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Administration of RANKL boosts thymic
regeneration upon bone marrow transplantation
Noella Lopes1, Hortense Vachon1, Julien Marie2,3 & Magali Irla1,*

Abstract

Cytoablative treatments lead to severe damages on thymic epithe-
lial cells (TECs), which result in delayed de novo thymopoiesis and
a prolonged period of T-cell immunodeficiency. Understanding the
mechanisms that govern thymic regeneration is of paramount
interest for the recovery of a functional immune system notably
after bone marrow transplantation (BMT). Here, we show that
RANK ligand (RANKL) is upregulated in CD4+ thymocytes and
lymphoid tissue inducer (LTi) cells during the early phase of thymic
regeneration. Importantly, whereas RANKL neutralization alters
TEC recovery after irradiation, ex vivo RANKL administration during
BMT boosts the regeneration of TEC subsets including thymic
epithelial progenitor-enriched cells, thymus homing of lymphoid
progenitors, and de novo thymopoiesis. RANKL increases specifi-
cally in LTi cells, lymphotoxin a, which is critical for thymic regen-
eration. RANKL treatment, dependent on lymphotoxin a, is
beneficial upon BMT in young and aged individuals. This study thus
indicates that RANKL may be clinically useful to improve T-cell
function recovery after BMT by controlling multiple facets of
thymic regeneration.
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Introduction

The thymus controls the generation of a diverse repertoire of T

lymphocytes. Cortical thymic epithelial cells (cTECs) support the

differentiation of T-cell progenitors and the conversion of

CD4+CD8+ double-positive (DP) thymocytes into CD4+CD8� and

CD4�CD8+ single-positive (SP) cells (Anderson & Takahama, 2012).

Medullary TECs (mTECs) purge the TCR repertoire of hazardous

autoreactive T cells by expressing thousands of tissue-restricted

antigens (TRAs), which are controlled by Aire (Autoimmune Regula-

tor) and Fezf2 (Forebrain Expressed Zinc Finger 2) factors (Derbinski

et al, 2001; Anderson et al, 2002; Sansom et al, 2014; Takaba et al,

2015). Reciprocally, thymocytes sustain TEC differentiation and

organization. This complex interplay is referred to as thymic cross

talk (van Ewijk et al, 1994; Lopes et al, 2015).

Cytoablative treatments such as radiation or chemotherapy, used

to prepare patients notably to bone marrow (BM) transplantation

(BMT), severely affect not only hematopoietic cells but also TECs,

which results in delayed T-cell reconstitution (Adkins et al, 1988;

van den Brink et al, 2004; Fletcher et al, 2009; Hollander et al,

2010). Thymic injury triggered by total body irradiation (TBI) leads

to profound alterations characterized by a drastic reduction in the

cortex resulting from the massive depletion of DP thymocytes and a

significant decrease in the medulla (Irla et al, 2013). Alterations in

TEC ultrastructure and a reduction in some stromal cells have also

been reported (Adkins et al, 1988; Irifune et al, 2004).

The recovery of a fully competent T-cell compartment is there-

fore a prolonged process that is considerably delayed compared to

that of myeloid, NK or B cells (Hakim et al, 1997). This period of

compromised immunity is prompt to serious clinical consequences

such as opportunistic infections, autoimmunity, or tumor relapse

and could lead to post-transplant morbidity and mortality (Curtis

et al, 1997; Small et al, 1999; van den Brink et al, 2004; King et al,

2004; Parkman et al, 2006). Identifying an effective treatment that

acts at several levels by improving (i) the regeneration of thymic

epithelial progenitor cells (TEPCs), which are critical for the renewal

of stromal niches; (ii) the recovery of cTECs and mTECs, which

control the different steps of thymopoiesis; and (iii) thymus homing

of T-cell progenitors, which is important for T-cell recovery, is of

paramount clinical interest to optimally boost thymic regeneration

(Penit & Ezine, 1989; Chen et al, 2004; Zlotoff et al, 2011).

RANK ligand, a TNF family member, has emerged as an impor-

tant regulator of epithelial cell growth and differentiation in different

tissues such as mammary glands during pregnancy (Fata et al,

2000), the renewal and epidermal growth of the hair follicles

(Duheron et al, 2011), or M-cell differentiation from intestinal

epithelial cells in Payer’s patches (Knoop et al, 2009). In the embry-

onic thymus, RANKL provided by a subset of innate lymphoid cells,

namely lymphoid tissue inducers (LTi) cells, and invariant

Vc5+TCR+ T-cell progenitors promotes the emergence of Aire+

mTECs, which mediate T-cell tolerance (Anderson et al, 2002; Rossi

et al, 2007; Roberts et al, 2012). In the postnatal thymus, RANKL
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produced by SP thymocytes enhances numbers of Aire+ mTECs and

the size of the medulla (Akiyama et al, 2008; Hikosaka et al, 2008;

Irla et al, 2008, 2010; Ohigashi et al, 2011; Lopes et al, 2015).

However, although RANKL is a potent inducer of mTEC differentia-

tion at steady state, whether and how RANKL drives thymic regen-

eration upon BMT remain unknown.

Here, we show that RANKL is upregulated early after thymic

damage in CD4+ thymocytes and LTi cells. Importantly, whereas

the in vivo neutralization of RANKL alters TEC regeneration after

TBI, the ex vivo administration of RANKL substantially enhances the

cellularity of cTEC and mTEC subsets as well as TEPC-enriched

cells. Furthermore, we show that RANKL treatment induces lympho-

toxin a (LTa) upregulation specifically in LTi cells, which express

its cognate receptor, RANK. Although at steady state LTa�/� mice

show normal TEC subsets, Aire+ mTEC differentiation and T-cell

development (De Togni et al, 1994; Venanzi et al, 2007; Seach et al,

2008), we demonstrate that LTa is critical for TEC regeneration and

T-cell reconstitution. Importantly, RANKL administration during the

early phase of BMT boosts the regeneration of TEPCs and TEC

subsets, ameliorates T-cell progenitor homing and de novo thymo-

poiesis, which enhances peripheral T-cell reconstitution. Further-

more, we show that the effects mediated by RANKL depend on LTa
expression and are also beneficial upon BMT in mice with early

thymic involution. Altogether, our findings identify that the admin-

istration of RANKL constitutes a new therapeutic strategy to boost

thymic regeneration upon BMT by acting at several levels: TEC

recovery, T-cell progenitor homing, and de novo thymopoiesis.

Results

RANKL is upregulated during the early phase of
thymic regeneration

Because at steady state RANKL has been reported as a potent regula-

tor of mTEC differentiation (Rossi et al, 2007; Hikosaka et al, 2008;

Ohigashi et al, 2011), we investigated whether this cytokine plays a

role in thymic regeneration. To this, we first analyzed RANKL

expression in the thymus at day 3 after SL-TBI (d3 SL-TBI) and

found that RANKL was substantially upregulated in CD45+

hematopoietic cells compared to untreated (UT) WT mice (Fig 1A).

We next investigated the cell identity of hematopoietic cells that

overexpressed RANKL. We found that recipient CD4+ thymocytes

and LTi cells, both previously described to be partially radio-resis-

tant (Ueno et al, 2004; Dudakov et al, 2012; Fig 1B and C, Table 1,

and Appendix Fig S1), upregulated RANKL at d3 SL-TBI (Fig 1D).

Strikingly, although LTi cells represent a small subset in the thymus,

they expressed higher levels of RANKL than CD4+ thymocytes after

TBI and upregulated RANKL in a radiation dose-dependent manner

(Fig 1D). To analyze the contribution of CD4+ thymocytes, we

analyzed Rankl expression in the thymus of ZAP-70�/� mice, lack-

ing SP thymocytes (Negishi et al, 1995; Kadlecek et al, 1998). At d3

SL-TBI, while the expression of Rankl mRNA was strongly upregu-

lated in the WT thymus, no detectable increase of Rankl mRNA was

observed in irradiated ZAP-70�/� thymus (Fig 1E). These results

indicate that CD4+ thymocytes are crucial for RANKL upregulation

after TBI, which in line with their high numbers after irradiation

(Table 1). Since ZAP-70�/� mice have normal DP cells, these results

also indicate that DP cells are not involved in RANKL upregulation.

Given that LTi cells expressed high levels of RANKL after irradiation

(Fig 1D), we decided to further define the contribution of this cell

type in RANKL expression by analyzing the thymus from Rorc�/�

mice, defective in LTi cells (Sun et al, 2000; Eberl et al, 2004). Irra-

diated Rorc�/� mice failed to increase Rankl, suggesting that this

cell type was implicated in RANKL upregulation (Fig 1E). However,

Rorc�/� mice were described to show reduced numbers of CD4+

thymocytes (Sun et al, 2000). In order to clearly determine the

contribution of LTi cells, we then analyzed RANKL expression in

the thymus of Rag2�/� mice, showing an early block in T-cell devel-

opment at the double-negative DN3 stage but exhibiting LTi cells

(Shinkai et al, 1992). At d3 SL-TBI, Rankl mRNA was upregulated

in the Rag2�/� thymus but at lesser extent than in WT thymus, con-

firming that LTi cells also contribute to RANKL overexpression after

TBI (Fig 1E). Interestingly, RANKL was upregulated in CD4+ SP

and LTi cells until day 10 after SL-TBI with no hematopoietic rescue

(Fig 1F). Of note, LTi cell ability to produce high level of RANKL in

response to SL-TBI was much more pronounced than that of CD4+

thymocytes. Altogether, these data indicate that RANKL is naturally

upregulated in both CD4+ SP and LTi cells at the early phase of

thymic regeneration.

RANKL neutralization inhibits TEC regeneration whereas ex vivo
RANKL administration boosts TEC recovery after irradiation

The aforementioned data strongly suggest that RANKL could play a

role in thymic regeneration after irradiation. To confirm this

assumption, WT mice were treated with a neutralizing anti-RANKL

antibody (IK22/5) during 3 days after SL-TBI. PBS- and isotype anti-

body-treated mice were used as controls. RANKL neutralization was

sufficient to prevent TEC regeneration illustrated by a 2.5-fold

decrease in numbers of total TECs (EpCAM+), cTECs (EpCA-

M+UEA-1�Ly51+), and mTECs (EpCAM+UEA-1+Ly51�) compared

to controls (Fig 2A). In addition, RANKL neutralization resulted in a

decrease in CD80hiAire� and CD80hiAire+ mTECs as well as of

several TEC subsets identified by MHCII expression level (Wong

et al, 2014), including cTEChi (MHCIIhiUEA-1�), mTEChi (MHCIIhi

UEA-1+), and mTEClo (MHCIIloUEA-1+) (Fig 2A and B). Interest-

ingly, a TEC population described to be enriched in TEPCs defined

as a6-integrinhiSca-1hi in the TEClo (MHCIIloUEA-1lo) subset (Wong

et al, 2014) was also decreased (Fig 2C). In a therapeutic perspec-

tive, we next investigated whether conversely the ex vivo adminis-

tration of RANKL protein could improve TEC regeneration. WT

mice were treated with RANKL-GST protein during 3 days after SL-

TBI. PBS- and GST-treated mice were used as controls. Remarkably,

RANKL-treated mice showed a 2-fold increase in numbers of total

TECs, cTECs, and mTECs compared to controls (Fig 2A). RANKL

treatment also enhanced CD80hiAire� and CD80hiAire+ mTECs as

well as cTEChi, mTEChi, TEClo, mTEClo, and TEPC-enriched cells

(Fig 2B and C).

To gain mechanistic insights into the mode of action of RANKL,

we then analyzed the proliferation of cTECs, mTECs, and TEPC-

enriched cells. Numbers of proliferating Ki-67+ cells in these three

subsets were decreased after RANKL neutralization, whereas they

were increased after ex vivo RANKL administration (Fig 2D). Inter-

estingly, the analysis of purified mTECs from RANKL-treated mice

showed reduced expression of Bax, Bid, and Bak pro-apoptotic
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genes and that of cTECs exhibited reduced expression of Bax as well

as an increased expression of the Bcl-xl anti-apoptotic gene (Fig 2E).

Furthermore, the density of medullary Aire+ cells and the

expression of Aire and Aire-dependent TRAs were also enhanced in

response to RANKL (Fig 2F and G). Of note, we also found that

RANKL stimulated in cTECs the expression of Selp, Icam-1, and

A

B C

D

F

E

Figure 1. RANKL is upregulated in CD4+ SP and LTi cells during the course of thymic regeneration.

A Expression of RANKL protein analyzed by flow cytometry in CD45� and CD45+ thymic cells from untreated (UT) WT mice or at d3 SL-TBI.
B, C Flow cytometry profiles and frequencies of DN (double negative), DP (double positive), CD4+ and CD8+ SP (single positive) (B), and LTi cells (C) from untreated (UT)

WT mice or at d3 SL-TBI.
D Expression level of RANKL protein in CD4+ SP and LTi cells from UT WT mice or at d3 SL-TBI and L-TBI.
E Expression of Rankl mRNA in the total thymus isolated from UT WT, Rorc�/�, ZAP-70�/�, and Rag2�/� mice or at d3 SL-TBI (n = 3–6 mice per genotype).
F CD4+ SP and LTi cells from UT WT mice or at d3, d6, d10, and d20 SL-TBI with no hematopoietic rescue were analyzed for the expression of RANKL protein. Mean

fluorescence intensity (MFI) of RANKL in CD4+ SP and LTi cells over time following SL-TBI. The red lines represent the MFI of RANKL at baseline.

Data information: Data are shown as mean � SEM and are pooled of four independent experiments with similar results (n = 3–4 mice per group). *P < 0.05; **P < 0.01;
***P < 0.001, ****P < 0.0001. Exact P-values and statistical tests used to calculate them are provided in Appendix Table S2.
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Ccl21, implicated in the thymus homing of lymphoid progenitors

(Fig 2H). Altogether, these data point out that RANKL controls

endogenous TEC recovery and that ex vivo RANKL administration

boosts TEC regeneration by enhancing their proliferation, survival,

and differentiation after thymic damage.

RANKL controls LTa expression specifically in LTi cells after TBI

We next investigated deeper the underlying mechanism(s) of

RANKL treatment in the thymus after TBI. During embryogenesis,

in vitro experiments have shown that RANKL induces LTa expres-

sion in peripheral LTi cells (Yoshida et al, 2002). A possible

mechanism is thus that RANKL acts on this cell type. Interest-

ingly, we found that irradiation led to the upregulation of RANKL

cognate receptor, RANK on LTi cells (Fig 3A). Furthermore, to

assess whether RANKL regulates LTa production in thymic LTi

cells after irradiation, hematopoietic cells from irradiated WT

thymus were stimulated in vitro with either RANKL-GST or GST.

RANKL stimulation significantly upregulated LTa expression in

LTi cells, while the addition of RANKL antagonist, RANK-Fc, fully

abolished LTa induction, demonstrating the specificity of the treat-

ment used (Fig EV1A). It is notable that among radio-resistant

hematopoietic cells, only LTi cells upregulated LTa protein

(Fig EV1B). In line with this, in vivo administration of RANKL

during 3 days after SL-TBI also induced LTa upregulation selec-

tively in thymic LTi cells (Fig 3B and C). Conversely, the adminis-

tration of a neutralizing anti-RANKL antibody inhibited LTa
upregulation only in LTi cells (Fig 3D and E). These data thus

indicate that RANKL controls LTa upregulation specifically in LTi

cells after SL-TBI. Moreover, LTi-deficient Rorc�/� thymus failed to

increase LTa mRNA at d3 SL-TBI, suggesting that LTi cells are

required for LTa overexpression after irradiation (Fig 3F). In

contrast, LTa upregulation was maintained at WT level in the irra-

diated ZAP-70�/� thymus, lacking SP cells, indicating that radio-

resistant CD4+ thymocytes are not involved in LTa upregulation

after SL-TBI (Fig 3F). Since DP thymocytes constitute a

non-negligible number after irradiation even if they are massively

eliminated (Table 1) and that ZAP-70�/� mice have normal DP

cells, we analyzed their potential contribution in LTa upregulation

using Rag2�/� mice (lacking DP and SP cells). Irradiated Rag2�/�

thymus expressed LTa at a similar level than that of irradiated

WT mice, indicating that DP cells are not involved in LTa expres-

sion after SL-TBI and confirming that LTi cells are the main provi-

ders (Fig 3G). Furthermore, the thymus of irradiated WT mice

deprived before of DP cells by dexamethasone treatment (Purton

et al, 2004), also exhibited the same LTa expression level than

that observed in irradiated WT and Rag2�/� mice (Fig 3G), con-

firming that LTa upregulation after SL-TBI does not rely on DP

thymocytes. These data thus demonstrate that LTi cells are critical

for LTa upregulation after irradiation.

Interestingly, LTa overexpression in LTi cells tightly correlated

with that of RANKL during the course of BMT (Fig 3H). We found

that LTa protein was selectively upregulated in LTi cells from

recipient and not from donor origin until day 6 after BMT (Fig 3I

and J), showing the importance of the host LTi cells in LTa
production. Moreover, RANKL was expressed at normal level at

d3 SL-TBI in LTa�/� mice, suggesting that LTa did not regulate

RANKL (Fig 3K). We further observed that both Lta and Ltb
mRNAs were increased in the total thymus at d3 SL-TBI compared

to UT WT mice (Fig 3L) and that LTa protein was specifically

induced in hematopoietic cells (Fig 3M). We thus hypothesized

that LTa could be expressed as a membrane anchored LTa1b2
heterocomplex, which only binds to LTbR (Gommerman & Brown-

ing, 2003). We used a soluble LTbR-Fc fusion protein, which

detects the two LTbR ligands, LTa1b2 and LIGHT. In contrast to

Lta and Ltb, Light mRNA was slightly expressed and not upregu-

lated after thymic injury (Appendix Fig S2), indicating that LTbR-
Fc staining detects only LTa1b2 in LTi cells, which was upregu-

lated in a radiation dose-dependent manner (Fig 3N and O). These

data thus show that RANKL treatment induces LTab upregulation

specifically in LTi cells early after thymic injury.

LTa is critical for TEC regeneration and de novo thymopoiesis
during the course of BMT

We next addressed whether LTa upregulation in response to RANKL

treatment after TBI is involved in thymic regeneration. In line with

this assumption, total TECs, cTECs, and mTECs but also TEPC-

enriched cells upregulated LTb receptor (LTbR) at d3 SL-TBI

(Fig 4A). While at steady state, LTa�/� mice, in which the expres-

sion of LTa1b2 is fully lost, did not show any defect in TEC subsets

(Fig 4B–F; Venanzi et al, 2007), numbers of cTECs, mTECs, and

mTEC subsets (CD80loAire�, CD80hiAire�, and CD80hiAire+) as well

as the density of Aire+ cells were dramatically reduced at d3 SL-TBI

(Fig EV2A–C). Of note, no significant defect in CD45�PDGFRa+

fibroblasts or in thymic LTi cells was observed in LTa�/� mice at d3

SL-TBI (Fig EV2D and E). To definitively address the role of LTa
during thymic recovery after BMT, lethally irradiated CD45.2 WT or

LTa�/� recipients were reconstituted with CD45.1 congenic BM cells

(WT CD45.1:WT or WT CD45.1:LTa�/� mice) and TEC numbers

were analyzed at days 10, 21, and 65 after BMT (Fig 4B–F). We

observed reduced numbers of total TECs, cTECs, and mTECs as well

Table 1. Cell numbers of lymphoid cells observed in the thymus of WT mice before and after d3 SL-TBI.

Cell types Untreated d3 SL-TBI P-values Category

DN (×106) 15.86 � 2.62 0.49 � 0.07 < 0.0001 ****

DP (×106) 130.70 � 14.46 0.27 � 0.07 < 0.0001 ****

CD4+ SP (×106) 18.01 � 2.07 2.61 � 0.20 < 0.0001 ****

CD8+ SP (×106) 5.02 � 0.79 0.68 � 0.05 < 0.0001 ****

Foxp3+ Tregs (×105) 3.5 � 0.33 0.14 � 0.01 < 0.0001 ****

LTi cells (×103) 3.35 � 0.72 1.58 � 0.12 0.0021 **

Average � SD (Untreated: n = 10 thymi and d3SL-TBI: n = 18 thymi). P-values were calculated using Student’s t-test. **P < 0.01; ****P < 0.0001.
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Figure 2. RANKL is crucially involved in TEC regeneration after TBI.

A Flow cytometry profiles and numbers of total TECs (EpCAM+), cTECs (UEA-1�Ly51+), mTECs (UEA-1+Ly51�), and mTEC subsets (CD80loAire�, CD80hiAire�, and
CD80hiAire+) analyzed in CD45neg-enriched cells by AutoMACS from UT WT mice or treated with PBS, a RANKL isotype control antibody (Iso.), a neutralizing anti-
RANKL antibody (IK22/5), GST or RANKL proteins during 3 days upon SL-TBI.

B–D Histograms show numbers of cTEChi (MHCIIhiUEA-1�), mTEChi (MHCIIhiUEA-1+), TEClo (MHCIIloUEA-1�), mTEClo (MHCIIloUEA-1+) (B); TEPC-enriched cells (defined as
a6-integrinhiSca-1hi in the TEClo subset) (C); and proliferating Ki-67+ cTECs, mTECs, and TEPC-enriched cells (D).

E Expression of mRNAs coding for pro- (Bax, Bid, Bak) and anti-apoptotic (Bcl-xl) proteins analyzed by qPCR in purified cTECs and mTECs.
F Thymic sections from WT mice treated with GST or RANKL during 3 days upon SL-TBI were stained for the expression of K14 and Aire. The histogram shows the

density of Aire+ cells in medullary area. m denotes the medulla. Fifteen sections were quantified for each condition; scale bar: 100 lm.
G, H The expression of Aire and TRAs (Sp1 and Sp2) in purified mTECs (G) and Selp, Icam-1, Ccl19, and Ccl21 in purified cTECs (H) from WT mice treated with GST or

RANKL was analyzed by qPCR.

Data information: Data are shown as mean � SEM and are pooled of three independent experiments with similar results (n = 3–4 mice per group). *P < 0.05;
**P < 0.01; ***P < 0.001, ****P < 0.0001. Exact P-values and statistical tests used to calculate them are provided in Appendix Table S2.
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as mTEC subsets in WT CD45.1:LTa�/� mice compared to WT

CD45.1:WT controls at all time points analyzed (Fig 4B–D). More-

over, cTEChi, mTEChi, TEClo, mTEClo, and TEPC-enriched cells were

also reduced (Fig 4E and F). Importantly, total TECs, cTECs, mTECs,

and TEPCs were less proliferative (Fig 4G). A reduced density of

medullary Aire+ cells was still detectable at d65 after BMT

(Appendix Fig S3), and consequently, the expression of Aire and its

dependent TRAs (Sp1 and Sp2) were strongly affected (Fig 4H). The

expression of an Aire-independent TRA (casein b) and Fezf2 as well

as its target genes (Apoc3, Fabp9, and Resp18) (Takaba et al, 2015)

was also reduced. These data thus reveal that LTa is critical for TEC

regeneration including TEPC-enriched cells during the course of

BMT.

In line with these thymic environmental defects, thymocytes

were reduced from DN to SP stage in WT CD45.1:LTa�/� mice after

BMT (Fig 5A and B). Consequently, numbers of peripheral CD4+

and CD8+ T cells as well as CD4+Foxp3+ regulatory T cells (Tregs)

from CD45.1 donor origin were reduced in the blood and spleen of

WT CD45.1:LTa�/� mice from d21 to d100 after BMT (Fig EV3A–

D). Furthermore, CD62L+CD44� naı̈ve CD4+ and CD8+ T cells

were also decreased in the spleen of these mice (Fig EV3E). Consis-

tently with these data, the detection of signal joint TCR excision

circles (sjTRECs) was also reduced in purified peripheral CD4+ and

CD8+ T cells (Fig EV3F), confirming that thymic activity was

altered in BM-transplanted LTa�/� mice.

Since de novo thymopoiesis was impaired from the DN1 stage

in WT CD45.1:LTa�/� mice (Fig 5B), we analyzed early T-lineage

progenitors (ETPs; CD4�CD8�CD44+CD25�Lin�CD117+). Whereas

numbers of ETPs were normal in LTa�/� thymus at steady state,

ETPs from CD45.1 donor origin were reduced in WT CD45.1:

LTa�/� chimeras until 2 months after BMT (Fig 5C). This defect

was not attributable to impaired hematopoietic progenitors because

normal numbers of prethymic progenitors were observed in the

BM of these mice (Fig 5C). We hypothesized that reduced ETPs

could be due to a reduced homing capacity of circulating T-cell

progenitors. Thymus homing is controlled by a multistep adhesion

cascade initiated by P-selectin slowing down T-cell progenitors and

allowing them to respond to CCL25, CCL21/19 gradients and to

engage with ICAM-1 and VCAM-1 expressed by the thymic stroma,

leading to a firm arrest (Rossi et al, 2005; Scimone et al, 2006;

Krueger et al, 2010; Zlotoff et al, 2010). We found that purified TECs

from WT CD45.1:LTa�/� mice showed a reduced expression of Ccl19

and Ccl21 mRNAs at d21 after BMT, whereas purified fibroblasts

from these mice displayed a decrease expression of Ccl21 mRNA

(Fig 5D). Furthermore, purified endothelial cells exhibited a reduced

expression of Icam-1, Vcam-1, and Selp adhesion molecules (Fig 5D).

TECs, fibroblasts and endothelial cells were thus defective in key

molecules involved in thymus homing in BM-transplanted LTa�/�

mice. To firmly demonstrate that thymus homing of T-cell progeni-

tors was altered in LTa�/� mice, short-term homing assays were

performed by injecting CD45.1 congenic BM cells into irradiated WT

and LTa�/� recipients. LTa�/� thymus imported 3-fold less ETPs

than WT thymus after thymic injury (Fig 5E). It is noteworthy that

the effects of LTa on TEC and T-cell recovery were independent of

those mediated by IL-23-regulated IL-22 described to be involved in

thymic regeneration (Dudakov et al, 2012) since LTa�/� mice exhib-

ited similar expression of these two cytokines after TBI (Fig 5F and

G). Altogether, these results reveal that RANKL-regulated LTa consti-

tutes an indispensable pathway for thymic regeneration.

RANKL administration enhances thymic regeneration upon BMT
in an LTa-dependent manner

Since RANKL treatment improves TEC regeneration upon SL-TBI

(Fig 2), we next evaluated whether RANKL boosts thymic recovery

during the course of BMT. WT mice transplanted with CD45.1 BM

cells were treated with RANKL-GST or GST at d2, d4, and d6 after

BMT, and thymic regeneration was analyzed at d21 (Fig 6A) and

d65 (Appendix Fig S4A) after BMT. In these experiments, as

observed at d3 SL-TBI (Fig 3B), RANKL treatment also upregulated

▸Figure 3. RANKL administration induces LTa upregulation specifically in thymic LTi cells after TBI.

A Expression of RANK receptor in thymic LTi cells from UT WT (n = 6) mice and at d3 SL-TBI (n = 6).
B Expression level of LTa protein in thymic LTi cells from WT mice treated in vivo with PBS (n = 6), GST (n = 6), or RANKL-GST (n = 6) during 3 days after SL-TBI.
C LTa protein was analyzed in thymocyte subsets and LTi cells from WT mice treated in vivo with GST (n = 9) or RANKL-GST (n = 9) during 3 days after SL-TBI.

Results are represented as fold change relative to the GST condition. Data are pooled of three experiments.
D Expression level of LTa protein in thymic LTi cells from WT mice treated in vivo with PBS (n = 6), an isotype control (Iso.) (n = 3), or a neutralizing anti-RANKL

antibody (IL22/5) (n = 6) during 3 days after SL-TBI.
E LTa protein was analyzed in thymocyte subsets and LTi cells from WT mice treated in vivo with an isotype control (n = 3), or a neutralizing anti-RANKL antibody

(n = 6) during 3 days after SL-TBI. Results are represented as fold change relative to the isotype condition.
F Expression of Lta mRNA in the total thymus isolated from UT WT, Rorc�/�, and ZAP-70�/� mice or at d3 SL-TBI (n = 3–6 mice per genotype).
G Expression of Lta mRNA in the total thymus isolated from irradiated: WT, Rag2�/� mice, and WT mice treated 3 days before with dexamethasone (Dexa). Data are

pooled of two to three experiments (n = 6–12 mice per group).
H Correlation of RANKL and LTa expression in thymic LTi cells during the course of BMT. pBMT: post-bone marrow transplantation. Data are pooled of three

independent experiments with similar results (n = 3–4 mice per group).
I Expression level of LTa protein in thymic LTi cells from UT WT mice or at d3, d6, d10, and d21 after BMT. Data are pooled of three independent experiments with

similar results (n = 3–4 mice per group).
J Expression level of LTa protein analyzed by flow cytometry in thymic LTi cells from CD45.1 donor and CD45.2 host origin at d3 and d6 after BMT. Data are pooled

of four experiments (n = 3–4 mice per group).
K RANKL protein expression in LTi cells from WT and LTa�/� mice at d3 SL-TBI. Data are pooled of three experiments (n = 3–5 mice per group).
L The expression of Lta and Ltb mRNAs was measured by qPCR in the total thymus from UT WT mice (n = 4) or at d3 SL-TBI (n = 4).
M MFI of LTa protein in CD45� and CD45+ thymic cells from UT WT (n = 6) mice or at d3 SL-TBI (n = 6).
N, O Representative histogram of LTa (N) and LTbR-Fc staining (O) in LTi cells from UT WT mice (n = 6) or at d3 SL-TBI (n = 6) or L-TBI (n = 6).

Data information: Data are shown as mean � SEM. *P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001. Exact P-values and statistical tests used to calculate them are
provided in Appendix Table S2.
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LTa in LTi cells, which was still detectable at d21 pBMT (Fig 6B).

RANKL-treated WT CD45.1:WT mice showed increased medullary

areas, numbers of TEC subsets, Aire+ mTEC frequency, and

Aire-dependent TRAs compared to GST-treated mice (Fig 6C–F;

Appendix Fig S4B). RANKL also increased numbers of CD31+

endothelial cells (Appendix Fig S5). Because we found that RANKL
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regulates LTa (Fig 3B), we next investigated whether these benefi-

cial effects on TECs mediated by RANKL require LTa expression.

The administration of RANKL in WT CD45.1:LTa�/� mice increased

TEC numbers but to a lesser extent compared to RANKL-treated WT

CD45.1:WT mice (Fig 6D; Appendix Fig S4B). In contrast, RANKL

treatment in these mice did not enhance the size of the medulla,

neither Aire+ mTEC frequency nor Aire-dependent TRAs, indicating

that LTa is critical for the regeneration of Aire+ mTECs mediated by

RANKL (Fig 6C, E and F).

Interestingly, RANKL treatment in WT CD45.1:WT chimeras

substantially increased numbers of total donor cells and thymocytes

of CD45.1 origin from ETP to SP stages at d21 and d65 upon BMT

(Fig 6G; Appendix Fig S4C). In contrast, RANKL administration in

WT CD45.1:LTa�/� mice had a poor effect on de novo thymopoiesis.

To decipher the mode of action of RANKL on T-cell reconstitution,

we performed short-term homing assays in irradiated WT and

LTa�/� mice treated with GST or RANKL. Strikingly, the receptivity

capacity of circulating progenitors was substantially enhanced in

RANKL-treated WT CD45.1:WT mice compared to GST-treated

controls (Fig 6H). Importantly, this was not due to increased

numbers of prethymic progenitors in the BM upon RANKL treatment

(Fig 6H). In contrast, RANKL had no effect on ETP homing in WT

CD45.1:LTa�/� mice. Consequently, RANKL treatment increased

peripheral T-cell reconstitution only in WT CD45.1:WT mice after

BMT (Fig EV4). Altogether, these data demonstrate that LTa is criti-

cal for optimal effects of RANKL administration on TEC regenera-

tion, thymus homing of lymphoid progenitors, and T-cell

reconstitution upon BMT.

Since the effects of RANKL-regulated LTa are independent of

those mediated by IL-22 described to be involved in thymic regen-

eration (Fig 5F and G; Dudakov et al, 2012), we next investigated

the respective efficiency of IL-22 and RANKL in thymic regenera-

tion during BMT. To this, WT mice transplanted with CD45.1 BM

cells were treated with IL-22, RANKL or both at d2, d4, and d6

after BMT and thymic regeneration was analyzed at d21. Whereas

the concomitant administration of IL-22 and RANKL did not

ameliorate thymic recovery compared to UT mice (Appendix Fig

S6), we found that IL-22 and RANKL administrated alone

increased similarly numbers of developing T cells including ETPs

and ameliorated peripheral T-cell reconstitution (Appendix Fig

S6A–C). Interestingly, IL-22 alone increased preferentially numbers

of mTEChi including CD80hiAire� and CD80hi Aire+ mTEC subsets

(Appendix Fig S6E and F), whereas RANKL alone enhanced

numbers of all TEC populations including cTECs and mTECs

(Appendix Fig S6D and E). The numbers of cTEChi, mTEChi,

TEClo, mTEClo, and TEPC-enriched cells were also increased in

RANKL-treated mice (Appendix Fig S6F and G). In addition to

IL-22, RANKL thus constitutes a new therapy to enhance thymic

regeneration upon BMT by ameliorating both TEC and T-cell

reconstitution.

RANKL treatment also ameliorates thymic recovery upon BMT in
aged individuals

Because the recovery of T-cell functions upon BMT is known to be

delayed and less efficient in elderly patients compared to young indi-

viduals (Toubert et al, 2012), we finally investigated whether

RANKL beneficial effects are persistent with age. To this, WT mice

of 6–8 months, in which early thymic involution is characterized by

a decline in TEC cellularity (Gray et al, 2006; Ki et al, 2014), were

subjected to the same treatment described in Fig 6A. We found that

RANKL increased numbers of cTECs, mTECs, and TEPC-enriched

cells (Fig 7A and B). All thymocytes including ETPs were also

increased in these mice (Fig 7C and D). Importantly, RANKL admin-

istration in WT CD45.1:LTa�/� chimeras did not improve signifi-

cantly TEC cellularity compared to RANKL-treated WT CD45.1:WT

mice (Fig 7A and B). Moreover, RANKL treatment had only minor

effects on de novo thymopoiesis in WT CD45.1:LTa�/� chimeras

(Fig 7C and D). Peripheral T-cell reconstitution was thus only

enhanced in RANKL-treated WT CD45.1:WT mice (Appendix Fig

S7). This set of data is consistent with the fact that LTi cells persisted

with age and also upregulated LTa1b2 after TBI (Fig EV5A and B).

Furthermore, BM-transplanted LTa�/� mice of 6–8 months of age

showed defective TEC regeneration, de novo thymopoiesis, and

peripheral T-cell reconstitution (Fig EV5C–K). Altogether, our data

indicate that RANKL treatment boosts thymic recovery after BMT

not only in young but also in older individuals in an LTa-dependent
manner.

Discussion

Pre-BMT conditioning induces severe damages on the thymic

microenvironment, which results in delayed lymphocyte produc-

tion. It is therefore of paramount clinical interest to discover new

molecules that enhance thymic regeneration for an efficient recov-

ery of the immune system (van den Brink et al, 2004; Hollander

et al, 2010).

Our study demonstrates that RANKL plays a crucial role in

thymic recovery during BMT. Although that LTi cells strongly

◀ Figure 4. LTa is critical for TEC regeneration during the course of BMT.

A Expression level of LTbR protein in total TECs, cTECs, mTECs, and TEPC-enriched cells from the thymus of UT WT mice (n = 6) and at d3 SL-TBI (n = 6) was
analyzed by flow cytometry. FMO: Fluorescence Minus One.

B–F Flow cytometry profiles and numbers of total TECs (B); cTECs, mTECs (C); mTEC subsets (D); cTEChi, mTEChi, TEClo, mTEClo (E); and TEPC-enriched cells (F) were
analyzed in CD45neg-enriched cells by AutoMACS from the thymus of UT WT and LTa�/� mice or in WT CD45.1:WT and WT CD45.1:LTa�/� chimeras at d10, d21,
and d65 upon BMT.

G Numbers of total proliferating Ki-67+ TECs, cTECs, mTECs, and TEPC-enriched cells at the indicated time points.
H The expression of mRNAs coding for Aire, Aire-induced TRAs (Sp1 and Sp2); Aire-independent TRA (casein b); Fezf2 and Fezf2-induced TRAs (Apoc3, Fabp9, and

Resp18) was measured by qPCR in CD45� thymic stromal cells from WT CD45.1:WT and WT CD45.1:LTa�/� mice at d65 after BMT. Significance relative to WT
CD45.1:WT chimeras.

Data information: Data are shown as mean � SEM and are pooled of three independent experiments with similar results (n = 3–5 mice per group). *P < 0.05;
**P < 0.01. Exact P-values and statistical tests used to calculate them are provided in Appendix Table S2.
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Figure 5. LTa is required for de novo thymopoiesis during BMT.

A Numbers of total thymic cells and thymocyte subsets of CD45.1 donor origin were analyzed by flow cytometry in WT CD45.1:WT and WT CD45.1:LTa�/� mice at d10,
d21, and d65 after BMT.

B Numbers of DN1 (CD44+CD25�), DN2 (CD44+CD25+), DN3 (CD44�CD25+), and DN4 (CD44�CD25�) of CD45.1 origin were also analyzed at d10 and d21 after BMT.
C Numbers of early thymic progenitors (ETPs; CD4�CD8�CD44+CD25�Lin�CD117+) and BM prethymic progenitors (CD3�CD44+CD25�Lin�CD117+) were analyzed by

flow cytometry in UT WT and LTa�/� mice or WT CD45.1:WT and WT CD45.1:LTa�/� chimeras at d65 after BMT.
D The expression of Ccl19, Ccl21, Ccl25, Icam-1, Vcam-1, and Selp mRNAs was measured by qPCR in purified EpCAM+ TECs, CD31+EpCAM� endothelial cells, and

gp38+EpCAM� fibroblasts isolated from WT CD45.1:WT (n = 5) and WT CD45.1:LTa�/� (n = 5) chimeras at d21 after BMT.
E Numbers of ETPs and total cells of CD45.1 donor origin in CD45.2 WT or LTa�/� recipients 48 h after i.v. injection of CD45.1 BM cells.
F Expression of Il-22 mRNA in the total thymus isolated from UT WT and LTa�/� mice (n = 4) or at d3 SL-TBI (n = 4).
G Expression of Il-23 mRNA in the total thymus and purified DCs isolated from UT WT and LTa�/� mice (n = 4) or at d3 SL-TBI (n = 4).

Data information: Data are shown as mean � SEM and are pooled of three independent experiments with similar results (n = 3–5 mice per group). *P < 0.05;
**P < 0.01; ***P < 0.001, ****P < 0.0001. Exact P-values and statistical tests used to calculate them are provided in Appendix Table S2.
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upregulated RANKL after irradiation, radio-resistant CD4+ SP cells

that expressed lower levels of RANKL constitute the major source of

RANKL after TBI, which is in line with their high numbers after

SL-TBI. Based on the use of a neutralizing anti-RANKL antibody and

ex vivo RANKL administration, our data reveal that this cytokine

induces LTa upregulation specifically in LTi cells after irradiation.

We thus propose a model in which the effects on thymic regenera-

tion of RANKL-regulated LTa expressed by LTi cells are

strengthened by CD4+ thymocytes via RANKL upregulation after

irradiation (Appendix Fig S8). Since RANKL, LTa, and RORct tran-
scription factor were upregulated in thymic LTi cells after TBI, we

believe that these cells change their phenotype upon stress-induced

thymic damage. Thymic LTi cells are thus likely in a “quiescent

stage” at steady state and are activated after irradiation to repair the

injured tissue. When considering that LTi cells expressing RANKL

and LTa are involved in the organogenesis of lymph nodes (Yoshida

◀ Figure 6. RANKL boosts TEC regeneration and de novo thymopoiesis in an LTa-dependent manner upon BMT.

A Experimental setup: WT CD45.1:WT and WT CD45.1:LTa�/� chimeras were treated with GST or RANKL-GST proteins at d2, d4, and d6 after BMT and TEC
regeneration and T-cell reconstitution were analyzed at d21 after BMT.

B Expression level of LTa protein in thymic LTi cells in UT mice or treated with GST or RANKL-GST.
C Thymic sections from WT CD45.1:WT and WT CD45.1:LTa�/� mice treated with GST and RANKL at d2, d4, and d6 after BMT were stained for the expression of K14

at d21 pBMT. The histogram shows quantifications of medullary areas. m and c denote the medulla and the cortex, respectively. Twenty sections were quantified
for each condition; scale bar: 100 lm.

D, E Numbers of total TECs, cTECs, and mTECs (D) and flow cytometry profiles of Aire+ mTECs in total EpCAM+ TECs (E).
F Expression of mRNAs coding for TRAs (Sp1 and Sp2) in CD45−thymic stromal cells analyzed by qPCR.
G Numbers of total cells and thymocyte subsets of CD45.1 donor origin analyzed in the thymus.
H Numbers of ETPs of CD45.1 donor origin in the thymus and prethymic progenitors in the BM from CD45.2 WT or LTa�/� recipients 48 h after i.v. injection of

CD45.1 BM cells.

Data information: Data are shown as mean � SEM and are pooled of three independent experiments with similar results (n = 3–5 mice per group). *P < 0.05;
**P < 0.01; ***P < 0.001, ****P < 0.0001; Student’s t-test. Exact P-values are provided in Appendix Table S2.

A B

C D

Figure 7. Beneficial effects mediated by RANKL treatment on thymic regeneration after BMT require LTa expression in aged mice.

A, B Numbers of total TECs, cTECs, mTECs (A), and TEPC-enriched cells (B) were analyzed at d21 upon BMT in the thymus from WT CD45.1:WT and WT CD45.1:LTa�/�

chimeras of 6–8 months of age treated with GST or RANKL proteins.
C, D Numbers of total thymic cells, thymocyte subsets (C), and ETPs (D) of CD45.1 origin.

Data information: Data are shown as mean � SEM and are pooled of two independent experiments with similar results (n = 3 mice per group). *P < 0.05; one-tailed
Mann–Whitney U-test. Exact P-values are provided in Appendix Table S2.
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et al, 1999), our data suggest that thymic LTi cells likely reactivate

an embryonic program to repair the thymus after irradiation.

Interestingly, we found that the administration of a neutralizing

anti-RANKL antibody led to an impaired TEC regeneration, highlight-

ing the importance of RANKL in endogenous TEC recovery. Conver-

sely, ex vivo RANKL administration after TBI boosted the

regeneration of TEC subsets including TEPC-enriched cells. Further-

more, flow cytometry, histology, and qPCR experiments indicated

that RANKL also boosted the regeneration of Aire+ mTECs. Impor-

tantly, we demonstrate that RANKL treatment during the early phase

of BMT enhanced numbers of TECs and thymocytes including ETPs

as well as thymus homing of T-cell progenitors and T-cell output.

Notably, although mice were treated during the early phase of BMT,

RANKL treatment had long-term beneficial effects detectable until

2–3 months after BMT on both TEC and T-cell compartments.

Improved T-cell reconstitution can be explained by increased stromal

niches linked to increased TEC cellularity but also to enhanced

thymus homing of lymphoid progenitors, which is a critical step for

ameliorating T-cell recovery (Penit & Ezine, 1989; Chen et al, 2004;

Zlotoff et al, 2011). The latter effect is likely mediated by increased

expression of adhesion molecules and chemokines involved in this

process. Nevertheless, we cannot exclude that the enhanced thymus

homing in RANKL-treated mice is also favored by increased vascula-

ture, which is important for T-cell progenitor colonization (Lind

et al, 2001). Furthermore, given that RANKL administration upon

BMT increased primitive progenitors in the BM, which correlated

with the development of active osteoclasts (Appendix Fig S9; Kollet

et al, 2006), we thus cannot also exclude that de novo thymopoiesis

is also favored by increased hematopoietic progenitors. Whereas

RANKL induces mTEC differentiation in the steady-state thymus

(Rossi et al, 2007; Akiyama et al, 2008; Hikosaka et al, 2008;

Ohigashi et al, 2011; Roberts et al, 2012), our data reveal that

RANKL plays distinct roles in thymic regeneration during BMT.

We further found that RANKL induced LTa upregulation specifi-

cally in LTi cells, which express its cognate receptor, RANK. In

contrast, LTa did not regulate RANKL, indicating that LTa acts

downstream of RANKL. Whereas LTa is dispensable at steady state

for TEC and T-cell cellularity, we found that LTa is critical for the

recovery of thymic function. TEC subsets including TEPC-enriched

cells were severely reduced in LTa�/�-transplanted recipients from

up to 2 months after BMT. Moreover, all thymocyte subsets as well

as ETPs were also reduced in these mice likely due to defective

thymus homing capacity. Consistently, we found that LTa expres-

sion is required for the expression of adhesion molecules and

chemokines, known to promote T-cell progenitor entry in the

thymus, in stromal cells during BMT. In accordance with our data,

it has been recently reported that LTbR regulates at steady state

thymus homing by controlling VCAM-1 and ICAM-1 on endothelial

cells (Lucas et al, 2016; Shi et al, 2016). Peripheral T-cell reconstitu-

tion is thus altered in BM-transplanted LTa�/� mice, which is

explained by a diminished thymic export of CD4+ and CD8+ T cells

revealed by a weak frequency of recent thymic emigrants. Whereas

LTa is involved in the regular thymic architecture at steady state

(Boehm et al, 2003; Seach et al, 2008; Irla et al, 2012, 2013), our

data therefore reveal a new function for LTa in controlling TEC and

T-cell regeneration during BMT.

It has been described that the IL-10 family cytokine, IL-22, partici-

pates to thymus recovery (Dudakov et al, 2012). Our results show

that RANKL-regulated LTa represents a distinct pathway of that

mediated by IL-22 in thymic regeneration. Furthermore, since IL-22

and LTa are both provided by LTi cells, it is likely that this cell type

uses different mechanisms for thymic repair. Surprisingly, the

concomitant administration of IL-22 and RANKL cytokines did not

show any benefits on thymic recovery likely due to a too strong

signal that results in an ineffective action on thymic recovery. Alter-

natively, this could be explained by a neutralization of the cell

signals mediated by these two cytokines. However, while IL-22 and

RANKL administrated alone show similar benefits on T-cell reconsti-

tution, they do not exhibit the same effects on TEC regeneration with

a preferential effect for IL-22 on mTEChi and a more global effect for

RANKL on all TEC subsets. These data thus indicate that IL-22 and

RANKL play distinct roles in TEC recovery. Furthermore, one would

expect that thymic regeneration during the course of BMT is also

defective in RANKL�/� mice. Unfortunately, we were unable to test

this hypothesis since RANKL�/� mice show severe growth retarda-

tions and exhibit a drastic reduction in mTECs (Kong et al, 1999;

Hikosaka et al, 2008). Nevertheless, we demonstrate that in vivo

RANKL neutralization impairs TEC regeneration, whereas RANKL

treatment has beneficial effects on thymic recovery. Moreover, RANKL

administration in BM-transplanted LTa�/� mice had only minor effects

on TEC regeneration, numbers of ETPs and strikingly de novo thymo-

poiesis was not ameliorated. Interestingly, whereas LTa is dispensable

for Aire+ mTEC differentiation at steady state (Venanzi et al, 2007),

the regeneration of these cells induced by RANKL treatment

critically depends on LTa. These data indicate that the mechanisms

involved in Aire+ mTEC regeneration are thus distinguishable from

those implicated in their emergence/differentiation at steady state.

Importantly, beneficial effects of RANKL treatment in TEC regenera-

tion are likely not due to a direct action on TECs because the effects of

RANKL on these cells were modest in absence of LTa. Thus, these data
argue in favor of model in which RANKL acts indirectly on TECs

through LTa overexpression in LTi cells. This notion is supported by

the fact that the turnover rate of mTECs is of around 2 weeks (Gabler

et al, 2007; Gray et al, 2007), and thus, it is unlikely that RANKL

injected early after BMT still acts on mTECs 2 months later.

Interestingly, RANKL administration is also efficient for TEC and

T-cell regeneration in older individuals in which thymic involution

results in diminished TEC cellularity, disrupted thymic architecture

and decreased T-cell output (Gray et al, 2006; Chinn et al, 2012).

These results are of special interest for elderly patients in which the

recovery of T-cell functions upon BMT is less efficient (Toubert

et al, 2012). This study thus reveals that the administration of

RANKL offers an innovative clinical strategy to boost thymic recov-

ery in young and aged individuals at several levels: TEC regenera-

tion, thymus homing of T-cell progenitors, and de novo

thymopoiesis. To avoid any potential side effects of the systemic

administration of RANKL, such as osteoporosis, possible strategies

would be to deliver directly this molecule intrathymically in patients

after cytoablative conditioning or to combine RANKL with bisphos-

phonates to prevent bone resorption (Tomimori et al, 2009). The

administration of bisphosphonates induces apoptosis of mature

osteoclasts (Hughes et al, 1995; Drake et al, 2008) and importantly

does not affect RANKL synthesis (Kim et al, 2002; Verde et al,

2015). In conclusion, RANKL in clinic is expected to be promising

for enhancing the regeneration of immune functions in patients

whose thymus has been severely damaged.
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Materials and Methods

Mice

CD45.1 and CD45.2 WT (Janvier), CD45.2 LTa�/� (De Togni et al,

1994), RorcGFP/GFP knock-in (Eberl et al, 2004), ZAP-70�/� (Wiest

et al, 1997), and Rag2�/� (Shinkai et al, 1992) mice were on B6

background and maintained under specific pathogen-free conditions

at the CIML, AniCan (Lyon, France) or IGMM (Montpellier, France).

Standard food and water were given ad libitum. Males and females

were used at the age of 6–8 weeks for each mouse strain. Chimeras

were generated at 6–8 weeks or 6–8 months of age.

Thymic damage and BM chimeras

Total body irradiation was performed with a Cs-137 c-radiation
source. Sublethal-TBI (SL-TBI) was performed with 500 rads with

no hematopoietic rescue and L-TBI with 2 doses of 500 rads.

Dexamethasone (20 mg/kg, Sigma-Aldrich) treatment was

performed by intraperitoneal injection. For the generation of

chimeras, 107 BM cells of CD45.1 origin were injected i.v. into leth-

ally irradiated (2 × 500 rads) CD45.2 WT or LTa�/� recipient mice.

RANKL and IL-22 stimulations

The recombinant mouse RANKL-GST protein was produced as previ-

ously described (Knoop et al, 2009). RANKL-GST (5 mg/kg) or GST

(5 mg/kg) proteins were administrated i.v. daily during 3 days after

SL-TBI or at days 2, 4, and 6 after BMT. Recombinant mouse IL-22

protein (200 lg/kg; R&D Systems) was administrated i.v. at days 2,

4, and 6 after BMT in combination or not with RANKL-GST protein.

RANKL neutralization experiments

150 lg of Low Endotoxin and Azide-Free (LEAF) neutralizing

anti-RANKL antibody (IK22/5; BioLegend) or purified Rat IgG2a, j
isotype control (RTK2758; BioLegend) were administrated i.v.

during 3 days after SL-TBI.

Stromal cell isolation

Stromal cells were isolated as previously described (Irla et al, 2008)

by enzymatic digestion with collagenase D and DNase I (Roche) and

depletion of hematopoietic cells using anti-CD45 magnetic beads

and AutoMACS (Miltenyi Biotec). TECs, endothelial cells, and

fibroblasts were cell-sorted with EpCAM, CD31, and gp38 markers,

respectively, with a FACSAriaIII cell sorter (BD).

Flow cytometry

CD4 (1:600; RM4.5), CD8a (1:600; 53-6.7), CD45.1 (1:800; A20),

LTa (1:80; AF.B3), IL-7Ra (1:80; SB/199), CD80 (1:200; 16-10A1),

Ly51 (1:3,000; BP-1), I-Ab (1:200; AF6-120.1), CD45 (1:200; 30-F11),

CD44 (1:200; IM7), CD62L (1:300; MEL-14), and Sca-1 (1:500; D7)

antibodies were from BD. CD25 (1:200; PC61), RANK (1:200;

R12-31), RANKL (1:200; IK22/5), CD3e (1:200; 145-2C11), lineage

cocktail (20 ll/million cells; 145-2C11, RB6-8C5, M1/70, RA3-6B2,

Ter-119), CD11c (1:200; N418), a6-integrin (1:200; GoH3), and

CD31 (1:200; 390) were from BioLegend. Foxp3 (1:200; FJK-16s),

Ki-67 (1:300; SolA15), EpCAM (1:3000; G8.8), LTbR (1:200;

ebio3C8), Aire (1:200; 5H12), RORct (1:300; B2D), CD117 (1:200;

2B8), and PDGFRa (1:200; APA5) were from eBioscience. FITC-

conjugated UEA-1 lectin (1:800) was from Vector Laboratories. For

LTa detection, cells were incubated for 3 h with brefeldin A (Bio-

sciences). Foxp3 and Ki-67 intracellular stainings were performed

with the Foxp3 staining kit (eBioscience). Aire, LTa, RANKL, and
RORct intracellular stainings were performed with BD Cytofix/

Cytoperm and Perm/Wash buffers. For staining with LTbR-Fc,
cells were incubated with LTbR-Fc (RnD systems) at 1 lg/106 cells

for 45 min on ice. LTbR-Fc staining was visualized using an Alexa

Fluor 488-conjugated donkey anti-human IgG F(ab’)2 fragment

(1:400; Jackson ImmunoResearch). Flow cytometry analysis was

performed with a FACSCanto II (BD), and data were analyzed with

FlowJo software.

Quantitative RT–PCR

Total RNA was prepared with TRIzol (Invitrogen). cDNAs were

synthesized with oligo(dT) using Superscript II reverse transcriptase

(Invitrogen). qPCR was performed with the ABI 7500 fast real-time

PCR system (Applied Biosystem) and SYBR Premix Ex Taq master

mix (Takara). Primers are listed in Appendix Table S1.

Signal joint TREC analysis

Signal joint TREC analysis to detect recent thymic emigrants was

performed as described previously (Sempowski et al, 2002). Briefly,

genomic DNA was isolated from purified CD4+ and CD8+ splenic

T cells using the QIAamp DNA Mini Kit (Qiagen). Real-time PCR

quantification of sjTRECs was performed using the CD45 reference

gene to correct genomic DNA input.

Immunofluorescence staining

Frozen thymic sections were stained with Alexa Fluor 488-conju-

gated anti-Aire (1:200; 5H12, ebioscience) and anti-keratin 14

(1:800; AF64, Covance Research) revealed with Cy3-conjugated

anti-rabbit (1:500; Invitrogen) and counterstained with 1 lg/ml

DAPI as previously described (Serge et al, 2015). Images were

acquired with a LSM 780 Leica SP5X confocal microscope and quan-

tified with ImageJ software.

TRAP staining

Mouse femurs were fixed in 4% paraformaldehyde during 48 h and

were decalcified with 10% EDTA, pH 7.5 during 15 days. Deparaf-

finized 5-lm sections were stained for TRAP activity (Sigma)

according to the manufacturer’s instructions. Sections were counter-

stained with hematoxylin, and images were quantified with ImageJ

software.

Statistical analysis

Statistical significance was assessed with GraphPad Prism 6 soft-

ware using unpaired Student’s t-test, Mann–Whitney test, or

ANOVA on multiple variable analyses *P < 0.05; **P < 0.01;
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***P < 0.001, ****P < 0.0001. Normal distribution of the data was

assessed using d’Agostino-Pearson omnibus normality test. Correla-

tions were calculated using the nonparametric Spearman correlation

test. Error bars represent mean � SEM. Exact P-value and statistical

test used for each figure are provided in Appendix Table S2.

Study approval

Experiments were performed in accordance with the animal care

guidelines of the European Union and French laws. All animal

procedures were approved by and performed in accordance with

guidelines of the Centre d’Immunologie de Marseille-Luminy (CIML)

and AniCan (Lyon, France).

Expanded View for this article is available online.
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