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Background:Deception is present in allwalksof life, fromsocial interactions tomatters

of homeland security. Nevertheless, reliable indicators of deceptive behavior in real-

life scenarios remain elusive.

Methods: By integrating electrophysiological and communicative approaches, we

demonstrate a new and objective detection approach to identify participant-specific

indicators of deceptive behavior in an interactive scenario of a two-person deception

task. We recorded participants’ facial muscle activity using novel dry screen-printed

electrodearrays andappliedmachine-learning algorithms to identify lies basedonbrief

facial responses.

Results: With an average accuracy of 73%, we identified two groups of participants:

Those who revealed their lies by activating their cheek muscles and those who acti-

vated their eyebrows. We found that the participants lied more often with time, with

some switching their telltale muscle groups. Moreover, while the automated classifier,

reported here, outperformed untrained human detectors, their performance was cor-

related, suggesting reliance on shared features.

Conclusions: Our findings demonstrate the feasibility of using wearable electrode

arrays in detecting human lies in a social setting and set the stage for future research

on individual differences in deception expression.
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1 INTRODUCTION

Deception, “an act that is intended to foster in another person a

belief or understanding that the deceiver considers false,” occurs in

all walks of life—from telling your colleague you like their new haircut

to large-scale frauds. Although it affects a wide range of fields such

as finance (e.g., protection against fraud), business (e.g., gauging a

negotiator’s credibility), and security (e.g., in border protection), it is

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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still an open question as to how it can be detected. Humans’ ability

to identify deceit is poor, with performance around chance (Bond &

DePaulo, 2006). Trained expert detectors, such as law enforcement

personnel, perform only slightly better on average (Bond & DePaulo,

2006; Ekman & O’Sullivan, 1991), mainly due to their self-confidence

(Vrij, 2008) or bias toward perceiving deception (Meissner & Kassin,

2002). However, recent studies showed that these average improve-

ments in experts’ detection performance reflect nothing more than
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chance variation (Aamodt & Custer, 2006; Bond & DePaulo, 2008).

Thus, what people subjectively think is indicative of deception cannot

be reliably used to distinguish lying from truth-telling (Frank et al.,

2008).

For more than half a century, researchers applied a physiological

approach to deception detection by looking for physiological indicators

of lying behavior (see Podlesny & Raskin, 1977 for review). The basic

assumption is that lying leads to psychological arousal, which leads to

measurable physiological arousal (Kleinmuntz & Szucko, 1982; Lykken,

1979). An impressive host of responses correspond to this arousal,

such as changes in blood pressure, pulse rate, respiration, and galvanic

skin response (Grubin &Madsen, 2005). In a polygraph test, for exam-

ple, an investigator measures an examinee’s responses to a series of

questions (Committee to Review the Scientific Evidence on the Poly-

graph, 2003; Horvath & Reid, 1971). Indeed, the polygraph is the most

popular instrument for lie detection with a high reported accuracy of

∼86% (Committee to Review the Scientific Evidence on the Polygraph,

2003). However, even though the polygraph test relies on objective

physiological responses, the collection and interpretation of its data

are highly subjective. For example, the questions are not similar across

all tests, and different investigators use different values to indicate a

lie (Steinbrook, 1992). Moreover, the physiological responses can be

reduced or feigned to mislead the investigator (Ben-Shakhar & Dolev,

1996; Bersh, 1969; Saxe et al., 1985), or they can be elicited by emo-

tional processes, such as stress and anger that are not necessarily

related to deception (Steinbrook, 1992).

Another traditional line of research takes a communicative approach

to deception detection by focusing on social indicators of decep-

tion, such as facial expressions. Facial features are salient cues for

social attribution. For example, less than 100 ms are sufficient to

judge whether a static face is trustworthy or threatening (Todorov

et al., 2015). Dynamic facial expressions are a central component of

emotional expression upon which we rely to convey our feelings and

intentions and infer those of others. It was Darwinwho first noted that

some emotions are too great to be fully feigned or concealed, and that

some facial expressions might “leak,” revealing true feelings (Darwin,

1872). This concept was adopted into a systematic lie detection

approach by using the Facial Action Coding System (FACS; Ekman

& Friesen, 1976). FACS consists of action units (AUs) that represent

observed facial movements and their combinations. The theory behind

the use of FACS to identify lies posits that deception manifests itself

through involuntary micro-expressions, that are transient (40–60 ms)

and incongruent to the emotion the person is trying to convey (Ekman

& O’Sullivan, 2006). Nevertheless, FACS is susceptive to biases and

inaccuracies that are not necessarily related to deception (Barrett

et al., 2019;Wolf, 2015).

Facial surface electromyography (sEMG) is a reliable technology

often used to quantify facial expressions by recording the electrical

activity of muscles located (that is, recording the electrical activity

generated by facial muscles close to the skin; Schumann et al., 2010).

sEMG can indicate facial muscle activation even when this activation

is too subtle to be noticed visually by humans (Petty & Cacioppo,

1986). Therefore, sEMG is an appropriate choice for objective decep-

tion detection (Samuel et al., 2019), and in cases where facial impres-

sions are too subtle for humans to detect. However, assessment of

facial expressions throughmuscle activation patterns poses challenges

for studies of deception. The recording technology must have high

resolution and muscle specificity (Hug & Tucker, 2018; Van Boxtel,

2010), while keeping the participants comfortable. Indeed, contempo-

rary facial sEMG devices are cumbersome, unstable, prone to noise,

record only for a limited time, rely on expert placement, and produce

signals with low spatial resolution (Hug & Tucker, 2018; Wolf, 2015).

Recently developed dry screen-printed electrode arrays (Figure 1a and

Figure S1; Bareket et al., 2016) offer a new and improved alternative

that overcomes these shortcomings.

The current study is an attempt to combine electrophysiological

and communicative approaches to examine the ability to achieve sensi-

tive deception detection from facial sEMG and machine-learning algo-

rithms. The unique electrodes we used are soft, conform to the shape

of the skin, can record for hours in a stable manner, with high signal-

to-noise ratio, and can be used in a psychologically ecological manner

(Inzelberg et al., 2020; Inzelberg, Pur, et al., 2018; Inzelberg, Rand, et al.,

2018). Moreover, we used supervised machine learning (support vec-

tormachine classificationandunsupervisedpeak-density clustering) to

identify “give-away” indicators of deceptive behavior. Our primary goal

was to test the feasibility of using brief facial sEMG signals as an objec-

tive indicator of lying during face-to-face interactions. Specifically, we

examined spatial factors (i.e., zygomaticusmajor and corrugator supercilia

muscles) and temporal factors (i.e., signal timing, delivery timing, or the

Receivers’ response latency) of the sEMGsignal that could explain indi-

vidual differences in deception. In the first stage of the experiment, the

participantswerenot compensated for successful deceptionnordetec-

tion. In the second stage of the experiment, we introduced monetary

incentives to examine how lying behavior (and its accompanying facial

expressions) changed as time passed and circumstances changed.

2 METHODS

2.1 Participants

Forty-eight participants were enrolled in the study (35 females;

Mage= 23.67, range: 18–30). The participants gave informed written

consent before participating in the study, in accordance with relevant

guidelines and regulations under approval from the Institutional Ethics

Committee Review Board at Tel Aviv University. Six participants were

excluded due to technical issues with the recording equipment, and

another two for never lying. All trials from those participants were

excludedandanalyseswere conductedon the resulting40participants.

The participantswere compensated for their time and success in unde-

tected lying. Eachparticipant contributedM=158.32 trials (SD=6.49).

For all the participants, we carried out at least 152 trials, except for one

participant (id: 12_23) who had only 40 out of 80 trials whenmonetary

incentives were not presented. We excluded trials due to technical

issues (i.e., we were unable to identify the onset of the participant’s

speech, the content of what they said or the EMG signal was too noisy).
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F IGURE 1 Setup, task procedure, and behavioral results. The participants completed a two-person deception task, while their facial muscle
activity was recorded using facial surface electromyography. (a) An eight-electrode array was placed on each participant’s face, with five
electrodes recording from the zygomaticus majormuscle (cheek region) and 3 from the corrugator superciliamuscle (eyebrows regions). (b) The
participants took turns acting as Sender and Receiver. The Sender would hear amessage via earphones (either “KAV” or “ETZ”; stimulus event),
then would either repeat the word (Truth) or utter the other word (Lie; speech event). Then, the Receiver would indicate via key press whether
they believed the Sender (Truth) or not (Lie). Depicted are two examples of trials: Lie-Truth (top panel) and Truth-Lie (bottom panel). (c) The
participants lied in approximately half of the trials, and the frequency of lying increased between the two stages of the experiment (top panel). The
Receivers’ detection of the Senders’ lying was at chance level, and time andmonetary incentives did not change their performance (bottom panel)

2.2 Procedure

Pairs of the participants sat in a relaxed upright position facing each

other and were equipped with earphones and microphones that

recorded and saved each trial. Their skin was mildly cleaned and

exfoliated (Everi, SpesMedica) prior to electrode array placement.

The participants were asked to smile and frown to locate the zygo-

maticus major (ZM) and corrugator supercilii (CS) regions. Accordingly,

customized screen-printed facial electrode arrays (eight electrodes;

5 mm in diameter) were adhered to the participants’ right side of the

face. Five electrodes (0–4) were located at the cheek region and three

(5–7) at the region of the eyebrows, above the ZM and CS muscles,

respectively, in all the participants, as described in detail in Inzelberg

et al. (Figure S1; Inzelberg, Rand, et al., 2018). The electrode arrays

were connected to two amplifiers (RHD200; Intan technologies) using

a customized zero-insertion–force (ZIF) connector. A disposable com-

mercial ground plate electrode (019—409100;NATUS)was positioned

on the bony prominence of the seventh vertebra (C7). Both partici-

pants performed a calibration phase (in response to a cued video) of

three voluntary smiles followed by three contractions of the eyebrows

with a neutral expression in between. Each expression was performed

for 3 s with a 3-s gap in between (Figure S1). The participants were

allowed to move their heads freely during the recording and were

instructed to look at their partners throughout the experiment.

2.3 Task

2.3.1 Stage 1 (no monetary incentives)

The participants took turns acting as Sender and Receiver in a two-

person deception task (Figure 1b). During each trial, the Sender (and

only the Sender) heard one of two possible words (the Hebrew words

“KAV” or “ETZ,” “line” or “tree,” randomly) through the earphone. We

chose these words as they are both comprised of a single syllable. The

Sender was then free to either repeat the word (i.e., convey a truthful

message to the Receiver), or say the other word (a deceitful message).

After delivering the message, the Receiver indicated, via keyboard

press, her subjective evaluation of whether the Sender told the truth

(i.e., theword that the Sender heard is congruent withwhat the Sender

said), or lied (heard a different word than the one said).We did not give

the Receivers any instructions about the response speed. To conclude,

each trial unfolded in one of four manners: The Sender lied but the

Receiver thought the Sender was telling the truth (Lie-Truth, L-T); the

Sender lied and the Receiver did not believe it (Lie-Lie, L-L); the Sender

told the truth and the Receiver believed him (Truth-Truth, T-T); the

Sender told the truth but the Receiver thought it was a lie (Truth-Lie,

T-L). Whether or not the Sender actually told a lie was not revealed to

the Receiver, and also the Receiver’s responses were not revealed to

the Sender, to avoid learning on either side. Each participant completed
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two blocks of 40 trials each as the Sender, and another two blocks as

the Receiver. The participants alternated roles between blocks. We

encouraged the Senders to vary their responses across the experiment

(not to lie or tell the truth all the time).

2.3.2 Stage 2 (with monetary incentives)

After completion of 160 trials (80 each), we introduced monetary

incentives to the task and the participants performed an additional

160 trials (80 per participant). The design was identical to stage 1 but

the Sender was monetarily incentivized to successfully mislead the

Receiver (i.e., make them believe they told the truth when they in fact

lied and vice versa), whereas the Receiver was compensated for suc-

cessful detection of both lies and truths. The Sender’s payoff structure

was as follows: six points for successful lying (L-T), four points for mis-

leading truth-telling (T-L), and two points for any other case (T-T and L-

L). TheReceiver’s payoffswere four points for successful detection (T-T

and L-L), and zero points otherwise. Each point in the task was worth

0.2 NIS (1 NIS ≈ 0.3 USD). Using a speech-processing algorithm, we

assessed the participants’ ongoing performance and computed their

winnings by the end of the experiment.

2.4 Behavior analysis

We computed each participants’ rate of lying, truth-telling, and

successfully misleading as Senders, as well as their lie detection

performance as Receivers (proportion of L-L from all lies). To test how

differences in reaction times relate to deception and detection, we

examined two types of reaction times (RT): Sender RTs, measured

as the time from stimulus onset to speech onset, and Receiver RTs,

measured from (Sender’s) speech onset to (Receiver’s) response onset.

To identify speech onsets, we used the audio recording of each trial.

To examine how repetition (i.e., time in the experiment) and monetary

incentives affected lying, we conducted a logistic regression of lying

on each trial as a function of trial number and a dummy variable of

monetary incentives, clustering the errors per participant.

2.5 sEMG preprocessing

Data analysis was performed usingMATLABR2019a. sEMGdatawere

recordedwith a sampling rate of 2000 samples/s.Wecomputed28per-

mutations of differential sEMG data. Data were then filtered using a

50Hz notch filter and a band-pass 4 order Butterworth filter in the fre-

quency range of 5–500 Hz. After visually inspecting the sEMG signal

recordedduringa calibrationphase (FigureS1), for eachparticipant,we

chose two differential sEMGchannels if they clearly depicted frowning

from the CS muscle region (electrodes 5–6 or 6–7), and smiling from

the zygomaticusmuscles region (e.g., electrodes2–3, 2–4, etc.).We then

used these two differential channels for the following analysis process.

We smoothed the sEMG signal in each epoch by extracting its peak

envelope (determined by the spline interpolation over local maxima in

a 50-ms time window). Then, the continuous differential sEMG enve-

lope was split into the different trials based on the online triggers that

were sent by a custom-built software during the experiment. For each

trial, we cut the trial to three1 s event-related epochs: (1) 0–1 s relative

to trial onset (the epoch containing the Stimulus played over the ear-

phones); (2) 0–1 s relative toSender’s Speechonset; and (3)−1 to0 s rel-

ative to Receiver’s Response. The epochs could overlap (e.g., when the

Receiver responded in less than 1 s after the Sender started to speak).

The sEMG epochs were used as input to the classifier. To summarize,

preprocessing consisted of filtering, channel differentiation, smooth-

ing, segmenting into trials, and segmenting into event-related epochs

(Stimulus, Speech, Response; see Figure S2).

2.6 Classification procedure and deception
detection matrices

To find the specific features that are relevant for deception within the

Sender’s behavior, we discriminated “truth” trials (both T-T and T-L)

and “lie” trials (L-L and L-T) usingMATLAB implementation of a support

vector machine classifier (SVM; Chang & Lin, 2011; software available

at http://www.csie.ntu.edu.tw/∼cjlin/libsvm) and least-squares as a

cost function. To take advantage of the high temporal resolution of

the sEMG recording, we classified “truth” and “lie” trials in smaller

time windows by making 10 ms increments in the window onset (i.e.,

classifying “truth” and “lie” from time 0−1000ms in the first step, then

from time 10–1000 ms in the following step, then 20–1000 ms, and so

on until the final time bin 990−1000 ms), and changing the size of the

window in 10 ms increments (i.e., classifying from time 0–10 ms in the

first step, then from time 0–20 ms in the following, then 0–30 ms, and

so on until 0–1000 ms). We conducted a classification for each of all

the possible pairs of window onsets and window sizes. This procedure,

similar to previous work in Neuroscience (Ossmy et al., 2015; Reaz

et al., 2006) resulted in a deception detection matrix (DDM)—an

m-by-m matrix where the (ith, jth) cell of the matrix is the accuracy

of classifying “truth” and “lie” trials for a window onset i and window

size j, andm is the total number of 10 ms bins (100 bins) in each event-

related epoch. The DDM has values only in the lower triangular region

because thewindow size is determined by the onset of thewindow (see

Figure 2).

For each time window, the following classification procedure was

implemented (Figure S2): First, we applied principal component analy-

sis on the sEMG signal (Bosco, 2010) (in the specific timewindow only)

across all 80 trials. Then, we provided the Support Vector Machine

(SVM) with (1) data items—two components representing the pattern

of sEMG activity in a trial (two components explained more than 95%

of the variance across trials in all the participants); and (2) labels—

indicationwhether the participant lied on each trial (“truth” or “lie”). To

test the classification accuracy, we randomly chose data from one trial

from each label as a test set, and the SVM classifier was trained on the

remaining two datasets (trials in which the participant lied and trials

in which the participant told the truth). Following training, we assessed

the classificationperformanceon the test set (“leave-one-trial-out”). To

http://www.csie.ntu.edu.tw/cjlin/libsvm
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verify that the classifier did not learn any property of the tested exem-

plar, which might otherwise appear in the training set, we performed

cross-validation by using a leave-one-out procedure—the average per-

formance level across 1000 iterations (different test set in each itera-

tion) was assigned to each of the time onset-size window of the DDM.

We aimed to identify portions of the sEMG signal that could signifi-

cantly distinguish lying from truth-telling. Thus, we generated for each

participant DDMmaps of classification accuracy based on the two pre-

defined regions of the face: (1) the zygomaticus major; and (2) corruga-

tor supercilii muscles, and the three events in a trial: (1) Stimulus—1 s

after stimulus onset; (2) Speech—1 s after speech onset; (3) Response—

1 s leading up to the Receiver’s response, for a total of six DDMs per

participant.

To assess the statistical significance of the classification perfor-

mance level, we generated 1000 “shuffle” DDMs (per event, region,

and participant) in which the classification was based on shuffled

labels as input to the classifier. We used a data-driven approach to

detect time windows with significant classification. Subsequently, we

performed a nonparametric cluster analysis on the accuracy level in

both the shuffled and real DDMs and assessed statistical significance

using a well-established clustered-based statistical procedure that

accounts for multiple comparisons (Maris & Oostenveld, 2007). The

procedure was as follows (Figure S2): for each participant, we (1)

defined a statistical threshold as the 95th-percentile accuracy level

across all shuffled-DDMs; (2) selected all the bins in each DDM (real

and shuffled) that exceed that threshold, and clustered them on the
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basis of temporal adjacency (minimal cluster size = 2); (3) took the

sum of the accuracy values within a cluster per DDM as a cluster-

level statistic; (4) took each shuffled-DDM’s best-performing cluster

(largest of the cluster-level statistics), resulting in a 1000 accuracy val-

ues; (5) finally, a cluster from each of the six real DDMswas considered

significant if its performance exceeded those 1000 values. The number

of shuffled DDMs sets an upper bound on our significance level at

p< .001.

The entire analysis pipeline that we used conforms to guidelines

from previous work that used machine learning to analyze behavioral

and neural data in relatively small samples (Abou Elassad et al., 2020;

Lakertz et al., 2021; Ossmy & Adolph, 2020; Ossmy et al., 2014, 2015).

We separately implemented the analysis pipeline on the data from

stage 1 of the experiment (no monetary incentives) and stage 2 (with

monetary incentives).

2.7 Multi-participant analysis: Grouping

To identify potential subtypes of liars in our sample, we performed

a second-level, multi-participant analysis. For each participant, we

counted the number of significant clusters in each of the participant’s

six DDMs (2 muscle regions × 3 events). This procedure resulted in a

six-cell vector per participant that canbeviewedas encapsulated infor-

mation about the participant’s pattern of deception.

We then compared the participants based on the similarity of their

pattern of deception. The deception pattern of each participant was

represented as a vector that includes the number of clusters in each

one of the six DDMs. Similarity was measured by the six-dimensional

Euclidean distance between each pair of vectors. This procedure

yielded a 40 × 40 matrix in which cell i, j is the “distance” between par-

ticipant i and participant j, based on the number of clusters in their

DDMs. If the distance between the participants is high, the similarity

between them is low and vice versa.

Next, we followed the “fast search and find of density peaks”

clustering method (Rodriguez & Laio, 2014) to group the participants

based on their deception (Figure S3). With this method, we first iden-

tified the participants that are “group prototypes” and then classified

the rest of the participants according to the “group prototype” to

whom they were most similar. Similar to Rodriguez and Laio (2014),

a group prototype participant was characterized by: (1) high density

in the similarity matrix (i.e., many participants were relatively similar

to them); (2) large distances from the participants with higher densi-

ties (i.e., relatively low similarity to the other participants with high

densities).

Finally, each participant was assigned to the “group prototype” to

whom they were most similar. Most importantly, in this procedure, the

number of groups is derived from the data and it is not predefined as in

other, more commonmethods, such as k-means clustering (Hartigan &

Wong, 1979).

After clustering, we looked for group characteristics. We used

paired t-tests to test for each group’s difference between an overall

number of ZM clusters and an overall number of CS clusters (to test

for spatial characteristic), and a repeated one-way analysis of variance

(ANOVA) between an overall number of Stimulus clusters, an overall

number of Speech clusters, and an overall number of Response clusters

(temporal characteristic).

2.8 Multi-participant analysis: Correlation with
behavior

We examined whether our classifier’s ability to detect lies is similar

to the human ability of the Receiver to detect lies. As an overall mea-

sure of the machine detection performance per participant, we took

each participant’s maximal classification accuracy across all DDMs. As

a behavioral measure, we took the Sender’s success in misleading the

Receiver—the proportion of trials in which the participant lied, and the

Receiver responded “truth” (L-T trials). Using a two-tailed paired t-test,

we compared the classification detection performancewith that of the

Receiver’s. Using Spearman correlation, we examined the correspon-

dence between the twomeasures.

3 RESULTS

The experimental setup consisted of a two-person task, in which par-

ticipants were asked to trick each other (see Figure 1b). While sitting

face-to-face, they took turns being the Sender or the Receiver. The

Senders heard a signal in their earphone, unbeknown to the Receivers,

and delivered a message to the Receivers, which could either be truth-

ful (congruent with the signal they heard) or deceitful (incongruent).

The Receivers were instructed to tell whether the message was true

or false.

3.1 Behavioral results

The participants lied on 50.96% of the trials on average (SD = 7.77)

(Figure 1c). The Receivers’ detection rates varied between the par-

ticipants, from 22% to 72.83% of the Senders’ lies (M = 48.48%;

SD = 11.84), but were not different than chance at the group level

(t(39)=−0.81, p= .42, one-sample t-test) (see Figure 1c).

The Senders’ reaction times—the time interval from stimulus onset

to speech onset—did not differ whether the Sender told the truth or

lied (Mtruth= 1.89 s, SDtruth= .84; Mlie= 1.87 s, SDlie= .79; t(39)= 0.83,

p= .40). Similarly, theReceivers’ reaction times—the time interval from

speech onset to response onset—did not differ between trials when

the Sender lied and when the Sender told the truth (Mtruth= 4.35 s,

SDtruth= 1.37; Mlie= 4.43 s, SDlie= 1.54; t(39)=−0.67, p= .50).

To assess whether lying behavior changed throughout the exper-

iment, we conducted a logistic regression analysis of lying as a

function of time (trial number) and the existence of monetary incen-

tives. Although incentives did not affect the probability of lying

(coefficient = 0.05, p = .55), the passage of time increased it (coef-

ficient = 0.002, p = .012). We, therefore, proceeded to separately

examine behavior without and with monetary incentives. We found a
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near-significant effect that participants who tended to lie more in the

first stage also lied more in the second stage (r(38) = r: 0.29, p = .06;

bend correlation; r(38) = 0.32, p < .04; Pearson correlation). We also

found the participants liedmore in the second stage (Mstage2 = 54.26%,

SD= 10.10;Mstage1 = 47.55%, SD= 8.91, t(39)= 3.82, p< .001; paired

t-test). Conversely, although detection rates in the two stages of the

experiment were correlated (r(38) = 0.45, p < .001), the Receivers

did not improve with time and the introduction of monetary incen-

tives (Mstage2 = 46.76%, SD = 14.29; Mstage1 = 50.44%, SD = 13.12,

t(39)=−1.62, p= .11; paired t-test).

3.2 Classifying lies in individual participants

To find the specific features associated with deception behavior of the

Senders, we discriminated “truth” trials (T-T and T-L) and “lie” trials (L-

L and L-T) using a support vector machine classifier (SVM; Chang & Lin,

2011), and least squares as a cost function. Figure 2 depicts the DDMs

calculated from the sEMG data of two exemplar participants (#05–13

and #20–41). We calculated 1 s event-related epochs from two facial

regions (ZM and CR) during stimulus, speech, and response events.

Data were divided into bins varying in duration (Figure 2, y-axes) and

sampled starting at varying time-points relative to the event onset (Fig-

ure 2, x-axes). These bins were used as input for an SVM classifica-

tion algorithm (Figure 2, right panels), that classified “truth” and “lie”

trials. After correcting for multiple comparisons, significant clusters

were aggregated across each participants’ six DDMs (left-hand side).

As clearly evident from the big panels in Figure 2, participant #05–13

had significant clusters mostly from the CS muscle (blue tones), while

participant #20–41 had significant clusters mostly from the ZM mus-

cle (red tones). In both cases, lie detection was successfully achieved.

Using this approach, we successfully detected lies in all (40) the par-

ticipants (Figure S2). This is the first evidence for sEMG-based micro-

expressions that reveal lies in face-to-face conditions.

Importantly, we also noticed that the participants changed their

deceptive behavior between the two stages of the experiment (with

and without monetary incentive). Accordingly, we analyzed the sEMG

signal from the first stage of the experiment (without monetary incen-

tives) and the second stage (with monetary incentives) separately.

In the first stage, our maximal success in classifying whether a spe-

cific participant lied was M = 72.97%, SD = 7.34 (averaged across

the participants). Classification was slightly better using data from

the second stage of the experiment, after presenting monetary incen-

tives (M = 73.65%, SD = 8.00), but the increase was not significant

(t(39)= 0.95, p< .34; paired t-test).

Per participant, the classifier identified an average of 16.10 clusters

(±9.95) that significantly distinguish lies from truths (summed over all

6 DDMs; see Tables S1 and S2 for full list). We identified more clus-

ters in trials from the first stage (M = 19.00, SD = 11.53) than in trials

from the second stage (M = 13.20, SD = 7.09; t(39) = 3.43, p < .001;

paired t-test). The number of clusters per DDM and per subject varied

(see Tables S1 and S2). Some DDMs had no significant clusters, while

others had up to 44 clusters.We found high inter-individual variability,

such that none of themuscle regions or events were significantly dom-

inant across all the participants (regardless of the experiment stage,

ps > .23; paired t-test comparing the two muscle regions across the

participants). Some participants had most of the clusters accumulated

within one or two DDMs, while others had clusters spread across all

DDMs.

3.3 Grouping participants

The high individual differences in the number of clusters within

DDMs provide an opportunity to test whether there are types of

liars, differing in their “give-away” indicators—either spatially or

temporally. Specifically, we examined whether the identity of the facial

muscle contributed more to detection ability (ZM or CS) or the event

(Stimulus—when the participants heard the stimulus, Speech—when the

participants delivered the message, Response—when the participants

were awaiting a response). Using density-peak clustering (see Section

2 and Figure S3), in the second half of the experiment, when monetary

incentives were presented, we identified two groups—G1 with 21

participants, and G2 with the remaining 19 participants (Figure 3a).

The average number of clusters per DDM within each group revealed

that the region the electrodes were recording from is a dominant

feature in grouping the participants. While G1 is characterized by a

larger number of clusters in DDMs of CS data (t(20) = 2.95, p < .01),

G2 has more clusters of successful classification using the ZM data

(Figure 3b; t(18) = 6.35, p < .001). The number of clusters in the

temporal events did not differ; therefore, the temporal events did not

characterize either group and were not a dominant factor in clustering

(F(2.19)= 1.11, p= .35 for G1, F(2.17)= 3.19, ps= .07 for G2).

We similarly found two groups using the data from the first stage

of the experiment, when monetary incentives were not yet intro-

duced. G1 in this case had 21 participants and G2 had the remain-

ing 19, although not the same 21 (19) participants comprised G1 (G2).

Again, the dominant factor in clustering was the muscle region (G1:

t(20) = 2.69, p < .02; G2: t(18) = 6.67, p < .001), and not the temporal

events (G1: F(2.19)= 1.7, p= .21; G2: F(217)= 0.91, p= .41)

3.4 Behavior and sEMG correlation

To relate our classifiers’ detection accuracy to the Senders’ ability to

lie successfully (i.e., deceive the Receivers), we computed each partici-

pant’s overall machine-detection success (maximal classification accu-

racy; see Section 2). We then compared the classifier’s performance

with the Senders’ successful-lying measure—the percentage of times

the Sender told a lie and was not caught by the Receiver (L-T trials).

We found that the classifier was significantly better at detection than

humans (i.e., Receivers) both in the first and second stages of the exper-

iment (t(39) = −6.8, p < .001 and t(39) = −8.4, p < .001, respectively),

and that successful lyingbehaviorally is negatively correlatedwith clas-

sification success (Figure 3c), again in both stages of the experiment

(r(38)=−0.45, p< .001; r(38)=−0.42, p< .001; bend correlation).



8 of 12 SHUSTER ET AL.

02_03
02_04
03_06
04_10
05_13
05_14
08_19
09_27
10_07
10_08
11_22
12_23
14_11
14_12
15_29
16_32
21_43
22_46
23_47
24_49
25_52
03_05
04_09
06_15
07_18
08_20
09_28
12_24
13_25
15_30
16_31
17_33
18_37
18_38
19_39
19_40
20_41
22_45
23_48
24_50

# 
si

gn
ifi

ca
nt

 c
lu

st
er

s

0

1

2

3

4

5

6

7

8

Zygomaticus Major (ZM)

stimulus speech response

Corrugator Supercilii (CS)

stimulus speech response

r = 0.45
p = 0.002

50%

60%

70%

80%

90%

100%

30% 40% 50% 60% 70% 80%

al
go

rit
hm

 d
ec

od
in

g

deception success (human)

(a)

(c)(b)

F IGURE 3 Multi-subject result reveals two types of liars. (a) Results of a similarity analysis between the participants based on classification
performance in each of the six DDMs (2 facial muscles× 3 trial events) based on surface electromyography (sEMG) data from the second stage of
the experiment (withmonetary incentives). A clustering algorithm identified two distinct groups of the participants based on similarity (blue and
red squares). The IDs of the two exemplary participants from Figure 2 are highlighted. (b) The number of significant clusters in each of the six
DDMs, averaged across the participants of each group. The differences suggest that the blue group’s classificationmostly relied on data from the
eyebrowmuscle (CS), and the red group hasmore classification success using data from the cheekmuscle (ZM). (c) The ability of the classification
algorithm to detect a participant’s deception (measured asmaximal classification accuracy) is negatively correlated with the ability of that
participant to deceive their human counterpart (Receiver). Each circle represents a participant, colored based on their group belonging (as
depicted in (a))

4 DISCUSSION

We adopted a novel physiological-communicative approach to decep-

tive behavior, combining a state-of-the-art recording technique and

advanced software algorithms (supervised classification and unsuper-

vised clustering). We used a paradigm that requires the participants to

choose between twoactionswhere one reflects the truth and the other

reflects a lie and used the participants’ responses as amodel system for

investigating specific indicators of deception. Unlike previous studies

in this field, our approach comes closer to real-world scenarios by

confronting the participants with the receivers and testing decep-

tion in a social, interactive context, and their choices had very real

consequences on their monetary payoffs, adding ecological validity.

Moreover, our presented approach does not require high-resolution

video recording and analysis. These demand high computational time,

the ability to track subject movements, the need for a frontal view,

high frame rate, and a well-lit environment. Currently, computer vision

approaches showed limited success in detecting leaked expressions,

particularly in face-to-face situations (Merghani et al., 2018). On the

other hand, we successfully detected lies in all the participants and did

so significantly better than untrained human detectors. Not only was

facial muscle activity sufficient to detect human lies, but we also found

that humans differed in their “give-away” indicators. Some revealed

their lies by moving their cheeks (the ZM muscle), whereas others
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expressed lies bymoving their eyebrows (CS). Interestingly, individuals

who were able to successfully deceive their human counterparts were

also poorly detected by themachine-learning algorithm.

4.1 Not all liars are created equal: Indicators of
deception are not universal

Our individual-level, within-participant analyses were designed

to identify key factors that contribute to detecting lies of specific

individuals—both temporal events (when people heard the stimulus,

delivered the message, or awaited a response) and facial muscles (ZM

and CS). The fact that we identified different types of liars goes against

the idea that expression of deceit has universal indicators (Barrett,

2006; Ekman, 1999; Frank & Svetieva, 2015), but rather suggests that

there are at least two types of “give-away” indicators of lying. This

inter-individual difference possibly explains the poor performances

of existing approaches to lie detection, as both the physiological and

communicative approaches rely on a set of predefined indicators,

assuming that people share similar indicators to deception. Find-

ings based on our data-driven, unbiased approach, suggest that this

assumption is only partly true. Indeed, the participants did not differ in

when their indicators of deception appeared; however, they did differ

in where the indicators were located on the face. This is not to say that

we believe that instead of one display of deception there are two—but

rather that there is a host of possible manifestations of deception, and

we havemerely uncovered two of them.

The locations of the deception indicators we identified here suggest

inter-individual differences in how individuals express their emotions.

Both ZM and CS muscles have well-known roles in emotional expres-

sion. ZMactivity correlateswithpositive affect andexpressions suchas

smiling,whereasCSactivity correlateswith negative affect andexpres-

sions such as frowning (Dimberg, 1988; Larsen et al., 2003; Schwartz

et al., 1979). For example, previous studies demonstrated that the

participants frown more when reading about the immoral actions of

other people (t Hart et al., 2018), and that CS can help track responses

to affectively loaded language (Foroni & Semin, 2009, 2013; Glenberg

et al., 2009; Niedenthal et al., 2019). Future work could pinpoint the

mapping between facial muscle activity during emotional expres-

sions and facial muscle activity during deception. Furthermore, while

previous sEMG work relied on precise electrode placement to accom-

modate structural diversity, our investigation focused on the general

muscle location. This is because the CS (upper part of the face) and

ZM (lower part of the face) are relatively far apart. Future work should

consider using source separation methodologies to investigate the

specific muscles activation role in deception rather than their general

region.

The correlation between theReceivers’ success in detecting lies and

the algorithm classification accuracy suggests that even though the

classifier was a better detector, both the human and the algorithmic

detectors relied on similar indicators of deception. Indeed, facial

muscle activity is known to play a role in how humans detect lies

(Van Bockstaele et al., 2012). These findings support previous work

that examined what type of information people most often use to

detect real-life lies (Park et al., 2002). As in the current study, previous

questionnaire studies showed that Receivers detect deception mostly

by looking at Senders’ nonverbal physical expressions. Moreover,

in a few studies (De Turck & Miller, 1990; Fiedler & Walka, 1993),

human lie-detectors (e.g., judges) were trained to look for observable

physical expressions when assessing truthfulness.We did not compare

the accuracy of the classifier to experts who are already trained in

detecting lies. However, other studies showed that experts detect

lies 55.74% of the time (Bond & DePaulo, 2006), which is lower than

the classification accuracy in the current study (72.97%). Thus, facial

sEMG has the potential to help develop improved training regimens to

detect deception that focuses on identifying individual differences in

small movements of facial muscles.

The idea that facial expressions are the “universal language of emo-

tions” is hotly debated, and we are certainly not the first to challenge

the universality or biological hardwiring of facial expression (Jack

et al., 2012). However, much of the debate today deals with cultural

differences in emotion recognition and expression, while we go a

step further and uncover inter-individual differences within a culture.

Notwithstanding, applying our framework to participants of different

cultures would be both interesting and important.

4.2 A lie is a lie is a lie? Deception changes with
time

Even within the same individual, lies do not always manifest them-

selves in the same way, further hindering the universality hypothe-

sis. Behaviorally, the participants in our task lied more often as they

got familiarized with the task, amounting to an average increase of

8% between the two stages of the experiment. Yet, the introduction

of monetary incentives did not have an effect above and beyond the

effect of time.Monetary incentives also did not improve the Receivers’

ability to detect lies, suggesting that detecting lies is not a matter

of increased motivation per se. This finding is consistent with previ-

ous studies reporting that motivation can actually hinder lie detec-

tion (ten Brinke et al., 2016). Importantly, because the order was not

counterbalanced, we cannot speak to the effect of monetary incen-

tives on lying without confounding it with the effect of repetition and

experience.

As in human lie detection, therewas no significant difference in clas-

sification accuracy betweenearly and late stages of the task.Neverthe-

less, we find that the behavioral shift in the Senders’ lying accompanies

a shift in facial expression for some participants. In the later stage of

the task, their “give-away” indicators change compared to the earlier

stage. In other words, some participants who had ZM as the indicator

of deception in trials from the first part of the experiment hadCS as the

indicator in the second part, and vice versa. These findings also expand

previous work that points to people’s motivation to lie as one of the

factors affecting indicators of deception (DePaulo et al., 2003). Further

research must be undertaken to investigate how different aspects of

lying relate to facial muscle activity in individuals.
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4.3 Applications and future directions

Our findings set the stage for the development of a novel autonomous

tool for detecting lies by combining recordings of facial muscle activ-

ity andmachine-learning algorithms. However, given the individual dif-

ferences we found, this approach should first be validated by identify-

ing specific indicators in a big, independent and diverse set of exam-

inees (objectively, using machine learning) and classifying their lying

and truth-telling behaviors. Moreover, our task is overly simplistic and

does not simulate a realistic situation. The degree to which lies can be

detected in a natural environment could potentially be improved by

integrating other recent detection technologies that focus on speech

(both content and tone of voice; Tao et al., 2019), body language (Wu

et al., 2018), and other physiological measures (see review in Burzo

et al., 2018). Importantly, detection can be improved not only by adding

more data sources, but also by combining other established classifiers

(e.g., k-nearest neighbors, decision tree, Naïve Bayes).

Future studies are needed to establish facial sEMG as a reliable and

stable indicator of deception. First, our task should be expanded to sce-

narios where lies are more substantial, arduous, and more ecological.

More substantial lies could yield larger facial expressions that activate

a variety of facial muscles more intensely and for longer periods of

time. Second, the current study focused on lying. Facial muscle activity

should be examined during other types of deception such as omission,

evasion, and equivocation. Finally, other measures should be taken in

parallel to muscle activity to investigate whether the source of inter-

individual variability in deception comes only from the muscles or a

combination with other social and physiological factors.

In addition to lie detection, our task and machine-learning tech-

niques could be used to assess inter-individual variability in the expres-

sion of other emotions and how they relate to cognitive skills (Bovard

et al., 2019), opening new avenues for research and investigation. Pre-

vious studies already harnessed deception tasks for testing the role of

cognitive appraisal in triggering specific emotions (Khan et al., 2009).

Yet, due to conceptual and methodological limitations, significant gaps

exist regarding the individual’s physiological reactions that underlie

the evoked emotions and how those relate to cognition. The tool used

in the current studymay be used to fill this gap.

5 CONCLUSIONS

What indicates deceptive behavior? By bringing together techniques

from cognitive psychology (an interactive deception task), electri-

cal and neuro-engineering (electromyography), and computer science

(machine-learning algorithms),we show that brief facialmuscle activity

can significantly indicate lying versus truth-telling. Individuals differed

in the muscles that “gave away” their lies, suggesting that the expres-

sion of deception is not universal. As time passed and the participants

lied more often, the telltale muscles changed, so similar lies could be

expressed differently in the facial muscles manifestations.
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