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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Understanding how antibiotic use drives resistance is crucial for guiding effective strategies

to limit the spread of resistance, but the use–resistance relationship across pathogens and

antibiotics remains unclear. We applied sinusoidal models to evaluate the seasonal use–

resistance relationship across 3 species (Staphylococcus aureus, Escherichia coli, and

Klebsiella pneumoniae) and 5 antibiotic classes (penicillins, macrolides, quinolones, tetracy-

clines, and nitrofurans) in Boston, Massachusetts. Outpatient use of all 5 classes and resis-

tance in inpatient and outpatient isolates in 9 of 15 species–antibiotic combinations showed

statistically significant amplitudes of seasonality (false discovery rate (FDR) < 0.05). While

seasonal peaks in use varied by class, resistance in all 9 species–antibiotic combinations

peaked in the winter and spring. The correlations between seasonal use and resistance

thus varied widely, with resistance to all antibiotic classes being most positively correlated

with use of the winter peaking classes (penicillins and macrolides). These findings challenge

the simple model of antibiotic use independently selecting for resistance and suggest that

stewardship strategies will not be equally effective across all species and antibiotics. Rather,

seasonal selection for resistance across multiple antibiotic classes may be dominated by

use of the most highly prescribed antibiotic classes, penicillins and macrolides.

Introduction

Antibiotic resistance is a growing threat to society, with important public health [1] and eco-

nomic consequences [2]. Antibiotic use is considered a primary driver of resistance not only

in the pathogen targeted by the antibiotic but also in host-associated bacteria subject to
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“bystander selection” [3]. As such, stewardship programs to reduce overall antibiotic prescrib-

ing have become a popular strategy for broadly reducing the burden of resistance. However,

the efficacy of stewardship efforts has varied widely and, in some cases, shown a limited impact

on reducing rates of resistance [4,5]. These findings reflect the complexity of the antibiotic

use–resistance relationship, underscoring the need to characterize this relationship across a

wide range of bacterial species and antibiotics and identify factors that influence the strength

of this association.

Temporal studies have shown that an association between population-level antibiotic use

and resistance can be detected on rapid timescales, where seasonal fluctuations in use have

been accompanied by seasonal fluctuations in resistance with up to a few months lag [6–9]. To

interpret the lag between seasonal use and resistance, Blanquart and colleagues proposed a

model for the relationship between short-term sinusoidal fluctuations in antibiotic use and

resistance [10]. This model predicts that antibiotic use determines the rate of change of resis-

tance, such that the derivative of the prevalence of resistance should depend on the level of use.

Thus, if antibiotic use follows a sine function over a 12-month period, then peak resistance

should lag peak use by a quarter period or 3 months. The lag can be shortened by including a

“stabilizing force” in the model to account for forces that counteract the effect of use and drive

fluctuations in resistance toward equilibrium.

Findings from previous seasonality studies have been largely consistent with this model.

Studies that focused on antibiotics with wintertime peaks in use (e.g., penicillins, macrolides,

and quinolones) have identified positive associations with winter/spring peaks in resistance

lagged by 0 to 3 months in Streptococcus pneumoniae [6], Escherichia coli [7,8], Staphylococcus
aureus [7], and Neisseria gonorrhoeae [9]. In contrast, a study from the Netherlands that ana-

lyzed antibiotics with summer/autumn peaks in use (e.g., nitrofurantoin, fosfomycin, and tri-

methoprim) found that resistance in E. coli and Klebsiella pneumoniae still peaked in the

winter/spring and lagged use by 3 to 6 months [11], inconsistent with the Blanquart and col-

leagues’ model. The authors of this study attribute the longer lag time to the weaker seasonal

fluctuations and lower overall rates of antibiotic use in their study population. However, it is

unclear whether resistance to other antibiotics with winter peaks in use would exhibit similarly

long lag times in this population or whether these findings reflect a broader phenomenon

where despite different seasonal patterns of use, resistance always peaks in the winter/spring

due to other ecological factors.

We aimed to characterize the seasonal relationship between antibiotic use and resistance

across antibiotic classes with winter, summer, and biannual peaks in use [6,7,9,12] in Boston,

Massachusetts. We studied 3 clinically relevant species—S. aureus, E. coli, and K. pneumoniae
—which represent skin/nasal and gut colonizing bacteria [13,14] that cause a diversity of infec-

tions types and are subject to strong bystander selection [3]. We obtained antibiotic use data

from a centralized statewide insurance claims database and resistance data from 2 major Bos-

ton area hospitals. Given the near-universal health insurance coverage in Massachusetts [15],

this analysis provided a unique opportunity to characterize the antibiotic use–resistance rela-

tionship in a dataset that captures nearly all antibiotic use in a population.

Results

Seasonality in antibiotic use varies across classes

The 5 antibiotic classes included in this study each displayed statistically significant seasonal

patterns of use (Fig 1A). Penicillins and macrolides were most frequently prescribed, with

year-round averages of 4.8 and 4.1 daily claims per 10,000 people, respectively. Quinolones,
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tetracyclines, and nitrofurans were prescribed with year-round averages of 1.8, 1.0, and 0.54

daily claims per 10,000 people, respectively.

Penicillins had the greatest magnitude change in prescribing rate across seasons, with the

seasonal component having an amplitude of 1.1 additional daily claims per 10,000 people

(peak to mean) (95% CI, 0.96 to 1.3). This was followed by macrolides (amplitude, 0.74; 95%

CI, 0.59 to 0.89), quinolones (amplitude, 0.081; 95% CI, 0.044 to 0.12), nitrofurans (amplitude,

0.044; 95% CI, 0.024 to 0.064), and tetracyclines use (amplitude, 0.031; 95% CI, 0.011 to 0.052)

(Fig 1B).

The timing of peak prescribing varied by antibiotic class (Fig 1B). Macrolide and penicillin

use peaked in the winter, around late January (phase, 1.7 months; 95% CI, 1.3 to 2.1; note that

phase is indexed to 1.0 representing January 1) and early February (phase, 2.2 months; 95% CI,

2.0 to 2.5), respectively. Tetracycline and nitrofuran use peaked in the summer, around mid-

June (phase, 6.5 months; 95% CI, 4.6 to 8.5) and late August (phase, 8.8 months; 95% CI, 8.2 to

9.4), respectively. Finally, quinolone use peaked twice a year in early January and early July

(phases, 1.0 (95% CI, 0.6 to 1.5) and 7.0 (95% CI, 6.6 to 7.5) months).

Seasonality in antibiotic resistance is prevalent across species and antibiotic

classes

Resistance was seasonal for 9 out of 15 species–antibiotic combinations (Figs 2 and S1 and

S2), with statistically significant amplitudes of seasonality (false discovery rate (FDR) < 0.05)

ranging from a peak log2 (minimum inhibitory concentration, MIC) increase of 0.028 to 0.063

above the yearly average (Fig 3A). Ciprofloxacin resistance and nitrofurantoin resistance were

seasonal in all 3 species with a 12-month period (Figs 2 and S1 and S2). Resistance to erythro-

mycin in S. aureus was also seasonal with a 12-month period (amplitude, 0.048; 95% CI, 0.012

to 0.083). Conversely, tetracycline resistance was not seasonal in any of the 3 species (Fig 2

Fig 1. Seasonal patterns of antibiotic use by class. (A) Average daily antibiotic claims per 10,000 people by calendar

month in Boston, Massachusetts from 2011 to 2015. Lines indicate LOESS smoothing curves and shaded regions

indicate 95% CIs. (B) Sinusoidal model fits for monthly prescribing rate. Points indicate monthly mean seasonal

deviates in average daily antibiotic claims per 10,000 people by calendar month and error bars indicate the standard

error of the mean. Lines indicate the point estimate for the amplitude and phase of the sinusoidal model. Shaded

regions indicate the 95% CIs for the amplitude. Asterisks indicate the amplitude of seasonality is statistically significant

(FDR< 0.05). FAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1 � 4:Pleaseverifythatallentriesarecorrect:DR, false discovery rate. Underlying data are available at https://github.com/gradlab/use-resistance-

seasonality/tree/master/figure_data/Fig1 [16].

https://doi.org/10.1371/journal.pbio.3001579.g001
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and S1 and S2). The seasonal patterns of resistance to penicillin class antibiotics were variable

across species. Oxacillin resistance in S. aureus was seasonal with a 12-month period (ampli-

tude, 0.031; 95% CI, 8.8e-3 to 0.054), while both penicillin resistance in S. aureus (amplitude,

0.010; 95% CI, −6.6e-3 to 0.027) and amoxicillin/clavulanate resistance in E. coli (amplitude,

0.010; 95% CI −5.1e-4 to 0.021) and K. pneumoniae (amplitude, 0.034; 95% CI, 1.2e-3 to 0.067)

did not meet our criterion for seasonality. Ampicillin resistance in E. coli was the only species–

antibiotic combination with a statistically significant amplitude (0.034; 95% CI, 0.019 to 0.049)

that showed a 6-month period in seasonality. However, despite having a slightly worse fit, the

12-month period model of ampicillin resistance in E. coli also indicated seasonality (amplitude,

0.041; 95% CI, 0.019 to 0.062) (S3 Fig).

Resistance peaked in the winter to spring months in all 9 seasonal species–antibiotic combi-

nations, with peaks ranging from early December to mid-April (Fig 3B). Comparing across

species, resistance in E. coli (median phase, 3.2; range, 2.5 to 4.5) tended to peak slightly later

in the year than resistance in S. aureus (median phase, 1.6; range, 0.98 to 2.1) and K. pneumo-
niae (median phase, 1.1; range, 0.0 to 2.2). Peak resistance to macrolides and penicillins in S.

aureus and the first peak in resistance to ampicillin in E. coli occurred around the same time of

year as peak use of macrolides and penicillins, with lags of −1.2 to 2.3 months. However,

Fig 2. Seasonality of antibiotic use and resistance by class in Staphylococcus aureus. Solid lines indicate point

estimates of the amplitude and phase from the best-fitting sinusoidal model of resistance (comparing 6- and 12-month

periods) to each antibiotic, colored by class. Dashed gray lines indicate point estimates of the amplitude and phase of

sinusoidal models for use of the corresponding antibiotic class. Shaded regions indicate the 95% CIs for the amplitude.

Points indicate the monthly mean seasonal deviates in resistance, and error bars indicate the standard error of the

mean. Asterisks indicate the amplitude of seasonality in resistance is statistically significant (FDR< 0.05). FDR, false

discovery rate; MIC, minimum inhibitory concentration. Underlying data are available at https://github.com/gradlab/

use-resistance-seasonality/tree/master/figure_data/Fig2 [16].

https://doi.org/10.1371/journal.pbio.3001579.g002
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resistance to ampicillin in E. coli also peaked a second time during the year in October,

although use did not. Resistance to nitrofurans in all 3 species peaked between 3.2 and 5.7

months after peak nitrofuran use. Finally, resistance to quinolones in all 3 species peaked once

a year about 0.79 to 2.2 months after the first peak in quinolone use.

Since the antibiotic use dataset was restricted to outpatient prescribing for people under 65

years of age, we repeated the resistance analysis on data subset to isolates from outpatients

under 65 years old, representing 53%, 31%, and 47% of the E. coli, K. pneumoniae, and S.

Fig 3. Amplitudes and phases of seasonality by species and antibiotic class. (A) Comparison of amplitudes

estimated from best-fitting sinusoidal models of resistance (comparing 6- and 12-month periods) across antibiotics in

Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae. Error bars indicate 95% CIs of the amplitude. Point

color indicates the antibiotic class. (B) Comparison of phases of seasonality of use and resistance across species and

antibiotic classes. Points indicate peak month(s) of seasonal resistance estimated by the best-fitting sinusoidal model

(comparing 6- and 12-month periods) for each species–antibiotic combination, and error bars indicate the 95% CIs.

Included are species–antibiotic combinations for which the amplitude of seasonality of resistance was statistically

significant (FDR< 0.05). Vertical lines indicate the peak month(s) of seasonal use estimated by the best-fitting

sinusoidal model (comparing 6- and 12-month periods) for each antibiotic class, and shaded regions indicate the 95%

CIs. AMC, amoxicillin-clavulanate; AMP, ampicillin; CIP, ciprofloxacin; ERY, erythromycin; FDR, false discovery rate;

NIT, nitrofurantoin; OXA, oxacillin; PEN, penicillin; TET, tetracycline. Underlying data are available at https://github.

com/gradlab/use-resistance-seasonality/tree/master/figure_data/Fig3 [16].

https://doi.org/10.1371/journal.pbio.3001579.g003
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aureus isolates, respectively. Resistance to ampicillin and nitrofurantoin in E. coli and nitrofur-

antoin in S. aureus remained seasonal with statistically significant seasonal amplitudes

(FDR< 0.05) and showed the same periods and phases of seasonality as in the analyses with

the full dataset including all isolates (S1 Table). Resistance to ciprofloxacin in E. coli also

remained seasonal with a statistically significant amplitude in both the 12- and 6-month period

model; however, a 6-month period model performed marginally better than the 12-month

model (Akaike information criterion (AIC) difference, 0.3). In contrast, resistance to all antibi-

otics in K. pneumoniae and ciprofloxacin, erythromycin, and oxacillin resistance in S. aureus
no longer met our criterion for seasonality (amplitude FDR > 0.05) after restricting our analy-

sis to outpatients under 65 years old. For ciprofloxacin resistance with a 12-month period

model and erythromycin resistance with a 6-month period model in S. aureus, the amplitude

p-values were<0.05, but did not remain significant after multiple testing correction.

To further explore whether the observed seasonality of resistance could be attributable to

seasonally varied sampling of patient demographics and sites of infection, we repeated the

resistance analysis on the full dataset with all isolates after including covariates in our model to

adjust for patient age and sex (Eq 3 in Materials and methods) and patient age, sex, and site of

infection (Eq 4 in Materials and methods). Resistance remained seasonal for all 9 species–anti-

biotic combinations after adjusting for patient age and sex, with statistically significant ampli-

tudes of seasonality (FDR < 0.05), although the magnitude of the estimated amplitudes

decreased by 0% to 32% compared to the unadjusted model (Table 1). After adjusting for site

of infection in addition to age and sex, resistance to ciprofloxacin, erythromycin, and oxacillin

in S. aureus no longer met our criterion for seasonality (amplitude FDR > 0.05), and the esti-

mated amplitudes decreased by 29% to 62% compared to the unadjusted model, while resis-

tance in E. coli and K. pneumoniae remained seasonal (amplitude FDR< 0.05), with a 0% to

Table 1. Comparison of estimated amplitudes of seasonality across 3 sinusoidal models for resistance.

Species Abx Period (months) Amplitude (95% CI)

Model A (unadjusted) Model (adjusted for age and sex) Model C (adjusted for age, sex, and site of infection)

E. coli AMC 6 0.01 (−5.1e-04, 0.021) 0.011 (4.3e-04, 0.022) 0.011 (6.3e-04, 0.022)

E. coli AMP 6 0.034 (0.019, 0.049)� 0.034 (0.019, 0.048)� 0.034 (0.019, 0.048)�

E. coli CIP 12 0.051 (0.031, 0.072)� 0.045 (0.026, 0.065)� 0.044 (0.025, 0.064)�

E. coli NIT 12 0.028 (0.02, 0.037)� 0.028 (0.02, 0.036)� 0.028 (0.02, 0.036)�

E. coli TET 6 0.013 (−3.6e-03, 0.029) 0.013 (−3.4e-03, 0.029) 0.013 (−3.3e-03, 0.029)

K. pneumoniae AMC 12 0.034 (1.2e-03, 0.067) 0.034 (1.3e-03, 0.066) 0.032 (−2.1e-04, 0.065)

K. pneumoniae CIP 12 0.053 (0.023, 0.083)� 0.05 (0.02, 0.081)� 0.048 (0.018, 0.078)�

K. pneumoniae NIT 12 0.035 (9.6e-03, 0.061)� 0.034 (7.9e-03, 0.06)� 0.034 (7.6e-03, 0.06)�

K. pneumoniae TET 6 0.021 (−9.8e-03, 0.051) 0.019 (−0.011, 0.049) 0.019 (−0.012, 0.049)

S. aureus CIP 12 0.063 (0.034, 0.093)� 0.043 (0.016, 0.07)� 0.024 (5.0e-04, 0.048)

S. aureus ERY 12 0.048 (0.012, 0.083)� 0.042 (7.7e-03, 0.077)� 0.032 (−1.0e-03, 0.065)

S. aureus NIT 12 0.033 (0.022, 0.043)� 0.034 (0.023, 0.044)� 0.038 (0.027, 0.048)�

S. aureus OXA 12 0.031 (8.8e-03, 0.054)� 0.027 (5.5e-03, 0.049)� 0.023 (8.2e-04, 0.044)

S. aureus PEN 6 0.01 (−6.6e-03, 0.027) 9.5e-03 (−7.3e-03, 0.026) 9.7e-03 (−7.1e-03, 0.027)

S. aureus TET 12 0.013 (−7.2e-03, 0.033) 0.012 (−7.3e-03, 0.032) 0.013 (−6.9e-03, 0.033)

Model A does not adjust for patient demographics or site of infection, Model B adjusts for patient age and sex, and Model C adjusts for patient age, sex, and site of

infection. In parentheses are the 95% CIs on the amplitude estimates. Asterisks indicate that the amplitude is significant after Benjamini–Hochberg multiple testing

correction (FDR < 0.05).

AMC, amoxicillin-clavulanate; AMP, ampicillin; CIP, ciprofloxacin; ERY, erythromycin; FDR, false discovery rate; NIT, nitrofurantoin; OXA, oxacillin; PEN, penicillin;

TET, tetracycline.

https://doi.org/10.1371/journal.pbio.3001579.t001
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14% decrease in amplitude compared to the unadjusted model (Table 1). The amplitude p-val-

ues were<0.05 for ciprofloxacin and oxacillin resistance in S. aureus after adjusting for age,

sex, and site of infection, but did not remain significant after multiple testing correction. In

this model (Eq 4 in Materials and methods), the coefficient for sex was significantly positive

(FDR< 0.05; where a positive βs indicates that being male is associated with higher MICs)

across all antibiotics in E. coli (median, 0.30; range, 0.053 to 0.54) and K. pneumoniae (median,

0.25; range, 0.18 to 0.40) and largely nonsignificant in S. aureus (median, −2.3e-3; range,

−0.079 to 0.020) (S2 Table). The coefficient for age was significantly positive (FDR < 0.05;

where a positive βa indicates that older ages are associated with higher MICs) in E. coli
(median, 1.9e-3; range, 7.6e-4 to 0.013) and significantly negative in all antibiotics except cip-

rofloxacin in K. pneumoniae (median, −1.0e-3; range, −2.7e-3 to 8.0e-4) (S2 Table). In S.

aureus, the coefficient for age was significantly positive for ciprofloxacin, erythromycin, and

oxacillin resistance, significantly negative for penicillin resistance, and nonsignificant for

nitrofurantoin and tetracycline resistance (median for all antibiotics in S. aureus, 2.3e-3; range,

−9.4e-4 to 0.016). Finally, at least one of the coefficients for site of infection was significant

(FDR< 0.05) in all 15 species–antibiotic combinations, indicating that the site of infection

was also an important determinant of MIC (S2 Table).

Seasonal resistance is positively correlated with use of winter peaking

antibiotic classes

Spearman correlation coefficients between use–resistance antibiotic pairs varied widely across

antibiotics, species, and lag times, ranging from −0.91 to 0.92 (Figs 4 and S4). The number of

Fig 4. Spearman correlations between seasonal use and resistance with 0 to 3 months lag in Staphylococcus aureus.
Spearman rank correlation coefficients were calculated between the monthly mean seasonal deviate in resistance (in

log2(MIC)) and the monthly mean seasonal deviate in use (in average daily claims per 10,000 people) with 0, 1, 2, or 3

months lag between use and resistance, for each pairwise combination of antibiotics and classes. Error bars indicate the

95% CIs. Colors indicate the use antibiotic class. CIP, ciprofloxacin; ERY, erythromycin; Mac, macrolide; MIC,

minimum inhibitory concentration; Nit, nitrofuran; NIT, nitrofurantoin; OXA, oxacillin; Pen, penicillin; Qui,

quinolone; Tet, tetracycline. Underlying data are available at https://github.com/gradlab/use-resistance-seasonality/

tree/master/tables/correlations.csv [16].

https://doi.org/10.1371/journal.pbio.3001579.g004
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statistically significant correlations between use–resistance pairs was maximized when the lag

was 0 months in S. aureus and K. pneumoniae and 1 month in E. coli. Resistance across multi-

ple antibiotics was most positively correlated with use of winter peaking classes, penicillins,

and macrolides (median Spearman’s ρ across all lags, 0.45; interquartile range (IQR), 0.058 to

0.76). Resistance to most antibiotics also showed a negative correlation with use of summer

peaking classes, tetracyclines and nitrofurans (median Spearman’s ρ across all lags, −0.35; IQR,

−0.63 to −0.068). Finally, resistance was not significantly correlated with use of quinolones,

which peaked twice a year, for almost all antibiotics and species (median Spearman’s ρ across

all lags, −0.21; IQR, −0.32 to −0.051).

Discussion

Under a model in which antibiotic use drives resistance, seasonal variation in antibiotic con-

sumption is expected to be associated with variation in population-level resistance that is in

phase with or lagged up to a quarter period behind use [10]. However, we found that resistance

to all antibiotics, including those with summer and biannual peaks in use, best correlated tem-

porally with use of winter peaking antibiotics—penicillins and macrolides—at a 0- to 1-month

lag.

The observed patterns of use and resistance for penicillins and macrolides were mostly con-

sistent with previous findings [6,7,9] and with model predictions [10]. Use of penicillins and

macrolides peaked in the winter, likely due to increased wintertime prescribing for respiratory

infections [12]. In S. aureus, resistance to oxacillin and erythromycin peaked in the winter and

was most correlated with penicillins and macrolides use with no lag. This was consistent with a

study that compared seasonal macrolide use and resistance in methicillin-resistant Staphylo-
coccus aureus (MRSA) [7] and findings in other species–antibiotic combinations that have

shown winter peaks in use and resistance with little to no lag [6–8]. In E. coli, the first peak in

ampicillin resistance occurred in the spring, lagging penicillins use by about 2.3 months, but

also showed a second peak in resistance 6 months later, in the absence of a second peak in pen-

icillins use. However, we note that a 12-month period model for ampicillin resistance in E. coli
also met our criterion for seasonality and showed a single winter peak, which is more consis-

tent with previous findings in E. coli [7,8].

Antibiotic classes with different seasonal patterns of use, such as nitrofurans and quino-

lones, showed seasonal patterns of resistance inconsistent with model predictions and not

readily explained based on their patterns of use. Nitrofurans, which are almost exclusively

used to treat urinary tract infections (UTIs) [17], showed summer peaks in use during the

same season as peak UTI incidence [18–21]. However, resistance to nitrofurantoin in all 3 spe-

cies peaked in the winter and lagged use by 3.2 to 5.7 months. This was consistent with a report

that nitrofurantoin resistance lagged use by 3 to 6 months in E. coli and K. pneumoniae urinary

tract isolates [11]. Quinolones, which are used to treat both respiratory infections and UTIs

[22], showed both winter and summer peaks in use, but only a single winter/spring peak in

ciprofloxacin resistance in all 3 species.

Several species–antibiotic combinations did not show seasonality in resistance. In each

case, this may be due to a lack of association between use and resistance, a lack of strong sea-

sonal variation in use of some antibiotic classes, or other factors, such as a signal too small to

be identified or dampened by the combination of inpatient and outpatient samples in our

dataset. The lack of seasonality in S. aureus resistance to penicillin may be explained by the

high prevalence of penicillin resistance in S. aureus [23] (83% in this dataset), which may limit

the observable effect of increased wintertime use of penicillins. For resistance to amoxicillin-

clavulanate in E. coli and K. pneumoniae, the estimated amplitude of seasonality missed the 5%
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FDR cutoff for statistical significance, but additional data may narrow the CIs around the esti-

mated amplitude. The absence of observed seasonality in tetracycline resistance in all 3 species

is consistent with a previous study that found no significant correlation between tetracycline

use and resistance in E. coli [7] and may be explained by the lack of strong seasonal variation

in tetracycline use (Fig 1).

Our finding that resistance to all antibiotics most correlated with use of winter peaking

antibiotic classes suggests that the simple model in which use of a given antibiotic indepen-

dently selects for resistance is insufficient to explain the full seasonal use–resistance landscape.

Below, we discuss 4 factors that may contribute to this result, while acknowledging that there

may be additional unknown seasonally varying determinants of resistance.

First, the lack of association between seasonal use and resistance in some antibiotics may be

an artifact of comparing between use and resistance in overlapping but not identical popula-

tions. Data availability limited us to comparing between antibiotic use in outpatients under

age 65 and resistance measured in inpatients and outpatients at 2 hospitals with patient popu-

lations that skew toward older ages. Comparisons between population-level community use

and hospital resistance have frequently been utilized in previous ecological [24–28] and sea-

sonal [6–8,11] studies, due to common difficulties in both obtaining within-hospital use data

and tracking community infections that do not result in a healthcare visit. The volume of anti-

biotic use in the community is much greater than in the hospital [29] and thus can have a

strong impact on resistance in both settings [30,31]. This impact appears to vary across spe-

cies–antibiotic combinations and by demographics. For quinolones, we observed biannual

peaks in use and winter peaks in resistance in all 3 pathogens; it may be that the populations

receiving quinolones in the summer and winter are not sampled equally in our resistance data-

set. Including only outpatients under 65 years old in our resistance analysis resulted in the loss

of statistically significant seasonality in S. aureus and K. pneumoniae for some antibiotics.

While this may be attributable to reduction in signal (this subset represents only 30% to 50%

of the total isolates), this result could also suggest that the observed seasonal trends in resis-

tance for some species–antibiotic combinations are disproportionately driven by older popula-

tions with infections associated with hospitalization. In contrast, the seasonal patterns of

resistance among outpatients under 65 largely remained the same across antibiotics in E. coli
and for nitrofurantoin in S. aureus. Thus, the disparity in community and hospital use is

unlikely to fully explain the lack of association in seasonal patterns of use and resistance.

Second, the observed seasonal peaks in resistance could be driven by seasonal variation in

the incidence of infection with a given species, although no specific mechanism for this associ-

ation has been proposed to our knowledge. In our dataset, isolate counts peaked in the sum-

mer for all 3 species considered (S5 Fig), while most resistance peaked in the winter.

Therefore, for seasonal variations in incidence to drive seasonality in resistance, there would

need to be an inverse association between incidence and resistance; however, since there is no

proposed mechanism for this association, we did not explore it statistically.

In contrast, a third mechanism by which resistance could vary seasonally is that certain

patient demographics, or certain sites of infection, are associated with resistance and them-

selves vary seasonally. Rates of resistance have been shown to vary by age, sex, and site of infec-

tion [32–34], and the incidence of infections from these groups have been shown to vary by

season in our dataset (S5 Fig) and others [21,35]. If these factors fully explained seasonal varia-

tion in resistance, incorporating them as covariates in our seasonal regression (assuming the

association was correctly specified) should have accounted for the seasonal signal and led to

near-zero estimates for the sinusoidal component of the regression. However, resistance

remained seasonal with amplitudes decreasing by 0% to 32%, but remaining statistically signif-

icant, in all 9 species–antibiotic combinations after accounting for age and sex (Table 1). After
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also accounting for site of infection, the seasonal amplitudes of resistance in 6 of those 9 com-

binations remained significant, decreasing by 0% to 14% compared to the unadjusted model.

However, for the 3 antibiotics in S. aureus where resistance was no longer seasonal, the ampli-

tudes decreased substantially by 29% to 62% compared to the unadjusted model. Therefore,

seasonally varied sampling of isolates from different demographic groups and sites of infection

likely contributes to but does not fully explain the observed seasonality in resistance.

Fourth, the winter peaks in resistance to antibiotics with different seasonal peaks in use

could be explained by coselection, where use of one antibiotic can indirectly select for resis-

tance to a second antibiotic in bacteria that are coresistant to both antibiotics [36]. Coresis-

tance between penicillins/macrolides and other antibiotics is common across many bacterial

species, including those in our study [37]. Therefore, the winter peaks in resistance to other

antibiotics may be driven by coselection by winter peaking use of penicillins and macrolides.

We might expect that selection by use of pencillins and macrolides dominates over selection

by use of other antibiotics because they are prescribed at substantially higher rates and show

greater seasonal variations in use [12]. Antibiotics with higher rates of use showed stronger

correlations between seasonal use and resistance [7]. In addition, use of macrolides and peni-

cillins have been shown to be more strongly correlated with resistance than less frequently pre-

scribed antibiotics [24].

There were several limitations to this study. First, we measured antibiotic use in the popula-

tion by the number of claims per capita, rather than daily doses, making the assumption that

the average dose and duration do not vary greatly within the short timescales in which we are

measuring seasonal variations in use and that there were not major selective differences

between the effects of one prescription for different members of an antibiotic class. Second, we

were unable to link antibiotic prescriptions to specific pathogens, and, thus, we could not

assess the extent to which antibiotic resistance in a given species is attributable to antibiotic

use for the treatment of infections caused by that species. However, given that bystander selec-

tion has been predicted to account for over 80% of the total antibiotic selection experienced by

S. aureus, E. coli, and K. pneumoniae [3], the analysis we performed comparing total antibiotic

use to resistance in each of these species may in fact yield more relevant interpretations of the

use–resistance relationship [38]. Third, we determined antibiotic exposure as the total popula-

tion-level use of each antibiotic class across the individuals included in our dataset, thus mak-

ing the simplifying assumption that population-level use applies a uniform selective pressure.

Finally, the antibiotic use and resistance datasets that were available to us for each species and

antibiotic often spanned overlapping but different year ranges. Therefore, we aggregated

monthly use and resistance data across years to perform our correlation analyses. We

accounted for variability in use and resistance between years by adjusting for annual trends in

use and resistance in our model.

In conclusion, this work contributes to describing the complexity of the antibiotic use–

resistance relationship. Our finding that resistance to all antibiotics peaked in the winter/

spring, regardless of patterns of use, is consistent with studies from a range of geographic scales

and regions, including South Carolina [8], the United States of America overall [7,9], Israel

[6], and the Netherlands [11] (note that these regions are all in high-income countries in the

northern hemisphere). This suggests a general phenomenon in which selection or coselection

by those antibiotics with high-volume, winter peaking use and/or other ecological factors

results in wintertime peaks of resistance for all antibiotics and indicates that the simplest

model of antibiotic use independently driving resistance to the same antibiotic is inadequate.

We show that additional factors, such as seasonal variations in the contribution of isolates

from different demographic groups, may also contribute to the observed winter peaks in resis-

tance. This study lays the groundwork for future work to further identify and describe the
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factors that shape the use–resistance landscape across diverse pathogens and antibiotics, with

important implications for informing and monitoring the outcome of efforts to reduce antibi-

otic resistance.

Materials and methods

Antibiotic use data

Outpatient antibiotic use data were obtained from the Massachusetts All Payer Claims Data-

base [39], which covers >94% of outpatient prescriptions claims for Massachusetts residents

under the age of 65 [40]. Rates of use for each antibiotic class were measured as the average

daily number of antibiotic claims per 10,000 people during each calendar month from January

2011 to May 2015. These data were subset to include only individuals residing in “Boston

City” census tracks, as defined by the US Census Bureau [41], to capture the antibiotic use pat-

terns in the communities served by the hospitals in our resistance dataset. We aggregated anti-

biotic use data by class according to the World Health Organization’s Anatomical Therapeutic

Chemical Classification System [42] (S3 Table). We included 5 antibiotic classes in our analy-

sis, which together make up 74% of the total outpatient antibiotic claims in Boston: penicillins,

macrolides, quinolones, tetracyclines, and nitrofurans. Given that bystander selection likely

accounts for most of the antibiotic selection experienced by S. aureus, E. coli, and K. pneumo-
niae [3], we included use data for all antibiotics within each class, regardless of the target path-

ogen for which they were prescribed.

Antibiotic resistance data

Clinical microbiology data were obtained for S. aureus, E. coli, and K. pneumoniae isolates col-

lected at 2 tertiary care hospitals in Boston, Massachusetts: Brigham and Women’s Hospital

(BWH) and Massachusetts General Hospital (MGH), from 2007 to 2019 and 2007 to 2016,

respectively. Included in this analysis were all nonsurveillance isolates from inpatients and out-

patients of all demographics, collected from the 5 most common sites of infection across the 3

species: blood, skin and soft tissue, abscess/fluid, respiratory tract, and urinary tract (S4 Table,

S5 Fig). Isolates of the same species that were collected from the same patient within 2 weeks

were assumed to represent a single infection and thus treated as a single isolate. Our final data-

set comprised of 47,374 S. aureus, 130,407 E. coli, and 27,178 K. pneumoniae isolates.

Antibiotic susceptibility testing was performed on each isolate either by automated broth

microdilution (Vitek 2, bioMérieux, Marcy-l’Étoile, France) or by gradient diffusion. Resulting

MIC values were log2 transformed. When MICs were reported with an inequality sign, we

used only the numerical value in our quantitative analyses. Due to variations in hospital testing

guidelines across the years, we excluded tests on isolates that did not report an MIC value,

either because a different test method was used (e.g., disk diameter) or due to missing data.

We excluded years/months from our analysis for each species–antibiotic combination in each

hospital where MIC values were reported for fewer than 80% of isolates or only a subset of iso-

late types (e.g., only testing nitrofurantoin resistance in urinary tract isolates). S5 Table lists

date ranges and percent resistance in each hospital, calculated as the percentage of nonsuscep-

tible isolates out of the total number of isolates from each hospital with a reported MIC value,

for each species–antibiotic combination included in our analysis. In S5 Table, we determined

antibiotic susceptibility by applying the Clinical & Laboratory Standards Institute 2017 break-

points [43] to the reported MIC values of each isolate; the determined susceptibility was then

adjusted based on β-lactamase screen and cefoxitin screen results if available for penicillin and

oxacillin, respectively. For all other analyses other than in S5 Table, we use the log2-
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transformed MIC as the unit of resistance. This study was approved by the Mass General Brig-

ham Institutional Review Board (protocol number: 2016P001671).

Statistical methods

We quantified the extent of seasonality in antibiotic use and resistance by fitting the use and

MIC data to a pair of mathematical models, based on a previously described method [9,10].

Both models consist of (a) a sinusoidal component to describe seasonal deviations from aver-

age year-round use and MICs; and (b) a linear component to adjust for secular trends, such as

declines in use and resistance across years [23,40]. This model makes no assumptions about

the underlying mechanism of resistance and is generalizable to any species and antibiotic

[9,10]. As in the Olesen and colleagues’ model [9], we chose to substitute MIC for the original

outcome (proportion resistance) of the Blanquart and colleagues’ model [10] to allow for

detection of seasonal variations in the quantitative level of resistance, as measured by MIC,

even if that variation occurs without crossing a defined breakpoint for antibiotic susceptibility.

To describe the seasonality of use, monthly claims data for each antibiotic class were fit to

ui � Ause cos½oðti � PuseÞ� þ ByðiÞti þ CyðiÞ; ð1Þ

where ui is the mean daily reported claims per 10,000 people during calendar month ti, Ause is

the amplitude of use seasonality, ω is the frequency of seasonality, where o ¼ 2p

period, Puse is the

phase of use seasonality, and By(i) and Cy(i) are the within-year slope and intercept terms. To

describe the seasonality of resistance, MICs for each isolate were fit to

yi � AMIC cos½oðti � PMICÞ� þ BhðiÞti þ ChðiÞ; ð2Þ

where yi is the log2-transformed MIC and ti is the calendar month of collection of the ith iso-

late, AMIC is the amplitude of resistance seasonality, ω is the frequency of seasonality, where

o ¼ 2p

period, PMIC is the phase of resistance seasonality, and Bh(i) and Ch(i) are the within hospital/

year slope and intercept terms.

We further fit the MIC data to 2 additional models to account for the effect of seasonally

varied sampling of patient demographics and sites of infection on the observed seasonality of

resistance. To describe the seasonality of resistance while adjusting for patient demographics,

age and sex, we fit the MIC data to

yi � AMIC cos½oðti � PMICÞ� þ BhðiÞti þ ChðiÞ þ baai þ bsImi
; ð3Þ

where βa and βs are the coefficients for age and sex, respectively, ai is the age (in years) of the

patient from which the ith isolate is collected, and Imi
is an indicator variable for whether the

patient is male. To describe the seasonality of resistance while adjusting for patient demo-

graphics and site of infection, we fit the MIC data to

yi � AMIC cos½oðti � PMICÞ� þ BhðiÞti þ ChðiÞ þ baai þ bsImi
þ bblIbli þ brtIrti þ bsstIssti

þ babIabi ; ð4Þ

where βbl, βrt, βsst, and βab are the coefficients for blood, respiratory tract, skin and soft tissue,

and abscess/fluid, respectively, and Ibli , Irti , Issti , and Iabi are the indicator variables for whether

the ith isolate was collected from the blood, respiratory tract, skin and soft tissue, or abscess/

fluid, respectively.

The amplitude, phase, slope, intercept, and demographic coefficient terms in each model

were estimated by nonlinear regression, using the nls function in R (version 3.6.2) [44]. We
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examined periods of both 12 and 6 months to account for annual or biannual cycles in use and

resistance. We justified using these fixed periods by performing a wavelet analysis, using the

WaveletComp package [45] in R, on the raw antibiotic use data to show that the dominant

periods of variations in use across the included years are at 12 and 6 months (S6 Fig). To deter-

mine whether to use a 12- or 6-month period for each species–antibiotic combination, we per-

formed model comparisons using the AIC and used the period that resulted in the lower AIC

(S6 and S7 Tables). We determined that there was seasonality in use or resistance if the ampli-

tude was statistically significant after accounting for multiple comparisons by applying the

Benjamini–Hochberg correction with a 5% FDR.

We quantified the association between the observed seasonal patterns of use and resistance

using Spearman rank correlations. To eliminate the impact of annual trends, we calculated

correlations between the average monthly seasonal deviates in use and resistance, aggregated

across years, rather than the raw use and MIC data. We define a “seasonal deviate” as the devi-

ation in use or MIC at a given time of year from the year-round average, which we estimated

by the linear component of the models. Seasonal deviates in use for each year and month were

calculated as

u0i ¼ ui �
^ByðiÞ ti � ^CyðiÞ ; ð5Þ

where u0i is the seasonal deviate of the mean reported daily claims per 10,000 people during cal-

endar month ti, ui is the mean reported daily claims per 10,000 people during calendar month

ti, and ^ByðiÞ and ^CyðiÞ are the within-year slope and intercept terms estimated from the model fit

(Eq 1) for the corresponding year. For resistance, we calculate the seasonal deviate for each iso-

late as

y0i ¼ yi � ^BhðiÞ ti � ^ChðiÞ ; ð6Þ

where y0i is the seasonal deviate of the log2-transformed MIC of the ith isolate, yi is the log2-

transformed MIC of the ith isolate, ti is the calendar month of collection of the ith isolate, and

^BhðiÞ and ^ChðiÞ are the hospital/year slope and intercept estimated from the model fit (Eq 2) for

the hospital and year that the ith isolate was collected in.

Since the working model for the use–resistance relationship predicts that seasonal fluctua-

tions in resistance can lag use by up to 3 months [10], we calculated Spearman correlations

between use and resistance seasonal deviates with no lag and lags of 1, 2, and 3 months. In

addition, because we observed some seasonal patterns of resistance that better aligned with use

of noncognate antibiotic classes, we calculated use–resistance correlations between each pair-

wise combination of target antibiotics and use classes. We only included use–resistance pairs

in this analysis for which both use and resistance met our criterion for seasonality.

All analyses were performed in R version 3.6.2 [44]. Data and code are available at https://

github.com/gradlab/use-resistance-seasonality [16].

Supporting information

S1 Fig. Seasonality of antibiotic use and resistance by class in Escherichia coli. Solid lines

indicate point estimates of the amplitude and phase from the best-fitting sinusoidal model of

resistance (comparing 6- and 12-month periods) to each antibiotic, colored by class. Dashed

gray lines indicate point estimates of the amplitude and phase from sinusoidal models of use of

the corresponding antibiotic class. Shaded regions indicate the 95% CIs for the amplitude.

Points indicate the monthly mean seasonal deviates in resistance, and error bars indicate the

standard error of the mean. Asterisks indicate the amplitude of seasonality in resistance is
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statistically significant (FDR< 0.05). Amox/Clav, amoxicillin-clavulanate; FDR, false discov-

ery rateS. Underlying data are available at https://github.com/gradlab/use-resistance-

seasonality/tree/master/figure_data/S1_Fig [16].

(TIFF)

S2 Fig. Seasonality of antibiotic use and resistance by class in Klebsiella pneumoniae. Solid

lines indicate point estimates of the amplitude and phase from the best-fitting sinusoidal

model of resistance (comparing 6- and 12-month periods) to each antibiotic, colored by class.

Dashed gray lines indicate point estimates of the amplitude and phase from sinusoidal models

of use of the corresponding antibiotic class. Shaded regions indicate the 95% CIs for the ampli-

tude. Points indicate the monthly mean seasonal deviates in resistance, and error bars indicate

the standard error of the mean. Asterisks indicate the amplitude of seasonality in resistance is

statistically significant (FDR< 0.05). Amox/Clav, amoxicillin-clavulanate; FDR, false discov-

ery rate. Underlying data are available at https://github.com/gradlab/use-resistance-

seasonality/tree/master/figure_data/S2_Fig [16].

(TIFF)

S3 Fig. Seasonality of penicillins use and ampicillin resistance in Escherichia coli with a

12-month period model. Solid line indicates point estimates of the amplitude and phase from

a 12-month period sinusoidal model of resistance to ampicillin in E. coli. Dashed gray line

indicates point estimates of the amplitude and phase from a 12-month period sinusoidal

model of use of penicillin class antibiotics. Shaded regions indicate the 95% CIs for the ampli-

tude. Points indicate the monthly mean seasonal deviates in resistance, and error bars indicate

the standard error of the mean. Asterisk indicates the amplitude of seasonality in resistance is

statistically significant (FDR< 0.05). FDR, false discovery rate. Underlying data are available

at https://github.com/gradlab/use-resistance-seasonality/tree/master/figure_data/S3_Fig [16].

(TIFF)

S4 Fig. Spearman correlations between seasonal use and resistance with 0 to 3 months lag in

(A) E. coli and (B) K. pneumoniae. Spearman rank correlation coefficients were calculated

between the monthly mean seasonal deviate in resistance (in log2 (MIC)) and the monthly

mean seasonal deviate in use (in average daily claims per 10,000 people) with 0, 1, 2, or 3

months lag between use and resistance, for each pairwise combination of antibiotics and clas-

ses. Error bars indicate the 95% CIs. Colors indicate the use antibiotic class. AMP, ampicillin;

CIP, ciprofloxacin; Mac, macrolide; MIC, minimum inhibitory concentration; Nit, nitrofuran;

NIT, nitrofurantoin; Pen, penicillin; Qui, quinolone; Tet, tetracycline. Underlying data are

available at https://github.com/gradlab/use-resistance-seasonality/tree/master/tables/

correlations.csv [16].

(TIF)

S5 Fig. Seasonal incidence of infection by demographic group or site of infection. Bars

show the total number of isolates by month included in the resistance dataset for each species,

colored by (A) age group, (B) sex, and (C) site of infection. NOS, not otherwise specified.

Underlying data are available at https://github.com/gradlab/use-resistance-seasonality/tree/

master/figure_data/S5_Fig [16].

(TIF)

S6 Fig. Wavelet analysis of antibiotic use by class. Dotted lines show 12-month (upper line)

and 6-month (lower line) periods. Solid lines indicate regions where the amplitude p-value is

less than 0.05. Shaded areas indicate the “cone of influence” where edge effects are important.

Underlying data are available at https://github.com/gradlab/use-resistance-seasonality/tree/
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master/figure_data/S6_Fig [16].

(TIFF)

S1 Table. Amplitudes and phases of seasonality of resistance in outpatients under 65 years

old. Amplitudes and phases were estimated from the best-fitting sinusoidal model of resistance

(comparing 6- and 12-month periods) for each species–antibiotic combination, using data

that was subset to include only outpatients under age 65. Asterisks indicate that the amplitude

is significant after Benjamini–Hochberg multiple testing correction (FDR < 0.05). AMC,

amoxicillin-clavulanate; AMP, ampicillin; CIP, ciprofloxacin; ERY, erythromycin; FDR, false

discovery rate; NIT, nitrofurantoin; OXA, oxacillin; PEN, penicillin; TET, tetracycline.

(DOCX)

S2 Table. Age, sex, and site of infection coefficients for adjusted sinusoidal model of sea-

sonal resistance. Demographic and site of infection coefficients were estimated from the sinu-

soidal model of resistance that was adjusted for patient age, sex, and site of infection (Eq 4 in

Materials and methods). In parentheses are the 95% CIs on the coefficient estimates. Asterisks

indicate that the coefficient is significant after Benjamini–Hochberg multiple testing correc-

tion (FDR< 0.05). βa, coefficient for patient age; βs, coefficient for patient sex; βbl, coefficient

for if the isolate was a blood isolate; βrt, coefficient for if the isolate was a respiratory tract iso-

late; βsst, coefficient for if the isolate was a skin/soft tissue isolate; βab, coefficient for if the iso-
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