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Abstract
The Hedgehog (Hh) signaling pathway plays important roles in the tumorigenesis of multiple

cancers and is a key target for drug discovery. In a screen of natural products extracted

from Chinese herbs, we identified eight ent-Kaurane diterpenoids and two triterpene dilac-

tones as novel Hh pathway antagonists. Epistatic analyses suggest that these compounds

likely act at the level or downstream of Smoothened (Smo) and upstream of Suppressor of

Fused (Sufu). The ent-Kauranoid-treated cells showed elongated cilia, suppressed Smo

trafficking to cilia, and mitotic defects, while the triterpene dilactones had no effect on the

cilia and ciliary Smo. These ent-Kaurane diterpenoids provide new prototypes of Hh inhibi-

tors, and are valuable probes for deciphering the mechanisms of Smo ciliary transport and

ciliogenesis.

Introduction
The Hedgehog (Hh) pathway plays fundamental roles in embryonic development, and aber-
rantly activated Hh signaling drives the formation of multiple cancers, particularly basal cell
carcinoma (BCC) and medulloblastoma (MB) [1]. In the past decade, major progress has been
made in Hh pathway targeted cancer therapies with Hh pathway antagonists (HPAs). Several
Smoothened (Smo) antagonists are in clinical trials for treating a variety of cancers. For exam-
ple, vismodegib (GDC–0449, Roche) is the first HPA approved by the FDA for treating BCC
[2]. However, acquired resistance to vismodegib was soon observed in MB and BCC patients,
resulting in cancer relapse [3, 4]. Genomic analysis revealed that the predominant mechanism
of resistance was Smo mutations that disrupted vismodegib binding with the pocket of Smo [5,
6]. Thus, it has been widely suggested to develop new HPAs that target different molecules.

In mammals, Hh signal transduction depends strictly on the primary cilium. Many of the
crucial components in the mammalian Hh pathway are concentrated within cilia, and most of
the pivotal signaling transduction events take place in the cilia. Thus, the normal structures
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and functions of cilia are essential for Hh signal transduction [1, 7, 8]. In the absence of Hh
ligands, the Hh receptor Patched (Ptch) locates to the cilia and prevents ciliary accumulation
of Smo to repress the pathway. When Hh binds Ptch, Ptch is internalized and removed from
the cilia, allowing Smo to enter and accumulate in the cilia, where it activates the transcrip-
tional effector Gli by relieving its inhibition by Suppressor of Fused (Sufu) [1, 7]. The primary
cilia can either promote or inhibit BCC and MB development depending on the oncogenic
events that have occurred, indicating that cilia could be a potential diagnostic marker and ther-
apeutic target in Hh-related cancers [9, 10].

Currently, most HPAs are synthetic compounds with similar structural skeletons and lim-
ited diversity [11]. Plant natural products, which possess enormous structural and chemical
diversity, have been a continuing source for drug discovery, often showing surprising bioactivi-
ties [12]. The first Hh pathway inhibitor, Cyclopamine (Cyc), is a natural product from corn
lilies that binds to the 7-transmembrane domain of Smo [13, 14]. To discover new HPAs, we
conducted a screen of natural products from herbs and identified a group of ent-Kaurane diter-
penoids that inhibit the Hh pathway and promote cilia elongation.

Materials and Methods

Cell culture
NIH 3T3 (ATCC, CRL-1658TM), Shh light II (ATCC, CRL-2795TM) [14], HEK 293 (ATCC,
CRL-1573TM), HEK 293W [15] and Sufu-/- MEFs [16] cells were grown in DMEM supple-
mented with 10% (v/v) fetal bovine serum (FBS), penicillin, and streptomycin. Fibroblast-
derived cells were prevented from becoming too confluence before propagation to maintain
the property of contact inhibition. Shh light II cells were derived from NIH 3T3 cells stably
transfected with the following dual luciferase reporters: (1) Gli-responsive firefly luciferase and
(2) thymidine kinase-derived Renilla luciferase [14]. HEK 293W cells were derived from HEK
293 cells stably transfected with Wnt3a and the following dual luciferase reporters: (1) Wnt
responsive SuperTOPflash firefly luciferase and (2) simian virus 40-Renilla luciferase [15]. The
Sufu-/- MEFs were originally derived from Dr. Rune Toftgård’s lab [16] and were kindly pro-
vided by Dr. Steven Y. Cheng [17] with the permission of Dr. Rune Toftgård.

Reagents
SAG, cytochalasin D, 5Z-7-Oxoeaneol, GANT58, EGCG and MG132 were purchased from
Sigma, vismodegib from Selleck Chemicals, 20(S)-hydroxycholesterol (20(S)-OHC) from Cay-
man Chemicals, Bodipy-Cyclopamine from Toronto Research Chemicals, and vinblastine and
AZ-TAK1 from Santa Cruz Biotech.

Isolation of Natural Products
Kamebakaurin, kamebakaurinin [18], phyllostachysin H [19], calcicolin A [20], tenuifolin A,
tenuifolin I [21], adenanthin C and adenanthin G [22] were isolated from the genus Isodon as
described. Longipedlactone L [23] was isolated from Kadsura ananosma and longipedlactone
H [24] from Kadsura longipedunculata as described. The plants were collected in Yunnan,
China; no permission was required.

Hh Pathway Dual Reporter Assay
Shh light II cells were propagated on white 96-well assay plates (Corning) and grown to
extreme confluence. Then the medium was changed to 0.5% FBS/DMEMmedium with various
compounds for 30 hr. The cells were lysed and the firefly and Renilla luciferase activities were
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measured using the Bright-Glo reagents (Promega) on a Fluoroskan Ascent (Thermo Fisher).
All of the samples were conducted in triplicate. The Gli-firefly/Renilla luciferase ratio repre-
sented the Hh pathway activity. For Wnt reporter analysis, HEK 293W cells were seeded on
96-well plates at 60% confluence, treated with the compounds for 1 day, and then lysed to mea-
sure the reporter activities.

Bodipy-Cyclopamine Competition Binding Assay
Bodipy-Cyclopamine competition binding assays were conducted as previously described [13]
with modifications. HEK 293 cells were seeded onto 24-well plates and transfected with Smo-
mCherry using Fugene HD (Roche) at 70% confluence. After 2 days of Smo expression, the
cells were incubated with 10 nM Bodipy-Cyc and 10 or 20 μM of various HPAs for 1 hour (100
nM of SAG was used as a positive control). Then, the cells were fixed and stained with Hoechst
33342 to visualize the nuclei. All of the images were captured under the same exposure condi-
tions using a 10x objective with an Olympus FV1000 confocal microscope. At least five images
were taken from each sample with similar Smo-mCherry expression levels. Fluorescence inten-
sities of each image were quantitatively measured using ImageJ (NIH).

Real-time PCR Analysis of Hh Target Gene Expression
NIH 3T3 cells and Sufu-/- MEFs were grown to confluency and their medium were changed to
0.5% FBS medium diluted with various HPAs for 30 hr. Total RNA was extracted and purified
using TRIzol (Invitrogen) according to the standard protocol. Next, 1 μg of total RNA from
each sample was reversely transcribed to cDNA with random hexamer primer (Fermentas).
The mRNA levels of mouse Gli1, Ptch1and Gapdh were quantified using LightCycler 480 SYBR
Green I Master (Roche) on a LightCycler 480 system (Roche). The following primers were
used: (1) Gli1, 5’- CCAAGCCAACTTTATGTCAGGG–3’ and 5’- AGCCCGCTTCTTTGT
TAATTTGA–3’; (2) Ptch1, 5’- CGAGACAAGCCCATCGACATTA–3’ and 5’- AGGGTC
GTTGCTGACCCAAG–3’; and (3) Gapdh, 5’- TGTGTCCGTCGTGGATCTGA–3’ and 5’-
TTGCTGTTGAAGTCGCAGGAG–3’.

Cilia and Ciliary Smo Analysis
For de novo ciliogenesis and ciliary Smo analysis, NIH 3T3 cells were grown to confluence, and
then their medium was changed to serum starvation medium (0.5% FBS/DMEM) with various
compounds for 30 hr. To analyze the effects of ent-Kauranoids on mature cilia, the confluent
cells were first incubated in serum starvation medium for 1 day to fully induce cilia formation
before the compounds were added for an additional 30 hr. Cilia and Smo immunostaining was
performed according to previously reported procedures [25]. The following antibodies were used
for the immunostaining: rabbit polyclonal anti-Arl13b (17711-1-AP, Proteintech), mouse mono-
clonal anti-Smo (sc–166685, Santa Cruz), mouse monoclonal anti-acetylated α-tubulin (T7451,
Sigma), and donkey AlexaFluor 488 or 594 conjugated secondary antibodies (Invitrogen).

Images were acquired with identical setting parameters, using 6-plane Z-stacks (1 μm step
size) to encompass all of the cilia and Smo in the field with a 100X oil immersion objective on
an Olympus FV1000 laser confocal microscope. Images of the Z-stacks were summed as final
micrographs for quantitative assessment with the method of maximal intensity projections
using Image-Pro Plus 6 (Media Cybernetics). To measure the length of the cilia, images were
calibrated with scale ruler, the cilia contour were outlined using the segmented line tool, and
the lengths of cilia were measured with ImageJ. To quantitatively analyze the ciliary Smo, the
cilia were manually outlined with a mask in the Arl13b channel and the Smo fluorescence
intensities were then measured in the Smo image channel. The total signal for a single cilium
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was taken as one data point. Approximately 100 cilia and ciliary Smo were measured from ten
images for each group.

Statistical Analysis
Calculation of the mean, SD and IC50 with the Student’s t test and one-way ANOVA analysis
were performed with GraphPad Prism 6.

Mitotic Spindle Assembly Assay
Mitotic spindle assembly assay was performed as previously reported [25]. Briefly, NIH 3T3
cells were enriched at metaphase with 15 μMMG132 for 90 min, followed by a 60 min incuba-
tion with 15 μMMG132, and 50 or 25 μM kamebakaurin. Cells were fixed by methanol for 10
min at -20°C, and immunostained with mouse monoclonal anti-α-tubulin (T9026, Sigma) and
rabbit polyclonal anti-pericentrin (ab4448, Abcam) antibodies. Approximately 100 metaphase
spindles were scored.

Tubulin and Actin Polymerization Assays
The effect of kamebakaurin on tubulin and actin polymerization was performed using a Tubu-
lin Polymerization Assay Kit (BK011P, Cytoskeleton) and an Actin Polymerization Biochem
Kit (BK003, Cytoskeleton), respectively, with the manufacturer’s guidance.

Results

A group of ent-Kaurane Diterpenoids and Triterpene Dilactones Inhibit
Hh signaling
To search for novel HPAs, we conducted a screen of 500 natural products extracted from
medicinal plants with a cell-based reporter assay using the Smo agonist SAG [26] to activate
Hh signaling (Fig 1). During this screen, a group of ent-Kaurane diterpenoids and triterpene
dilactones were identified. The 8 ent-Kaurene diterpenoids, kamebakaurin, kamebakaurinin
[18], phyllostachysin H [19], calcicolin A [20], tenuifolin A, tenuifolin I [21], adenanthin C
and adenanthin G [21], were isolated from plants of the genus Isodon. The 2 triterpene dilac-
tones, longipedlactone L [23] and longipedlactone H [24], were isolated from Kadsura ana-
nosma and Kadsura longipedunculata, respectively (Fig 2A). Plants from the genus Isodon are
rich with diverse highly oxygenated ent-Kauranoids that have been used as anti-tumor, anti-
bacterial and anti-inflammatory agents in Chinese folk medicine [27]. Triterpenoids from
plants from the genus Kadsura have been reported to have anti-tumor and anti-HIV activities
[21]. The chemical structures of the ten HPAs (Fig 2A) are different from all known Hh antag-
onists and represent novel prototypes of Hh inhibitors.

The 8 ent-Kauranoids share an ent-Kaurane skeleton with different hydroxyl and acetoxyl
substituents (Fig 2A) and are categorized into C–14, 20-oxygenated and non-oxygenated
groups, with the oxygenated compounds having stronger activities (Fig 2B, S1 Fig). These
results reflect the structure-activity relationships of ent-Kauranoids that inhibit the Hh path-
way. The 2 triterpene dilactones, longipedlactones L and H, had similar structures and activities
(Fig 2A and 2B, S1 Fig).

Gli1 and Ptch1 are key components of the Hh pathway and are also Hh pathway target
genes [1]. The HPAs significantly inhibited Gli1 and Ptch1 expression stimulated by SAG (Fig
2C). In contrast, these HPAs had no clear inhibitory effect on Wnt signaling (S2 Fig). The
HPAs also repressed Hh signaling induced by the Smo agonist 20(S)-OHC, which is different
from SAG and binds to the cysteine-rich domain of Smo [28] (Fig 2D). The evidence suggests
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that HPAs act at the level or downstream of Smo. Cyclopamine inhibits Hh signaling by bind-
ing to the heptahelical bundle of Smo, which can be competed away by most known Smo-tar-
geting HPAs [11, 13]. In a competition experiment, the ent-Kauranoids and triterpene
dilactones showed no effect on the binding of Bodipy-labeled Cyc to Smo-expressing cells (Fig
2E and 2F), suggesting that they do not bind the Cyc-binding pocket of Smo. Sufu is a negative
regulator of the Hh pathway that is downstream of Smo and Sufu knockout results in activated
Hh signaling [16, 29]. Real-time PCR results showed that the ent-Kauranoids and dilactones
had no clear inhibitory effect on Gli1 and Ptch1 expression in Sufu-/- MEFs (Fig 2G), suggesting
that they likely work upstream of Sufu. Given that kamebakaurin has been reported to inhibit
the nuclear factor κB (NF-κB) pathway [30], we tested whether established NF-κB inhibitors,
AZ-TAK1 [31] and 5Z-7-Oxoeaneol [32], could repress Hh signaling. As they both showed no
clear effect on the expression of the Hh reporter stimulated by SAG (S3 Fig), we hypothesize
that ent-Kauranoid HPAs do not indirectly inhibit Hh by repressing the NF-κB pathway.

ent-Kauranoids Elongate Primary Cilia and Inhibit Ciliary Accumulation
of Smo
Smo enrichment in the cilia is critical for the activation of Hh pathway [7, 8]. Thus, we
evaluated the effects of the HPAs on the ciliary accumulation of Smo induced by SAG. The
ent-Kauranoids, but not the triterpene dilactones, remarkably reduced the levels of ciliary Smo

Fig 1. The activity distribution of the herbal natural products in the screen for Hh pathway antagonists. The primary screen for Hh pathway
antagonists was performed in Shh light II cells treated with 10 μM natural products (stock concentration in DMSO at 10 mM) with 150 nM SAG for 30 hr. The
selected primary hits displayed an inhibitory effect on the Gli-reporter of more than 70% and Renilla activity of less than 30%. Activities of the compounds
were normalized to SAG.

doi:10.1371/journal.pone.0139830.g001
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Fig 2. Identification of a group of ent-Kaurane diterpenoids and triterpene dilactones as Hh pathway antagonists. (A) Chemical structures of the ent-
Kaurane diterpenoids and the triterpene dilactones. (B) Half maximal inhibitory concentrations (IC50) of the HPAs in the Hh reporter assays activated by
SAG. (C) The HPAs inhibit SAG activated expressions of the Hh target genes Ptch1 andGli1. (D) The HPAs suppress 20(S)-OHC-activated Hh signaling. (E)
The HPAs do not compete with Bodipy-Cyc for Smo binding. Scale bar: 50 μm. (F)Quantitation of the intensities of bound Bodipy-Cyc to Smo-expressing
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(Fig 3A and 3B). Unexpectedly, the cilia were dramatically elongated in cells treated with the
ent-Kauranoids but not the dilactones (Fig 3A and 3C). The intraflagellar transport (IFT) com-
plex proteins affect the Hh pathway downstream of Smo and upstream of Gli, which are essen-
tial for the assembly and maintenance of primary cilia and ciliary transportation [7, 33]. We
speculate that the ent-Kauranoids likely act at similar levels as IFT, by affecting ciliogenesis and
ciliary transport of cargo.

In the above experiments, the ent-Kauranoids were directly added after the cells reached
confluence, when de novo ciliogenesis was to start. We further investigated their effects on
well-formed mature cilia. The confluent cells were starved for one day to fully induce cilia for-
mation before the drugs were added. Under such conditions, the ent-Kauranoids showed more
prominent and variable effects on the elongation of the cilia as are shown by quantitative analy-
ses of staining for the ciliary axoneme marker acetylated α-tubulin (Fig 4A). For example, cilia
in kamebakaurin- and kamebakaurinin-treated cells were 12.59 ± 4.87 μm and 10.92 ± 5.16 μm
in length, which were 3.92- and 3.40-fold of normal cilia, respectively. Cells treated with other
ent-Kauranoids also had elongated cilia, ranging from 6.06 to 8.74 μm, while the cilia in cells
treated with triterpene dilactones were normal (Fig 4A and 4B). Moreover, cilia with abnormal
morphology, such as cilia with twisted and wave-like axoneme or bulged tips or cells with 2 or
3 cilia, were frequently observed (Fig 4C). KIF7 is a cilia-associated protein belonging to the
kinesin family that plays a role in the hedgehog signaling pathway [34–37]. Cells with mutated
Kif7 grow long and twisted cilia, similar to the cells treated with ent-Kauranoids. However,
Kif7 mainly regulates the Sufu-Gli complex without affecting Smo [34–37], making it unlikely
to be the target of the ent-Kauranoids.

Kamebakaurin Disturbs Spindle Assembly and Chromosome
Congression
Kamebakaurin is the most potent ent-Kauranoid that we identified in Hh inhibition and cilia
elongation experiments. Interestingly, when treated with kamebakaurin, cells with binuclei or
micronuclei were frequently observed to undergo abnormal mitosis (S4 Fig). Thus, we exam-
ined the mitotic spindle structures in kamebakaurin-treated cells, which were enriched to
metaphase by MG132 [25]. Indeed, kamebakaurin treatment led to defective (distorted, multi-
polar) spindles with poor spindle microtubule assemblies and spindles lacking of the fusiform
shape (Fig 5A). The congression of chromosomes often failed when the chromosomes mis-
aligned with no attachment to the microtubules. In control groups, cells incubated with vehicle
alone had normal spindle morphology and chromosomes congression (Fig 5A and 5B). The
distribution of the pericentriolar matrix protein pericentrin became more diffused (Fig 5A, S5
Fig). At a lower concentration (25 μM), kamebakaurin induced clear but less severe spindle
malformation in treated cells. (Fig 5A, S5 Fig). We next examined whether kamebakaurin
inhibits spindle formation by interfering with the polymerization of microtubules and actin.
Kamebakaurin showed no effects on either microtubule or actin dynamics in vitro (Fig 5C and
5D), suggesting that it likely targets protein(s) other than tubulin and actin.

Discussion
In the last decades, major progress has been made in the development of small molecules that
specifically inhibit the Hh signaling pathway. Currently, most identified HPAs target Smo,

cells treated with the HPAs. (G) Unlike GANT58, which targets Gli1 downstream of Sufu, the HPAs do not suppress the activation of the Hh pathway in Sufu-/-

MEFs. The relative expression levels of the Hh target genes Ptch1 andGli1were determined. The data in C, D, F and G are expressed as the mean ± SD,
and the HPAs were used at 10 μM. Asterisks indicate p < 0.05 for individual compounds vs. DMSO or control.

doi:10.1371/journal.pone.0139830.g002
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Fig 3. The ent-Kauranoids elongate cilia and inhibit ciliary accumulation of Smo. (A) Representative images of cilia (stained with the ciliary protein
Arl13b, red) and ciliary Smo (green) in NIH 3T3 cells treated with either SAG alone or together with the HPAs. The compounds were used at the
concentration with the maximum effect on cilia elongation while showing no clear toxic effects on the cells. Scale bar: 1 μm. (B)Quantitative assessment of
the integrated intensity of ciliary Smo from the images. (C)Quantitative analysis the length of cilia from the Arl13b images. Asterisks indicate significance
using one-way ANOVA analysis (*, p < 0.05; **, p < 0.01; ****, p < 0.0001; ns, not significant). The data are represented as the mean ± SD.

doi:10.1371/journal.pone.0139830.g003
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several of which are being tested in clinical trials for the treatment of multiple types of cancer
[2]. Unfortunately, acquired resistance to Smo inhibitor has already been reported in patients
with advanced BCC and MB [3, 4]. Thus, Hh pathway inhibitors acting downstream of Smo
could be more promising for such patients. In our study, we identified two triterpene dilactones
and a group of ent-Kauranoids as potent Hh pathway inhibitors with distinct mechanisms of

Fig 4. The ent-Kauranoids remarkably elongate mature cilia. (A) Representative images of the effects of HPAs on well-formed mature cilia. The cilia
were visualized by staining acetylated α-tubulin (Ac Tubulin). (B)Quantitative analysis the length of cilia from the Ac Tubulin images. Asterisks indicate
significance with one-way ANOVA analysis (****, p < 0.0001). The data are presented as the mean ± SD. (C) Representative images of observed cilia
malformations. Asterisks indicate bulged tips. Scale bar: 5 μm.

doi:10.1371/journal.pone.0139830.g004
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action. To our knowledge, this is the first report of HPAs with triterpene and ent-Kauranoid
chemical backbones.

Further analyses suggest that the ent-Kauranoids likely act at the level or downstream of
Smo, and upstream of Sufu. Interestingly, the ent-Kauranoids can inhibit cilia trafficking of

Fig 5. Kamebakaurin causesmultiple spindle defects andmisaligned chromosomes. (A)Metaphase spindle defects in NIH 3T3 cells treated with
kamebakaurin (50μM). Asterisks indicate diffused pericentrin distribution. Scale bar: 5 μm. (B)Quantification of the percentage of cells with abnormal
spindles in kamebakaurin- (50μM) or DMSO (control)-treated groups. More than 100 cells were counted in each group. The data are presented as the
mean ± SD. (C, D) Kamebakaurin has no effect on the polymerization of tubulin or actin in in vitro assays. Vinblastine and cytochalasin D are known tubulin
and actin inhibitors, respectively.

doi:10.1371/journal.pone.0139830.g005
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Smo and promote cilia elongation, whereas the triterpene dilactones have no such effects.
Kamebakaurin, the most potent compound identified in our screen, also causes mitosis defects,
but does not directly target tubulin or actin. The ent-Kauranoids might target common protein
(s) involved in Smo ciliary transport, ciliogenesis and mitosis. Similar to the ent-Kauranoids,
ciliobrevin (HPI–4) has been shown to inhibit Hh signaling while simultaneously affecting cilia
length, Gli2 localization and spindle formation [25, 38]. Subsequent work demonstrated that it
targets the cytoplasmic motor protein dynein, which is involved in ciliary trafficking, mitotic
spindle formation and organelle transport [24].

In addition to dynein, there are other proteins that are reported to participate in both cilia
formation and mitosis, such as the IFT motor protein Kif3a [39, 40], the IFT complex compo-
nent IFT88 [40, 41], and the oncogenic Aurora A kinase [42, 43]. Specifically, the Ran importin
system was recently found to regulate ciliogenesis [44], which forms a diffusion barrier at the
base of cilia to selectively control the entry of proteins into cilia [45, 46]. The Ran importin sys-
tem is also critical for the accurate progression of mitosis, playing roles in spindle microtubule
assembly, kinetochore-microtubule attachment and chromosome congression [47]. Interest-
ingly, ent-15-oxokaurenoic acid, a chemical with similar backbone to the ent-Kauranoids, has
been reported to cause mitotic arrest and defective chromosome congression by targeting
RanBP2 [48], a Ran binding protein from the Ran importin system. Additionally, RanBP9
(RanBPM) and RanBP10 have been identified as Smo-binding proteins, with RanBP9 being
involved in the cilia transportation of Smo [49]. Thus, the Ran binding proteins are attractive
candidate targets for ent-Kauranoids, a possibility that awaits further investigation.

Maintenance of normal ciliary length is critical for the diverse functions of cilia including
the Hh signal transduction, which has been reported to be affected by many proteins and com-
pounds [25, 33, 50, 51]. The ent-Kaurane diterpenoids we identified might provide new tools
for deciphering the mechanisms of ciliogenesis and cilia-dependent regulation of the Hh
pathway.

Supporting Information
S1 Fig. IC50s of all the HPAs in SAG activated conditions. The IC50 values and curves were
determined with GraphPad Prism 6 based on the sigmoid dose-response analysis with a vari-
able slope. The data are presented as the average of triplicate samples ± SD.
(TIF)

S2 Fig. The HPAs do not inhibit Wnt signaling.HEK 293W cells were treated with HPAs at
10 μM for 1 day before being processed for luciferase activity analysis. EGCG is a knownWnt
inhibitor. The data are presented as the average of triplicate samples ± SD. Asterisks indicate
p< 0.05 for individual compounds vs. DMSO.
(TIF)

S3 Fig. NF-κB inhibitors do not suppress Hh signaling. The effects of the NF-κB inhibitors
AZ-TAK1 and 5Z-7-Oxoeaneol on SAG activated Hh signaling were tested in Shh light II
cells., The data are presented as the average of triplicate samples ± SD. Asterisks indicate
p< 0.05 for individual compounds vs. SAG.
(TIF)

S4 Fig. Binuclei and micronuclei were observed in kamebakaurin treated cells. Binuclei or
micronuclei were frequently observed in NIH 3T3 cells treated with kamebakaurin (3 μM) for
30 hr. The asterisks indicate the micronuclei. Scale bar: 5 μm.
(TIF)
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S5 Fig. Defective spindle assembly and chromosome alignment in cells treated with kame-
bakaurin at 25 μM. Spindles were poorly organized In NIH 3T3 cells treated with 25 μM
kamebakaurin, although less severely than in cells treated with 50 μM kamebakaurin, where
the chromosomes were misaligned. The centrosomal protein pericentrin showed a diffused dis-
tribution (asterisks). Scale bar: 5 μm.
(TIF)
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