, was the first to pro-
pose that metastatic homing of malignant cells is not a sto-
chastic event but, conversely, is governed by interaction 
between metastatically competent cancer cells (the “seed”) 
and the permissive microenvironment of specific organs (the 
“soil”). In consequence, successful cancer cell implantation 
in a distant location is possible only when cancer cells prede-
termined to spread throughout an organism will accept a spe-
cial kind of molecular invitation sent by certain organs [2].

Paget’s theory was initially critically accepted, as other 
researchers had their own concepts in this regard; for 
instance, Ewing postulated that metastasis is determined by 
factors of a mechanical nature that are closely related to the 
unique vascular characteristics of a given region [7]. Others, 
e.g., Sugarbaker [8], presented a more balanced opinion and 
hypothesized that locoregional cancer spread results from 
both anatomical and mechanical determinants, whereas dis-
tant metastases are truly organ-specific.

Nonetheless, current knowledge on the mechanisms 
by which cancer cells colonize tissues has confirmed that 
although some anatomical predispositions, indeed, do mat-
ter, the organ-specific pattern of metastasis is primarily 
underlined by molecular compatibility between invading 
cancer cells and the tumor-accepting localization [9]. One 
of the best examples of this concerns breast cancer cells 
whose predilection to metastasize to the lymph nodes, bone 
marrow, lungs, and liver is determined by chemotactic inter-
action between malignant cells expressing chemokine recep-
tors CCR7 and CXCR4 and tissues generating a high level 

of chemokine ligands for these receptors, i.e., CCL21 and 
CXCL12 [10].

Another example is the dissemination of melanoma cells 
when malignant cells administered intravenously metasta-
sized to experimental pulmonary grafts and omitted control 
renal transplants [11]. Prostate cancer, in turn, preferentially 
colonizes the bones [12], which is attributed to the chemot-
actic activity of bone secretome products [13]. Last but not 
least, it is worthy to mention about the predilection of serous 
ovarian cancer to the peritoneal cavity which remained the 
prime site of metastasis even in patients treated with perito-
neovenous shunts [14].

There is evidence that the capacity of certain distant 
locations to attract specifically cancer cells can be prepared 
remotely by factors released by primary tumors, e.g., vascular 
endothelial growth factor (VEGF), transforming growth factor 
β (TGF-β), and tumor necrosis factor α (TNFα) [15]. Vari-
ous stimuli released by cancer cells mobilize bone-marrow-
derived hematopoietic progenitors whose arrival to certain 
tissues determines very early changes in the local milieu, 
termed the “premetastatic niche” [16]. Organ-specific tumor 
metastases are also controlled at the genetic level by a wide 
array of transcripts that either provide some growth advan-
tages in the primary and secondary locations or predispose to 
vigorous tumor expansion only in strictly specific sites [17].

The contemporary interpretation of the classic “seed and 
soil” theory assumes that the bidirectional crosstalk between 
cancer cells and the host tissue consists of several processes, 
e.g., invasion (inside and outside the circulation as well as 
into the tissue stroma), cancer cell adhesion to normal cells, 
migration towards a chemotactic gradient, and proliferation in 
response to autocrine and paracrine growth stimuli. Moreover, it 
also includes some additional and supportive but equally essen-
tial phenomena, e.g., the modulation of an immune response in 
the blood and target tissue, epithelial–mesenchymal transition 
(EMT), mesenchymal–epithelial transition (MET), and angio-
genesis [18, 19]. Several of the above-mentioned processes 
underlying the formation of a metastatic niche are governed by 
extracellular matrix (ECM) constituents, periostin, and tenascin 
C, that activate Wnt and Notch pathways in cancer cells, pro-
viding both physical and signaling support for cells that initiate 
a metastasis [20, 21]. Now, this complex functional network, 
shaped and regulated to a significant degree by normal cells 
neighboring the malignancy, is called the “reactive stroma”. 
This term emphasizes that the cancer-accepting tissue is not 
a passive recipient of the cancer cells but is instead an active 
player governing the most critical elements of the disease.

Reactive, cancer‑associated stroma

The tumor stroma consists of distinct cell types whose het-
erotypic interactions with malignant cells and one another 
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drive tumor progression. At the moment, the most appreci-
ated peritumoral representatives of this structure are can-
cer-associated fibroblasts (CAFs) [22] and tumor-associated 
macrophages (TAMs) [23].

Cancer‑associated fibroblasts

The unique properties of CAFs were first reported in 1999 
by Olumi and colleagues, who found that fibroblasts isolated 
from prostate cancer are able to, as opposed to cells from a 
noncancerous gland, initiate the malignant transformation of 
prostate epithelial cells and the growth of tumors in immu-
nocompromised animals [24]. Further research using cells 
from invasive mammary cancer allowed to define CAFs as 
cells: (1) with explicit tumor-promoting activity, (2) con-
taining a large fraction of α-smooth muscle actin (αSMA)-
positive myofibroblasts co-existing with fibroblasts resem-
bling those from normal tissues, (3) with proangiogenic 
capabilities, i.e., associated with augmented secretion of 
CXCL12/SDF-1, which were greater than those character-
izing normal fibroblasts, and (4) with the preserved capacity 
to promote tumors and exert myofibroblastic features even 
in the absence of cancer cells [25]. Thanks to their ability 
to secrete cytokines (e.g., IL-6), chemokines (e.g., CXCL8/
IL-8), growth factors (e.g., FGF, HGF, TGF-β, VEGF), and 
extracellular matrix proteins, and remodeling enzymes (e.g., 
collagen I, tenascin C, periostin, fibronectin, MMP-1), CAFs 
literally support all vital steps of tumor progression. Their 
contribution to carcinogenesis extends from the conversion 
of pre-malignant cells to full-blown malignancy to the final 
formation of distant metastases [26]. Interestingly, in some 
cases, the presence of CAFs may also have some positive 
aspects. This applies, e.g., to pancreatic adenocarcinoma 
where a depletion of CAFs initiated immunosuppression 
and reduced patient survival [27].

One of the best recognized mechanisms by which CAFs 
contribute to cancerogenesis is TGF-β-related signaling. 
The activity of TGF-β seems to be critical in the very ini-
tial phases of tumor formation due to its profound immu-
nosuppressive activity [28]. It has been found that CAFs 
determine the propensity of adjacent epithelia (prostate 
and forestomach) to be oncogenic in the TGF-β-dependent 
mechanism [29]. Similar observations were made using 
colorectal cancer cells whose efficiency for organ coloniza-
tion was positively regulated by stromal cell-derived TGF-
β, and animals subjected to the pharmacological inhibition 
of TGFBR1 appeared to be resilient to metastasis forma-
tion [30]. The pro-metastatic effects of TGF-β were further 
mediated by anti-apoptotic GP130/STAT3 signaling and the 
GP130 ligand, interleukin-11 (IL-11), which is produced 
exclusively by CAFs in response to TGF-β. The remain-
ing, already identified down-stream pro-metastatic effec-
tors of this cytokine include connective tissue growth factor 

(CTGF) [31], tenascin C (TNC) [32], and angiopoietin-like 
4 (ANGPTL4) [33]. These molecules contribute to metasta-
sis formation using various routes. CTGF induces hypoxia-
inducible factor 1α (HIF-1α)-dependent reprogramming 
of CAFs that leads to the activation of tumor-supporting 
autophagy, glycolysis, and senescence [34]. TNC promotes 
cancer cell survival, proliferation, migration, and EMT [35], 
whereas ANGPTL4 contributes mainly to increased angio-
genesis [33].

It is worth noting that the activity of TGF-β in a tumor 
microenvironment is not solely pro-cancerous, per anal-
ogy to the activity of CAFs [26], e.g., mutations in the 
tumor suppressor gene APC combined with inactivation of 
TGFBR2 in epithelial intestinal cells enabled the malignant 
transformation and invasion of colorectal carcinoma in a 
mouse model [36]. We strongly believe that the activity of 
TGF-β in cancer is highly context-dependent; however, a 
detailed analysis of this dichotomy is far beyond the scope of 
this article (see [37–39] for excellent reviews of this topic).

Another interesting pathway by which CAFs appear to 
influence tumor development and progression is cellular 
senescence. In fact, senescent fibroblasts that are capable of 
initiating carcinogenesis [40] as well as of promoting cancer 
cell progression both in vitro and in vivo [41] have been 
considered as one of the probable sources of CAFs. The 
similarity between CAFs and senescent fibroblasts is in par-
ticular expressed in their ability to overproduce several pro-
cancerous stimuli, which is called the senescence-associated 
secretory phenotype (SASP) [42]. Research on breast cancer 
cells revealed that senescent fibroblasts which are specific 
for sites of cancer metastasis promoted the growth of malig-
nant cells thanks to their ability to hypersecrete interleu-
kin 6 (IL-6), whereas cells that produced little to none of 
this cytokine failed to support tumor growth in the mouse 
xenograft model [43]. Interestingly, however, both senescent 
and nonsenescent CAFs appear to display diversified activ-
ity, as the former have been found to support aggressive 
cancer phenotypes more efficiently [44]. Simultaneously, 
there is evidence that sometimes, the activities of CAFs and 
senescent fibroblasts do not overlap. This is the case, for 
example, for gastric fibroblasts which upon treatment with 
IL-6 transdifferentiated into CAFs in a mechanism involv-
ing Twist1-dependent phosphorylation of STAT3. Although 
ectopic expression of Twist1 in normal cells inhibited their 
senescence, suppression of this transcription factor acceler-
ated senescence in the CAFs [45].

Tumor‑associated macrophages

Taking into account that cancer in many aspects resem-
bles a state of chronic inflammation [46], cells represent-
ing the immune system, and in particular macrophages, 
play an important role as active elements of the reactive 
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stroma [47]. The recruitment of macrophages into tumors 
is mediated by cytokines, chemokines, and growth fac-
tors originating from cancer and nearby normal tissue 
stroma. The most important chemoattractants for these 
cells include CCL2, CCL3, CCL4, CCL5, and CCL22 
[48]. Tumor-associated macrophages (TAMs), usually 
observed on the boundaries of a tumor, are classically 
linked with their ability to restrict the extent of damaged 
tissue through their ability to scavenge necrotic debris 
[49].

Another effect attributed to TAMs is immunosuppres-
sion directed mainly towards the T-cells. This capabil-
ity is expressed exclusively by the M2 subtype of mac-
rophages, mainly by the M2d cells [50]. These cells, in 
contrast to the M1 fraction bearing pro-inflammatory 
characteristics, have anti-inflammatory properties associ-
ated with the production of various molecules, including 
IL-10, TGF-β, and arginase 1 [51]. Moreover, the mac-
rophages elicit T-cell dysfunction (depressed proliferation 
and cytotoxicity) through TNFα- and IL-10-dependent 
induction of programmed death-ligand 1 (PD-L1) [52]. 
Simultaneously, they have the ability to mobilize natural 
regulatory T-cells (nTreg), which proceed in a mechanism 
involving the chemotactic activity of CCL3, CCL20, and 
CCL22 [53].

One of the most intriguing features of TAMs is their 
functional switch related to the stage of tumor develop-
ment. In the initial phases, macrophages infiltrating a 
tumor display the M1 phenotype and tend to eliminate 
the malignancy. As the pathology progresses, however, 
the macrophages adopt the M2 function (often described 
as IL-12low/IL-10high) and start to alter the microenviron-
ment into a cancer-promoting phenotype [48].

TAMs also modulate further invasion of normal tis-
sue by cancerous cells by secreting ECM-degrading 
enzymes, such as matrix metalloproteinases [54] and 
cysteine protease, cathepsin [55]. As per the metallopro-
teinases, TAMs usually operate through MMP-1, MMP-7, 
MMP-9, and MMP-12 [48]. When it comes to cathepsin, 
recent reports have suggested that massive tumor infiltra-
tion with macrophages followed by release of significant 
amounts of the enzyme occurs in mammary tumors upon 
the administration of paclitaxel. Macrophages expressing 
cathepsin protected the cancer cells against drug-induced 
death and this effect was effectively prevented by cath-
epsin inhibition. The same macrophages were also found 
to inhibit the incidence of cancer cell death elicited by 
etoposide and doxorubicin [55]. Mechanistically, the 
activity of cathepsin in TAMs is associated with the acti-
vation of autophagy, including the fusion of autophago-
somes and lysosomes, leading to the development of the 
prototypic, polarized M2 phenotype in these cells [56].

The peritoneal cavity: a brief look at structure 
and function

The human body consists of several cavities, of which the 
pleural, pericardial, and peritoneal cavities are the most 
important ones. Among these cavities, the peritoneum is the 
most extensive. The peritoneum has two layers—the pari-
etal and the visceral layer. The parietal peritoneum covers 
the walls of the abdomen and pelvis, whereas the visceral 
peritoneum lines the coelomic organs. The space between 
these two layers, i.e., the peritoneal cavity, is in physiologi-
cal conditions filled with a small amount (~ up to 100 ml) 
of fluid [57]. Under pathologic conditions (e.g., cancer), the 
fluid’s volume increases and its biochemical composition 
changes dramatically, which often correlates with poor prog-
nosis [58].

From a histological point of view, the peritoneum consists 
of two general compartments, i.e., the mesothelium and the 
stroma. As opposed to the mesothelium, which is formed by 
a single layer of epithelial-like cells resting on a basement 
membrane, the stroma consists of both cellular (fibroblasts, 
macrophages, mast cells, and endothelial cells) and acel-
lular elements (collagen, glycoproteins, and proteoglycans). 
An important structural component of the peritoneal cavity 
is adipocytes, which are particularly abundant within the 
greater omentum, where they form the visceral fat coat. The 
blood and lymphatic vessels as well as nerves are present in 
the subserous space [59].

Apart from being a framework where visceral organs are 
anchored and serving as a conduit for their vascularization 
and innervation, the peritoneal cavity has several additional 
functions whose realization is guaranteed by reciprocal 
interactions between the diversified populations of cells 
forming this cavity. The most classic function is lubrication 
of both the peritoneum surfaces which allows for friction-
less movements of the viscera. This property is provided 
by the peritoneal mesothelial cells (PMCs), which have the 
constitutive ability to produce and release surfactant-like 
proteoglycans and phospholipids [57]. Another basic func-
tion of the peritoneum is the filtration, as the peritoneum is 
a semipermeable membrane for the bidirectional passage 
of water and dissolved particles between the blood and the 
peritoneal cavity [60].

Last but not least, the principal destiny of the peritoneal 
cavity is a contribution in certain forms of inflammatory 
reactions [61]. This activity is regulated by a network of 
paracrine and autocrine interactions between normal peri-
toneal cells and the products of their constitutive or induc-
ible secretome. The first line of defense is the peritoneal 
macrophages (PMs), which have the ability to generate sig-
nificant amounts of the tumor necrosis factor (TNF). Their 
activity is followed by reactions elicited by PMCs which 
secrete a plethora of soluble mediators to the environment, 
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such as cytokines (IL-1, IL-6, IL-15), chemokines (CXCL8/
IL-8, CCL2/MCP-1, RANTES, CXCL1/GRO-1, and 
CXCL12/SDF-1), growth factors (TGF-β1, PDGF, FGF, 
and VEGF), ECM elements (collagens I, III, IV, fibronectin, 
elastin, and vitronectin), and adhesion molecules (ICAM-1, 
VCAM-1, E-cadherin) [62]. An important activity of the 
mesothelium is also the generation of the chemotactic gradi-
ent for polymorphonuclear leukocytes, which is related to 
the secretion of interleukin 17 [63]. A supportive role with 
respect to PMCs is played by peritoneal fibroblasts (PFBs), 
which share with them the general profile of the secretome 
and also attract polymorphonuclear cells, but in an interleu-
kin 1β (IL-1β)-dependent mechanism [64].

Intraperitoneal carcinomatosis

The peritoneal cavity is attacked by different types of can-
cer cells, albeit the frequency and mechanisms by which 
malignant cells reach and colonize the peritoneum differ 
remarkably. Most frequently, the peritoneum attracts ovar-
ian, colorectal, pancreatic, and gastric tumors. Less common 
are metastases of breast and lung cancer, as well as those 
from melanoma [65].

One of the most important features of the peritoneum 
that makes this organ an excellent site for the development 
of secondary tumors is its extensive area; the second feature 
is the presence and movement of the peritoneal fluid. When 
the ascites accumulate, starting in the pouch of Douglas and 
further in the other compartments of the peritoneal cavity, 
their flow gathers tumor cells and distributes them in, to 
some extent, a stochastic manner throughout the whole cav-
ity. On the other hand, the fluid circulates in a well-defined 
manner (in the cephalad–caudal–cephalad direction and 
controlled by gravity and respiratory motion), which means 
that there are some locations with a particular propensity to 
deposit inflowing cells; these include the pouch of Douglas, 
the sigmoid colon and its mesentery, the terminal ileum, the 
right paracolic gutter, the posterior right subhepatic space, 
and the right subphrenic space [66].

Another common location of metastatic tumors is the 
greater omentum, which anatomically floats in the peri-
toneal cavity and is bathed by the peritoneal fluid. In the 
case of some malignancies, particularly ovarian cancer, the 
greater omentum is the most frequent place for metastasis 
[67]. Deposits of cancerous cells within the omental tissue 
have been found in as much as 46% of patients in stage III 
disease [68]. A special predilection of cancer cells to colo-
nize the greater omentum is associated with the presence 
of adipose tissue-derived mesenchymal stem cells [69] as 
well as with the abundancy of milky spots [70]. Studies 
employing various types of cancers, e.g., melanoma, lung, 
breast, and ovarian carcinoma, showed that the peritoneal 

metastases of these tumors preferentially colonize omental 
milky spots consisting of organized aggregates of immune 
cells and a complex network of capillaries with a high vas-
cular density [70].

The omental milky spots and omental adipocytes seem 
to exert complementary action towards the promotion of 
intraperitoneal tumors. This assumption stems from in vivo 
experiments which showed that various lines of ovarian 
cancer cells lodge and progress more preferentially within 
omental and splenoportal fat that is rich in milky spots than 
within peritoneal fat deposits. Moreover, a conditioned 
medium generated by adipose tissue with the milky spots 
promoted cancer cell migration more efficiently than the 
medium from adipose tissue lacking these structures [71].

Ovarian cancer

Most often, the peritoneum is the site of homing for ovar-
ian cancer cells. Peritoneal tumors have been found to be 
developed in as much as 70% of patients in stage III or IV 
of the disease [72]. Primarily, the predilection of the perito-
neal cavity to attract ovarian cancer cells is dictated by the 
fact that the ovaries are suspended in the peritoneal cavity 
and that the ovarian epithelium constitutes a continuity with 
the PMCs [4]. The peritoneal spread of the primary ovar-
ian tumor is thus a perfect example of direct intraperitoneal 
seeding. Ovarian cancer may also spread along the broad 
ligament to engage the serosal side of the uterus, or, alter-
natively, it may progress laterally to occupy the peritoneum 
of the pelvic sidewall [66].

The exfoliation of cancer cells from their primary loca-
tion is accompanied by their morphological reorganiza-
tion, in particular initiation of the EMT due to decreased 
expression of a membrane glycoprotein, E-cadherin [73]. 
Decreased expression of this protein results in the develop-
ment of a spindle-shaped morphology of the cancer cells, 
which become more invasive. Moreover, down-regulated 
expression of E-cadherin correlates with an increased level 
of α5-integrins and results in increased adhesion of cancer 
cells to the three-dimensional omental culture consisting of 
PMCs and fibroblasts [74].

Once the cancer cells are successfully detached from 
the primary tumor and reach the peritoneal space, they are 
carried by the peritoneal fluid, which is usually present in 
excess in the form of malignant ascites [58], and then float 
passively to finally sediment on certain surfaces of the peri-
toneal cavity. To decrease the probability of elimination by 
intraperitoneal inflammatory cells, most cancerous cells 
form conglomerates, i.e., “spheroids”, in which they remain 
until final disaggregation takes place, announcing the initial 
phase of cancer cell adhesion to resident normal peritoneal 
cells [75]. Free-floating cells are still in the EMT state [76], 
which may be causatively linked with high expression of 
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Sip1, which is a negative regulator of the E-cadherin level 
[77].

The peritoneal malignant ascites that constitute an envi-
ronment for ovarian cancer cells act not only as their pas-
sive carrier but also actively contribute to progression of 
the disease. They modulate immune reactions within the 
peritoneal cavity, e.g., they inhibit T-cell receptor-induced 
NF-κB and the nuclear factor of activated T-cell (NFAT) 
signaling in tumor-associated T-cells [78]. In addition, the 
ascites are rich in soluble agents that support tumor growth 
and tissue neovascularization, including angiogenin, VEGF, 
IL-6, CCL2/MCP-1, CXCL1/GRO-1, and CXCL8/IL-8 
[79]. A recent study revealed that this fluid’s biochemical 
composition, in particular the high concentration of several 
pro-inflammatory agents, may be responsible for the high 
aggressiveness of undifferentiated ovarian tumors [80].

As for the adhesion of ovarian cancer cells to surfaces of 
the peritoneum, in particular to PMCs and ECM proteins, it 
should be pointed out that this process is the first of several 
phenomena based on interactions between cancer cells and 
normal peritoneal cells whose ultimate goal is the forma-
tion of solid intraperitoneal metastases [4]. The disaggrega-
tion of spheroids allowing for the initiation of adhesion is 
related to the proteolytic activity of matrix metalloproteinase 
2 (MMP-2) against fibronectin and vitronectin [81]. Further 
steps include migration of the cancer cells towards a chemo-
tactic gradient generated by soluble stimuli released by the 
mesothelial cells, fibroblasts and adipocytes, invasion across 
the mesothelium, ECM and basement membrane to reach 
the tissue stroma, and, finally, proliferation, again fueled by 
soluble mitogens of different origin, which yields new gen-
erations of malignant cells that can form a tumor [4].

Apart from the hospitable “soil” provided by the peri-
toneum, the cancerous “seed” also actively helps to create 
a metastatic niche. A perfect example of this activity is 
TGF-β1/Smad 2/3-dependent signaling that is activated by 
transcription factor PITX2 which modulates ovarian can-
cer cell invasion [82]. Another example is the activity of 
cancer-derived exosomes that are rich in the CD44 molecule 
internalized further by the mesothelial cells that alter the 
phenotype of the latter towards the augmentation of certain 
cancer-promoting features (e.g., increased MMP-9 secretion) 
[83].

In addition, colonization of the peritoneal cavity is sup-
ported by cancerous neoangiogenesis [84], which is pro-
moted in a clearly overlapping manner by malignant ascites 
[85] and the products of the normal [86] and malignant cells’ 
[87] secretome.

Gastrointestinal cancers

Somewhat less often than in the case of ovarian cancer 
but still frequently enough to be a clinical problem, the 

peritoneum is a site for the dissemination of gastrointestinal 
(colorectal, pancreatic, and gastric) tumors. As per colorec-
tal cancer, the peritoneum is the second, to the liver, distant 
location to be colonized by malignant cells [88]. Statisti-
cally, even 80% of patients who died from this pathology had 
intraperitoneal metastases [89]. Pancreatic cancer dissemi-
nates, in turn, within the liver and the peritoneum, where it 
develops tumors most frequently within the greater omentum 
[90]. It has been estimated that 70–80% of nonresectable 
patients with pancreatic tumors experienced peritoneal car-
cinomatosis [91]. Finally, when it comes to gastric cancer, 
up to 50% of patients with advanced disease develop perito-
neal tumors, even despite radical surgery [65].

Peritoneal involvement is also a sign of disease recur-
rence. It has been found that in up to 35% of patients with 
colorectal cancer and in up to 50% of patients with gastric 
cancer, cancer recurrence was confined to the peritoneal cav-
ity. In contrast, however, to ovarian tumors where cytoreduc-
tive surgery followed by elimination of focal microtumors 
using chemotherapy results in disease recurrence in the rel-
atively long perspective, the recurrence of gastrointestinal 
tumors is fast even upon total eradication of their metastases 
from the peritoneum [65].

From the pathophysiological point of view, peritoneal 
dissemination of gastrointestinal cancers typically proceeds 
in two ways, i.e., as a result of direct cell detachment from 
a primary tumor (along with bowel wall penetration in the 
case of colorectal cancer) or iatrogenically due to incomplete 
resection of the primary lesion and cancerous cell efflux 
from dissected blood and lymph channels [89]. If the cancer 
cells are detached spontaneously, they are pushed by the 
high pressure of the interstitial fluid to seed within the peri-
toneal cavity. Some factors increase the interstitial pressure; 
these include contraction of the interstitial matrix, tissue 
fibrosis, osmotic pressure elicited by anaerobic glycolysis, 
and the escape of plasma proteins [92].

Once the cancer cells of gastrointestinal origin get to 
the peritoneum, their implantation in the metastatic niches 
requires, again, their strict cooperation with normal perito-
neal cells. The essence of adhesion, migration, and invasion 
as well as of EMT and angiogenesis is analogical to that 
described for ovarian cancer cells [92]. In some cases, how-
ever, e.g., during adhesion, the mediators of both cancer cell 
and normal cell origin are different. It should be emphasized 
that the dialogue between cancerous and normal cells pro-
ceeds in both directions, which means that the cancer cells 
are also actively engaged in the colonization process. This 
activity has been shown when analyzing the movement of 
colorectal cancer cells towards tissue stroma whose process 
takes place through gaps between the PMCs which were 
likely formed in response to the pro-apoptotic signals of 
cancerous origin [93]. An important role is also played by 
malignant ascites; e.g., MMP-7, which, present in the fluid 
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in patients with gastric cancer, appeared to be predictive of 
peritoneal cancer spread [94].

Tumors metastasizing using the hematogenous 
and lymphatic route

Hematogenous spread into the peritoneal cavity is encoun-
tered in patients with malignant melanoma, lung, and breast 
cancer. In such cases, the embolic metastatic focus begins 
as a small nodule with eventual progression. The lymphatic 
dissemination involves, in turn, channels that are common 
along the ligaments and mesenteries within the peritoneal 
cavity. This leads to the formation of round and/or oval 
tumors and occurs particularly in patients with nonHodg-
kin’s lymphoma. Current appreciation of this kind of peri-
toneal involvement is to some extent underestimated, as this 
form of transmission plays a clinically negligible role [95].

Cellular elements of cancer development 
within the peritoneal cavity

According to the newest knowledge, intraperitoneal forma-
tion of cancer metastases is orchestrated by reciprocal inter-
actions between invading cancer cells and all populations of 
resident peritoneal cells. Some aspects of tumor progression, 
e.g., adhesion, are controlled primarily by specific cell types 
(mesothelial cells), whereas some other phenomena, e.g., 
proliferation and migration, are supported by almost all cell 
populations. In addition, normal cell-cancer cell interactions 
may proceed at four basic levels: upon their direct physi-
cal contact, through the paracrine activity of soluble factors 
released to the environment, and through reactions medi-
ated by insoluble products of the cell secretome, e.g., ECM 
constituents. As was mentioned before, the function of both 

cancer cells and peritoneal cells may also be modulated by 
the presence and composition of malignant ascites (Fig. 1).

Peritoneal mesothelial cells (PMCs)

The visceral and parietal surfaces of the peritoneal cavity 
are covered by a single layer of epithelial-like cells, i.e., 
mesothelial cells (PMCs). A unique feature of these cells 
is their dual, mesenchymal–epithelial characteristics. They 
originate as fibroblasts from the mesoderm, but their appear-
ance and function resemble that of epithelial cells; hence, 
PMCs express intermediate filaments typical of both the 
mesoderm (vimentin) and epithelium (cytokeratins). Under 
certain stimuli, in particular TGF-β1, PMCs lose their cob-
blestone appearance and adopt a spindle-shaped morphology 
typical of cells undergoing the EMT [62].

Among all the fractions of cells forming the peritoneal 
cavity, PMCs are the largest, and thus, their role in the main-
tenance of intraperitoneal homeostasis is the most prominent 
[62]. Their involvement in cancer metastases was also stud-
ied most extensively among all types of normal peritoneal 
cells, which is probably due to the fact that they have direct 
interaction with inflowing cancer cells as the first. In this 
regard, however, there is still an ongoing debate as to the 
exact function of PMCs during the very first stages of intra-
peritoneal cancer progression.

According to a group of scientists, PMCs play a pas-
sive role as “the first line of defense”, whose disruption 
and concomitant penetration allows cancer cells to start 
interacting with the tissue stroma, in particular with 
the peritoneal fibroblasts and ECM constituents, and to 
freely disseminate [96, 97]. This assumption stems from 
the observation that biopsies of ovarian tumors that were 
present in the peritoneum did not contain mesothelial 
cells in close proximity to the proliferating cancer cells 
[98]. The authors of this statement explained the above 

Fig. 1   Cellular and acellular 
components creating metastatic 
niche within the peritoneal 
cavity. Complex molecular and 
biochemical background of 
these interactions is precisely 
delineated in the text
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by discussing the active behavior of cancer cells which 
generate myosin-related forces that push the mesothelial 
cells apart, which creates a mesothelium-free channel by 
which the malignant cells can reach the tissue stroma. 
Interestingly, in the image showing this situation in vivo, 
one can recognize cancer cells lying above the PMCs (not 
below—in the stroma), which indicates very initial stages 
of cancer progression, probably very close to their stable 
adhesion [98]. Nonetheless, the enthusiasts of the theory 
of the protective role of PMCs during intraperitoneal dis-
semination of ovarian cancer have provided more results 
confirming their reasoning, e.g., they showed that ovarian 
cancer cells attach more efficiently to the ECM than to 
PMCs [99]. Other authors observed, in turn, that PMCs 
inhibit ovarian cancer cell adhesion and invasion, while 
fibroblasts promote both phenomena [100]. In our opinion, 
it is worth noting, however, that the analysis of cancer cell 
adhesion to various cellular and acellular structures was 
based on quite a specific algorithm in which the efficiency 
of this process was estimated according to the mathemati-
cal difference between total adhesion of cancer cells to 
PMCs co-cultured with peritoneal fibroblasts and partial 
adhesion of these cells to PMCs alone.

On the other hand, there is a group of researchers, to 
which belongs also our team,favoring the scenario that 
PMCs do, indeed, support cancer cells in their attempts 
to colonize the peritoneal cavity. There is evidence that 
PMCs promote ovarian cancer cell adhesion via interac-
tions between mesothelial cell surface fibronectin and 
cancer cell-derived α5β1 integrins [101] via the binding of 
mesothelial hyaluronic acid (HA) with its receptor, CD44, 
on the cancer cells [102], or via the activity of certain solu-
ble agents released to the environment, e.g., lysophospha-
tidic acid (LPA) [103]. Moreover, several soluble factors of 
mesothelial origin have been found to stimulate other vital 
elements of ovarian cancer cell progression, including pro-
liferation (CXCL8/IL-8, IL-6 [104]), migration (CXCL12/
SDF-1 [105], HA [106]), and invasion (LPA [103]). Other 
PMC-derived agents are involved in remodeling of ECM 
(PAI-1 [107], u-PA [108]), angiogenesis (VEGF [86]), and 
EMT (TGF-β1 [109]).

Our own experiments designed to verify the role of PMCs 
in peritoneal ovarian cancer development have shown that 
the efficiency of ovarian cancer cell adhesion to the primary 
omental PMCs was considerably higher than to fibronectin 
and to fibroblasts. Moreover, ovarian cancer cells prolifer-
ated better in the presence of PMCs than in the presence 
of fibroblasts or fibronectin [110]. We also documented in 
experiments using immunocompromised mice that the rate 
at which ovarian tumors developed in the peritoneal cav-
ity upon i.p. injection of mixtures of ovarian cancer cells 
together with PMCs was higher as compared with xenografts 
produced upon injection of cancer cells alone [110].

Two clashing ideas regarding the role of PMCs have 
resulted in a conceptual compromise that PMCs do indeed 
promote the early stages of ovarian cancer metastasis by 
TGF-β1/Smad-mediated up-regulation of fibronectin pro-
duction. Blocking fibronectin production decreased the abil-
ity of ovarian cancer cells to adhere to PMCs and reduced 
their proliferation and invasion [111].

PMCs contribute to the progression of not only ovarian 
cancer cells. It has been evidenced that they also promote 
adhesion of colorectal and pancreatic cancer cells, albeit 
the molecular mechanisms underlying this interaction are 
different; namely, they involve the cooperation of cancer 
cell surface ligand CD43 and intercellular adhesion mol-
ecule-1 (ICAM-1) on the surface of the PMCs [112, 113]. 
The strength of cancer cell adherence has been recognized 
as being determined by local inflammation, in particular by 
the activity of IL-1β and TNFα [114, 115], and by oxida-
tive stress [116, 117]. Unexpectedly, a very recent study 
showed in the case of colorectal and pancreatic cancer what 
has been challenged for ovarian cancer cells, i.e., protection 
of the peritoneal cavity by PMCs. It has been evidenced 
that colorectal (SW480) and pancreatic (PSN-1) cancer cells 
generated tumors in the mouse peritoneum cavity at higher 
dynamics when they were injected alone than in the presence 
of PMCs. Further in vitro studies showed that this effect 
could be associated with up-regulated secretion of soluble 
ICAM-1 (sICAM-1) by the PMCs which appeared to block 
the interaction of tumor-derived CD43 with its cell-bound 
counterpart in a competitive manner [118].

This last observation may suggest that the role of PMCs 
in peritoneal carcinomatosis may depend on the type of 
tumor cells. On the other hand, there is evidence that the 
contribution of PMCs may be determined by their replicative 
age. Interestingly, PMCs are the only type of cells originat-
ing from the peritoneum for whom both the triggers and the 
mechanisms of senescence as well as the resulting changes 
in gene expression and function have been well described. 
In brief, PMCs display poor proliferative capacity and 
fast entry into senescence, which closely resembles other 
kinds of epithelial cells. Senescence of PMCs proceeds in a 
telomere-independent fashion and is mediated by p16INK4a 
[119]. What is of special importance for the potential clini-
cal relevance of senescent PMCs is that their presence has 
been demonstrated in the omentum in vivo [120]. No less 
important is the observation that the senescence of PMCs is 
induced prematurely by malignant ascites-derived HGF and 
CXCL1/GRO-1 [121].

Experiments in  vitro using primary, omental PMCs 
showed that senescent cells promote adhesion of ovarian 
[122], colorectal, and pancreatic cancer [123] cells much 
more effectively than young cells. As per ovarian cancer, 
the pro-adhesive capabilities of senescent PMCs have been 
linked with increased production of fibronectin by these 
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cells and to concomitant augmented interactions between 
overexpressed fibronectin and α5β1 integrins on the surface 
of the cancer cells. Mechanistically, increased generation of 
fibronectin was related to an axis involving oxidative stress- 
and TGF-β1-dependent induction of p38 MAPK [122]. 
When it comes to cancers originating from the gastroin-
testinal tract, their improved adhesion to senescent PMCs 
resulted from p38 MAPK- and AP-1-dependent overpro-
duction of surface ICAM-1 [123]. Furthermore, senescent 
PMCs appeared to stimulate proliferation, migration, and 
invasion of ovarian cancer cells in vitro, and this effect was 
related to both the activity of soluble agents released to the 
environment by these cells and to direct cell–cell contact 
(Fig. 2). In fact, senescent PMCs display well developed 
SASP, as they hypersecrete numerous proteins involved 
in cell replication, angiogenesis, inflammation, and ECM 
remodeling, and are known to promote certain elements of 
cancer cell progression. In the case of ovarian cancer cells, 
their motility was fueled by CXCL1/GRO-1, CXCL8/IL-8, 
IL-6, TGF-β1, and fibronectin [124]. Intervention studies 
allowed to discover that SASP present in senescent PMCs 
is elicited in a pathway engaging p38 MAPK and NF-κB 
[125]. Mice injected intraperitoneally with ovarian can-
cer cells combined with senescent PMCs formed tumors 
at higher dynamics as compared with those in which the 
tumors developed in the presence of young PMCs. Inter-
estingly, when senescence and concomitant development 
of SASP were inhibited by neutralization of p38 MAPK, 
the rate at which the ovarian tumors progressed in vivo was 
significantly attenuated [124].

Apart from ovarian cancer, senescent PMCs also exert 
promoting activity towards colorectal tumors. Under in vitro 
conditions, they stimulated cancer cell proliferation (via 
IL-6), migration (via CXCL8/IL-8 and CCL2/MCP-1), and 
invasion (via IL-6, MMP-3 and uPA), and they triggered 
the EMT in a mechanism involving TGF-β1-dependent 
induction of Smad 2/3-Snail1 signaling. Experiments using 
a mouse xenograft model showed that they also stimulated 
the progression of intraperitoneal colorectal tumors, whose 
effect was partly associated with increased tumor neovas-
cularization [125].

Cancer cell-type specificity of the pro-tumoral activity of 
senescent PMCs was confirmed in observations in which the 
PMCs were able to increase the adhesion [123] and migra-
tion of pancreatic cancer cells but simultaneously failed 
to stimulate their proliferation in vitro and tumor growth 
in vivo [125].

It is also worth noting that senescent PMCs may regulate 
the progression of ovarian cancer cells by reprogramming 
their secretory phenotype towards increased production of 
proangiogenic agents and the resulting stimulation of the 
angiogenic capabilities of the vascular endothelium. In this 
respect, an analysis of senescent PMCs’ secretome allowed 
to identify IL-6 and TGF-β1 as the mediators of their proan-
giogenic activity. At the transcriptional level, increased 
angiogenic behavior of endothelial cells subjected to cancer 
cells modified by senescent PMCs was regulated by HIF-1α, 
NF-κB/p50, and AP-1/c-Jun [87].

Peritoneal fibroblasts (PFBs)

The submesothelial stroma of the peritoneal cavity is 
formed by PFBs and structural proteins secreted by these 
cells, including collagen, fibronectin, elastin, and vitronectin 
[126]. Once the cavity is colonized by a cancer, the PFBs 
start to act as CAFs supporting disease progression [127]. 
Simultaneously, it is not entirely clear what the exact ori-
gin of CAFs within the peritoneal tumors is; what is known 
for sure is that they do not derive from the cancer cells 
[128]. Classically, they were treated as resident cells that 
were activated by stimuli sent by the tumors [129]. A much 
newer theory states, however, that peritoneal CAFs may 
derive from PMCs in which cytoarchitectural changes, i.e., 
the development of a spindle-shaped appearance called the 
mesothelial–mesenchymal transition (MMT), are initiated in 
a reaction to the products of the cancer cell secretome [130]. 
A much earlier study proposed that myofibroblastic transdif-
ferentiation of PMCs during peritoneal carcinomatosis may 
be elicited by TGF-β1 [131]. This scenario was confirmed in 
experiments on peritoneal gastric cancer metastases in which 
the expression of the fibroblast activation protein (FAP) was 
revealed in the mesothelial region of the majority of tumor 
specimens [132]. Activated PMCs displaying decreased 

Fig. 2   Elements of intraperitoneal cancer cell progression stimulated 
by senescent peritoneal mesothelial cells. Mediators and signaling 
pathways underlying these phenomena are discussed in the text
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expression of E-cadherin and increased expression of αSMA 
up-regulated the proliferation of gastric cancer cells either 
in a mechanism involving direct cell–cell contact or anchor-
age-independently [133]. Interestingly, the presence of PFBs 
with myofibroblastic characteristics seems to be a unique 
feature of malignant tumors, as these PFBs were not detected 
in the peritoneum of patients with benign ovarian lesions. 
In the case of cancer, their frequency expanded along with 
progression of the disease [134].

It is believed that malignant ascites play a potent role 
as the source of signals evoking the transdifferentiation of 
fibroblasts. The fluid contains high amounts of TGF-β1 and 
HGF, which are capable of promoting the MMT [80]. This 
concept was proved recently in a study in which malignant 
ascites-derived exosomes rich in TGF-β1 induced αSMA 
and FAP expression in PMCs and enhanced their motility 
[135].

Cancer-associated PFBs contribute to all processes under-
lying peritoneal carcinomatosis and there is no doubt, per 
analogy to PMCs, that their impact is clearly pro-tumoral. 
It has been found that they serve as an adhesive sur-
face for cancer cell attachment in a mechanism involving 
β1-integrins [130].

PFBs become educated intraperitoneally to progress more 
efficiently in a paracrine manner by the cancer cells, in par-
ticular by TGF-β1. In normal cells, TGF-β1 activates one of 
its down-stream targets, Smad 2 [136], playing a significant 
role in the EMT/MMT phenomenon [137]. Experiments per-
formed with a 3D culture model mimicking the omentum 
showed that activated PFBs supported both adhesion and 
invasion of the cancer cells in vitro, as well as tumor growth 
and metastasis in a mouse xenograft model. These activities 
were probably associated with overexpressed MMP-2 and 
HGF, as neutralization of these molecules markedly reduced 
tumor progression [136].

The activity of PFBs in the context of cancer progres-
sion is linked not only with TGF-β1 but also with TGF-α, 
whose expression is elevated in response to their co-culture 
with ovarian cancer cells. This effect is elicited by cancer 
cell-derived TNFα through the activation of NF-κB. TGF-α 
released by PFBs stimulates the development of peritoneal 
ovarian cancer metastasis in a mechanism engaging epider-
mal growth factor receptor (EGFR) signaling [138]. The 
activity of TNFα has also been linked with intraperitoneal 
spread of gastric cancer [139].

The universal pro-cancerous activity of PFBs was shown 
in studies conducted with pancreatic cancer cells whose 
migration and invasion were markedly increased in a co-
culture system. The intraperitoneal spread of pancreatic can-
cer was also higher when the cancer cells were co-implanted 
into the mouse peritoneum together with PFBs [140]. Simi-
lar activity has been evidenced using mice xenografts gener-
ated by colorectal tumors [141].

The activity of PFBs also includes the modulation of 
intraperitoneal inflammatory responses, e.g., they are able 
to attract polymorphonuclear cells via products of their 
secretome, including CXCL1/GRO-1, CXCL8/IL-8, and 
G-CSF. PFBs’ ability to release those chemokines was 
regulated in a mechanism involving IL-1β [64]. Taking 
into account that IL-1β is constitutively produced by ovar-
ian cancer cells [142], it is tempting to imagine that PFB-
derived agents may contribute to mobilization and pheno-
typic alterations in the peritoneal macrophages infiltrating 
a tumor [143].

Peritoneal adipocytes (PAs)

Recent years have provided a plethora of evidence that adi-
pose tissue, in particular visceral obesity, significantly con-
tributes to cancer development [144]. Accordingly, substan-
tial progress has also been made in understanding the role of 
omental fat in intraperitoneal tumorigenesis. Studies using 
a two-dimensional co-culture system showed that omental 
adipocytes stimulate lipid (precisely: oleic acid) internaliza-
tion by gastric cancer cells, the effect of which was followed 
by increased invasiveness of the latter. Intensified motil-
ity of the cancer cells was mediated by PI3K/Akt-related 
signaling and associated with the hyperactivity of MMP-2 
[145]. Other research documented that ovarian cancer cells 
subjected to omental adipocytes display increased homing, 
migration, and invasion in mice, and that a potent role in 
this behavior was played by adipocyte-derived CXCL8/IL-8 
[146].

Other evidence for adipocytes as energizers of cancer-
ous tissue comes from experiments in which their co-culture 
with ovarian cancer cells resulted in increased lipolysis, 
whereas the cancer cells were characterized by increased 
β-oxidation. Moreover, omental metastases were character-
ized by higher expression of fatty acid-binding protein 4 
(FABP4) than primary ovarian tumors [146]. Apart from the 
adipocytes, fueling peritoneal tumors in energy is also asso-
ciated with the presence of omental adipose tissue-derived 
stem cells (ADSCs) which act in line with the “reverse War-
burg effect” by providing lactose for the cancer cells and 
ATP generated in the glycolytic pathway [69].

The role of ADSCs in peritoneal carcinomatosis is, how-
ever, more complex, e.g., it has been reported that they are 
capable of promoting proliferation and invasion of pancreatic 
cancer cells. Mechanistically, this effect was associated with 
interactions between a pleiotropic chemokine, CXCL12/
SDF1, released by the stem cells and its specific receptor, 
CXCR4, expressed on the surface of the cancer cells [147]. 
The pro-cancerous effect was also demonstrated utilizing 
ADSCs isolated from the omentum of patients with ovarian 
cancer which stimulated proliferation of the cancer cells in 
a co-culture system. Simultaneously, soluble agents released 
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by the ADSCs to the conditioned medium supported the 
migration of cancer cells in vitro. A microarray evaluation 
revealed that the activity of ADSCs may be underlined by 
overexpressed genes coding for aggrecan, endocan, and mat-
rilysin (MMP-7), all of which are involved in such aspects 
of cancer cell progression as adhesion, migration, angio-
genesis, and ECM remodeling. Last but not least, ADSCs 
have been found to promote the resistance of cancer cells to 
chemo- (carboplatin and paclitaxel) and radiotherapy [69].

Interestingly, experiments using ADSCs isolated from 
mice showed that the tumorigenic activity of these cells is 
not a universal feature. Namely, the capacity to promote the 
development of intraperitoneal tumors was displayed by 
cells isolated from the visceral fat of obese animals, while 
cells obtained from lean subcutaneous adipose tissue lacked 
this activity. Another difference was the profile of pro-can-
cerous cytokines (e.g., IL-6 and CCL2/MCP-1) secreted by 
these two populations of cells [148].

Peritoneal macrophages (PMs)

Although the general role of TAMs in tumorigenesis is well 
defined, the gene expression profiles of macrophages derived 
from various locations, e.g., the peritoneum, splenic red 
pulp, lung, or brain, revealed some diversity, thus implying 
that these cells’ anatomical localization may determine their 
functional phenotype [149]. When it comes to the peritoneal 
cavity, milky spots are an important reservoir of PMs [150], 
whose primary role within this structure is associated with 
the absorption and elimination of bacteria and debris from 
the peritoneum [151]. As per peritoneal carcinomatosis, the 
significance of PMs is wide [152]. Primarily, they contribute 
to the homing of cancer cells and fulfill this role upon their 
mobilization from the blood by tumor-derived chemoattract-
ants (e.g., CCL2/MCP-1, IL-6, MIF, and CSF-1) and dif-
ferentiation into TAMs [153]. Moreover, PMs play a role in 
the formation of spheroids during the early transcoelomic 
metastasis of ovarian cancer [154].

As the other types of TAMs, e.g., those accompanying 
breast tumors, the cells infiltrating ovarian cancer transform 
into the pro-cancerous M2 phenotype which is driven by fac-
tors present in malignant ascites. Such ascites-related activ-
ity may be mediated by IL-6 and IL-10, whose level posi-
tively correlated with the expression of the surface marker 
of M2 cells, i.e., CD163 [155]. These observations clearly 
pointed to the presence of mixed (M1/M2) populations of 
PMs in the malignant ascites. Similar conclusions were pro-
vided by other authors, who additionally revealed that the 
survival of patients with ovarian cancer depends on the ratio 
between anti-tumoral M1 and pro-tumoral M2 cells [156].

M2 polarization of macrophages may also occur inde-
pendently in the presence of ascitic fluid. Research on PMs 

co-cultured with gastric cancer showed that they adopted 
the M2 phenotype in response to soluble agents released 
by the latter [157]. This effect coincided with the phos-
phorylation of STAT3, which is currently considered as 
one of the key molecules responsible for the development 
of the macrophage M2 phenotype [158]. The functional 
polarization of PMs influences invasive gastric cancer cell 
behavior, as they support by the M2 macrophages resulted 
in improved proliferation and accelerated tumor growth 
in the xenograft model [157]. Other signaling pathways 
activated in the cancer cells (here ovarian cancer) by PMs 
include JNK and NF-κB pathways. Their activation coin-
cided with up-regulated expression of genes coding for 
the extracellular matrix metalloproteinase inducer (EMM-
PRIN) and increased invasiveness [159]. In addition, 
experiments on mice showed that either ascite formation 
or peritoneal metastasis could be prevented by depletion 
of neutrophils or NK cells but not PMs, which may indi-
cate that the presence of the activity of those cells may, to 
some extent, be a limiting factor for effective peritoneal 
carcinomatosis [160].

An important role of PMs concerns the modulation of 
immune reactions within the peritoneal cavity, e.g., they 
are the primary source of CCL22, which is highly involved 
in the recruitment of immunosuppressive Treg cells into 
tumors [161]. It has been found that this chemokine’s level 
in malignant ascites from patients with ovarian cancer was 
significantly higher than in patients with benign tumors-
serous cystadenoma. Moreover, patients with advanced 
stages of the disease, which is usually associated with the 
peritoneal burden, also had a markedly elevated plasma 
level of CCL22 as compared with patients in early stages 
[162]. Significantly, the vicious circle closes when Treg 
cells attracted to the tumor activate a retrograde response 
in which they stimulate the PMs to M2 polarization 
through their own IL-4, IL-10, and IL-13 [163].

Another role of PMs is their contribution to intraperito-
neal angiogenesis, as they produce various proangiogenic 
stimuli, including VEGF, MMP-1, and amphiregulin [157]. 
Experiments using mice peritoneal macrophages revealed 
that their proangiogenic potential is elicited particularly 
in hypoxic conditions. When conditioned media har-
vested from PMs were mixed with Matrigel and injected 
into mice, they yielded significantly greater expansion of 
microvessels as compared with Matrigel plugs containing 
supernatants from macrophages maintained in normoxic 
conditions. Mechanistically, this effect was mediated by 
HIF-1α, whose nuclear translocation was responsible for 
the increased concentration of numerous proangiogenic 
stimuli (IL-6, IL-12, CCL2/MCP-1, CCL5, CXCL8/IL-8, 
and VEGF) in conditioned media from PMs kept under 
hypoxia [164].
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Peritoneal endothelial cells (PECs)

Endothelial cells infiltrate the peritoneum along with mac-
rophages in the vicinity of tumor implants. There is evidence 
that the mobilization of endothelial cells towards their angio-
genic reactions (proliferation, migration, and tube forma-
tion) results from cooperative signals sent by cancer cells 
and PMs. The co-culture of PMs with ovarian cancer cells 
up-regulated the production of CXCL8/IL-8 by the latter, 
which was responsible for increased migration of endothe-
lial cells and the formation of tubular structures in response 
to conditioned media from these co-cultures (as compared 
with media harvested from separate cultures of cancer cells 
or PMs). Mechanistically, this effect was linked with the 
activity of NF-κB [165].

Mobilization followed by increased mobility of endothe-
lial cells is also orchestrated by the products of the secretome 
of cancer cells, PMCs, and PFBs, e.g., ovarian cancer cells 
secrete high amounts of CXCL1/GRO-1, CXCL8/IL-8, 
IL-6, HGF, and VEGF [87], whereas PMCs generate con-
stitutively CXCL1/GRO-1, CXCL12/SDF1, bFGF, MMP-2, 
MMP-9, and VEGF [124, 125]. Proof for the angiogenic 
potential of agents produced by ovarian cancer cells derives 
from experiments in which both the proliferation and migra-
tion of endothelial cells was stimulated by a conditioned 
medium of cancerous origin [87]. As per individual proteins, 
the proliferation, migration, and tube formation of endothe-
lial cells bearing CXCR1/2 chemokine receptors were 
increased in response to CXCL8/IL-8 and CXCL1/GRO-1 
produced by ovarian cancer cells in a mechanism involving 
MMP-1-protease-activated receptor-1 (PAR1) activation. 
When cell-penetrating pepducin, X1/2pal-i3, targeting the 
third intracellular loop of CXCR1 and CXCR2 was intro-
duced angiogenic endothelial cell behavior in mice xeno-
grafts significantly declined [166]. The formation of tubular 
structures by endothelial cells in vitro was also effectively 
prevented when the conditioned medium generated by PMCs 
was pre-incubated with a VEGF neutralizing antibody [167].

Cancer cells and endothelial cells may also interact under 
certain circumstances in such a way that progression of 
the disease becomes limited. This conclusion stems from 
research on ovarian cancer cells engineered to express a 
gene for vasohibin-1 (VASH1) that is normally expressed by 
endothelial cells in response to angiogenic stimuli and inhib-
its these cells’ motility autocrinally in a negative feedback 
mechanism [168]. The release of VASH1 by cancer cells 
inhibited the growth of endothelial cells in vitro, and tumor 
neovascularization and expansion in mice in vivo [169].

Peritoneal hospicells

Bone-marrow mesenchymal stem cells (BM-MSC) are 
attracted to various anatomical locations where they actively 

contribute to cancer development. These original mesen-
chymal stem cells (CD9, CD10, CD29, CD146, CD166, 
and HLA-1) were first described by Rafii and colleagues 
in malignant ascites from patients with ovarian cancer and 
were called “hospicells”. Their presence was initially linked 
with the chemoresistance of ovarian tumors to platin and 
taxans [170]. This effect is probably associated with hospi-
cells’ ability to produce insulin-like growth factor 1 (IGF-1) 
which controls the expression of various ATP-binding cas-
sette (ABC) genes (MDR1, MRP1, MRP2, MRP3, MRP5, 
and BCRP) utilizing PI3-kinase, MEK, and JAK2/STAT3 
signaling routes [171].

Further experiments revealed that the significance of 
hospicells is much broader. It has been demonstrated that 
their co-injection with ovarian cancer cells into the mouse 
peritoneal cavity enhanced tumor growth and accumula-
tion of ascites. Lesions that developed by the co-injection 
of hospicells and ovarian cancer cells displayed improved 
vascularization, which suggested the proangiogenic capabili-
ties of these cells [172]. This assumption was confirmed by 
further experiments in which the bidirectional migration of 
hospicells towards endothelial cells and vice versa was dem-
onstrated. In addition, hospicells synergized with ovarian 
cancer cells to secrete increased amounts of proangiogenic 
VEGF, IL-6, and CXCL8/IL-8 [173].

Another activity of hospicells is immunosuppression, 
as they were found to inhibit the proliferation of CD4(+) 
and CD8(+) T-cells as well as to restrict the secretion of 
cytokines by these cells [174]. They are also capable of 
attracting PMs and of converting them into the M2 pheno-
type [173].

Conclusions and perspectives

Taken together, the knowledge about cellular and molecular 
mechanisms underlying the intraperitoneal development of 
cancer metastases is very well established. There are, how-
ever, some issues that need further investigations. The most 
important is, in our opinion, the role of normal peritoneal 
cells, in particular stromal cells, in cancer recurrence. Fur-
ther examinations are also necessary to verify to what extent 
certain manipulations within the phenotypic features of peri-
toneal cells, e.g., those resulting from targeting some sign-
aling pathways associated with senescence of PMCs may 
effectively inhibit or postpone the development of various 
pro-tumoral features of the peritoneum. Last but not least, it 
also needs to be explained to what extent normal peritoneal 
cells are genetically and functionally changed in response to 
systemic and intraperitoneal chemotherapy, and how these 
drug-modified cells behave in relation to residual or recur-
rent disease.
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