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Proteomics aims to characterise system-wide protein expression and typically relies on mass-
spectrometry and peptide fragmentation, followed by a database search for protein identification. It
has wide ranging applications from clinical to environmental settings and virtually impacts on every area
of biology. In that context, de novo peptide sequencing is becoming increasingly popular. Historically its
performance lagged behind database search methods but with the integration of machine learning, this
field of research is gaining momentum. To enable de novo peptide sequencing to realise its full potential,
it is critical to explore the mass spectrometry data underpinning peptide identification. In this research
we investigate the characteristics of tandem mass spectra using 8 published datasets. We then evaluate
two state of the art de novo peptide sequencing algorithms, Novor and DeepNovo, with a particular focus
on their performance with regard to missing fragmentation cleavage sites and noise. DeepNovo was
found to perform better than Novor overall. However, Novor recalled more correct amino acids when
6 or more cleavage sites were missing. Furthermore, less than 11% of each algorithms’ correct peptide
predictions emanate from data with more than one missing cleavage site, highlighting the issues missing
cleavages pose. We further investigate how the algorithms manage to correctly identify peptides with
many of these missing fragmentation cleavages. We show how noise negatively impacts the performance
of both algorithms, when high intensity peaks are considered. Finally, we provide recommendations
regarding further algorithms’ improvements and offer potential avenues to overcome current inherent
data limitations.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Proteomics has become an indispensable tool for biologists in
the last few decades with its ability to identify system-wide pro-
tein expression. [1]. Its application is wide ranging and encom-
passes the identification of cancer biomarkers [2] and antigens
for immunotherapy [3], as well as mechanisms underlying drought
resistance in crops [4] and virulence factors in human pathogens
[5,6].

In proteomics, protein extracts are typically enzymatically
digested and analysed using mass spectrometry. The correspond-
ing mass spectra are then matched to peptides, which are short
sequences of amino acids. Database search algorithms are com-
monly used in proteomics and aim to match theoretical peaks pre-
dicted from all possible peptides in the relevant protein databases
to the peaks in actual spectra. Although database searching is the
most popular technique used in protein identification, improved
data quality and algorithm design mean de novo peptide sequenc-
ing is becoming increasingly popular in proteomics [7].

Recent advances in mass spectrometry (MS) have considerably
raised the level of data resolution and acquisition in the field of
proteomics [8], while the same database search algorithms have
dominated the field for the last 20 years [9]. Typically, for shotgun
proteomics, following the enzymatic digestion of proteins, the
resulting complex peptide mixture is fractionated using liquid
chromatography. The corresponding peptide fractions are then
analysed using tandem mass spectrometry (MS/MS). Peptides are
separated by mass and charge (m/z) in the first mass analyzer.
Then, peaks from the resulting spectra are isolated and the associ-
ated peptides are passed through a fragmentation chamber to be
charged and broken down into smaller pieces (fragment ions).
These fragments pass through the second mass analyzer producing
fragmentation patterns as the ions are separated. A database
search or de novo peptide sequencing is then conducted to
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establish the most likely peptide sequence corresponding to each
fragmentation pattern. Two common methods of fragmentation
include collision induced dissociation (CID) and higher-energy dis-
sociation (HCD). While similar in methodology, HCD fragmentation
provides greater resolution and mass accuracy than CID [10]. Both
of these methods fragment peptides by colliding them with gas
molecules. This causes the cleavage of the amino acid sequence
typically at a peptide (amide) bond resulting in two possible frag-
ments; b and y ions [11]. While b and y ions themselves are the
most common, peptide fragments can also suffer neutral losses
of ammonia and water molecules producing different peaks with
a shifted m/z value. Conventional notation enumerates the b ions
according to their fragmentation site from the N-terminus to the
C-terminus. Conversely, y ions are numbered from the C-
terminus to the N-terminus. Although both ion types are ordered
by increasing mass, it means for a peptide of length 20, the b1

ion is created from the same cleavage as the y19 ion. As the peptide
mass is known, the mass of the corresponding y ion can be easily
calculated given a b ion and vice versa. As these ions contain equiv-
alent information about amino acid composition they can be
grouped together. We refer to missing fragmentation cleavages
from here on to indicate that neither a b or y ion, or their neutral
losses, is present for a given fragmentation/cleavage site along
the peptide chain. To refer to our example again, if for a peptide
of 20 amino acids, neither the b1 or y19 ions were present, or peaks
indicating the loss of ammonia or water from these ions, we would
then consider that the first cleavage is missing.

Although popular, database searching is not straightforward
due to the irregularity and incompleteness of the peptide fragmen-
tation process which effectively means there is never a perfect
match between predicted and actual peaks in the mass spectra.
Even with recently developed algorithms and up-to-date, tailored
databases, on average, only 25% of spectra are identified leaving
the remaining 75% unclassified and thereby discarded [12,13]. This
can be partly attributed to the size of the databases, where a larger
number of possible matches increases the false discovery rate [14].
This is particularly problematic for metaproteomics, where data-
bases typically span large species diversity. Peptide identification
from mass spectra can also be performed de novo, where peptides
are identified based on the spectrum alone, thus removing the
need for a database. Historically this approach has had a much
lower sensitivity than database search methods but recent
advances in machine learning and mass spectrometry have seen
it become a competitive alternative [15]. Without the use of a data-
base, de novomethods are not limited in the same way as matching
algorithms are, while also being able to identify post-translational-
modifications (PTMs) relatively easily [16]. PTMs expand protein
function beyond the standard amino acids by both reversible and
irreversible modifications. The importance of PTMs is only starting
to be uncovered as evidence suggests they are involved in the reg-
ulation of almost all cellular events [17].

When database search algorithms include variable modifica-
tions, reflective of PTMs, it exponentially increases their search
space as the m/z value of any peak including the modified amino
acid will be shifted accordingly. This has the effect of increasing
both the FDR and running time of the algorithm [18]. This is not
the case for de novo peptide sequencing where the number of PTMs
being searched may have little or no effect on run time [19].

Although the current state of the art de novo algorithms are still
not as effective as database searching, the recent availability of big
data, and the simultaneous explosion in machine learning means
the field is on an upward curve. Two algorithms leading the way
are Novor [20] and DeepNovo [21]. They use machine learning
and dynamic programming to both learn patterns within the data
and simplify the prediction process respectively. How they imple-
ment these techniques is quite different however. Novor models
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the spectrum as a graph, a traditional approach to de novo peptide
sequencing [22]. Each node in the graph, which corresponds to a
peak in the spectrum, is scored using a random forest model,
trained on thousands of other spectra. Edges are created between
nodes whose associated masses differ by that of an amino acid.
Using dynamic programming, Novor then finds the highest scoring
path through the graph, whose edges will classify the amino acids
of the peptide. DeepNovo’s approach to the problem involves pro-
gressing through the spectrum step-by-step using two different
deep learning architectures combined. Based on the mass of the
predicted sequence so far, a convolutional neural network (CNN)
is trained to encode the parts of the spectrum where the next frag-
ment ions might appear. A long short-term memory (LSTM) recur-
rent neural network uses this encoding, along with all the
encodings from the previous predictions, to determine the next
amino acid in the sequence. DeepNovo uses dynamic programming
to limit the number of possible amino acids it can predict to those
that would satisfy the remaining mass of the peptide, given those
already predicted.

While de novo algorithms continue to improve, their possible
uses continue to increase. De novo peptide sequencing has been
used successfully to both aid and confirm database search results
[23–25]. To aid database methods it can be used to identify amino
acid ‘‘tags” from a spectrum that can then be used to limit the size
of the search space to entries that only include them, thereby
decreasing the false discovery rate (FDR). More recently, advanced
de novo sequencing algorithms like DeepNovo, have been used for
neoantigen detection [26]. Antigens are used by the immune sys-
tem to recognise pathogens and trigger a response [27]. Neoanti-
gens are antigens previously unseen by the immune system,
which may be caused by genetic mutations [28]. Identification of
these neoantigens is important for the development of cancer
immunotherapies as they are not expressed by healthy tissue [29].

If the continual increase in the accuracy of de novo sequencing
can be sustained, it may also open up the possibility of re-mining
available data. The PRIDE Repository [30] contains data from thou-
sands of proteomics experiments and improvements in machine
learning and de novo peptide sequencing could uncover new
insights from previous studies. To enable de novo peptide identifi-
cation to reach its full potential, it is vital to understand the under-
lying data [31], in order to best design de novo algorithms.

Previous studies of de novo algorithms have sought to show
how these algorithms perform on different datasets while investi-
gating what errors they are making [15,32]. Here, we investigate
the prevalence and effects of missing fragmentation cleavage sites
and noise on de novo peptide sequencing using real labelled data as
well as artificial data. Specifically, we address the following
research questions; How prevalent are occurrences of noise and
missing fragmentation cleavages in tandem MS data? What are
the effects of noise and missing fragmentation cleavages on the
performance of de novo peptide sequencing algorithms? How do
the current state of the art approaches cope with noise and missing
fragmentation cleavages? Finally, based on our findings, we pro-
pose approaches that could be implemented in the future to
improve de novo peptide sequencing algorithms.
2. Methods

2.1. Data

We analysed data from eight different datasets downloaded
from their respective archive on the PRIDE Public Repository
[30]. A summary of each is provided in Table 1. These include the
four used by Muth and Renard (2018) [15]. The eight datasets



Table 1
Overview of the datasets and processing steps used in this study.

Dataset Pride Archive Organism Original Format Mass Spectrometer Frag Type PrecTol FragTol

MouseCID PXD000790 M. musculus MGF LTQ Orbitrap Elite CID 5 ppm 0.50 Da
YeastCID PXD002726 S. cerevisiae MGF LTQ Orbitrap Velos CID 10 ppm 0.80 Da
EcoliCID PXD016825 E. coli RAW LTQ Orbitrap Velos CID 20 ppm 0.50 Da
StaphAurCID PXD017932 S. aureus RAW LTQ Orbitrap Velos CID 5 ppm 0.60 Da
HeLaHCD PXD000674 H. sapiens RAW Q Exactive HCD 10 ppm 0.02 Da
PyroHCD PXD001077 P. furiosus RAW LTQ Orbitrap Velos HCD 10 ppm 0.06 Da
EcoliHCD PXD008685 E. coli MGF Q Exactive HCD 10 ppm 0.02 Da
StaphAurHCD PXD023039 S. aureus RAW Q Exactive HCD 10 ppm 0.06 Da

Frag Type: Fragmentation Type.
PrecTol: Precursor Mass Tolerance.
FragTol: Fragment Mass Tolerance.
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are made up of six different organisms, distributed between the
two fragmentation types, CID and HCD.

To obtain the labelled data required for this research we per-
formed a database search using two popular search algorithms.
For each organism, a protein database was downloaded from Uni-
Prot (Supp. Table 2). Just as was done by Muth and Renard (2018),
all prokaryotic data were searched against the yeast proteome as
well as their own. Accurate FDR estimation requires each spectrum
to be compared to multiple peptides [33]. If this condition is not
satisfied it can lead to an overestimation of identifications in smal-
ler databases [34]. Therefore the small databases of prokaryotic
organisms were augmented to circumvent this issue [15].

MS-GF+ [35] and X!Tandem [36] were used to search the data-
bases through the SearchGUI platform [37]. Carbamidomethylation
of cysteine was set as a fixed modification and oxidation of
methionine was set as a variable modification. A maximum of
two missed tryptic cleavages were allowed. b and y ions were con-
sidered with precursor charge bounded between 2 and 4 inclusive.
MS-GF + was set to HCD or CID mode depending on the data being
used. Using an FDR of 1%, we extracted the top scoring peptide
spectra matches (PSMs) from each dataset. Furthermore, we then
selected from these PSMs only those for which MS-GF + and X!Tan-
dem agreed. The results of these conditions can be found in Table 2.
The data were then collated into two groups, one for each fragmen-
tation type. This resulted in a split of 25007 HCD spectra and 23821
CID spectra. For the remainder of this research, CID data refers to
the four combined CID datasets listed and HCD data refers to the
four HCD datasets.

2.2. Peptide peak and noise assignment

Using the peptides assigned to the spectra following the data-
base search, each peak was labelled as either a peptide peak or
noise. To do this the assigned peptides were artificially fragmented
to create b and y ions along with their neutral losses of ammonia
(NH3) and water (H2O) using the Pyteomics framework [38]. These
are the ion types used by both Novor and DeepNovo. If possible
these were matched to peaks in the spectra and labelled as peptide
Table 2
The number of peptides matched at the 1% FDR level for both X!Tandem and MS-GF+,
as well as how many of those were in agreement (Overlap).

Dataset Overlap X!Tandem MS-GF+

MouseCID 12132 15586 13345
YeastCID 534 650 1519
EcoliCID 5716 7210 7752
StaphAurCID 5439 6020 6363
HeLaHCD 4061 4973 4167
PyroHCD 9719 12080 10172
EcoliHCD 5180 5279 5257
StaphAurHCD 6047 8279 6850
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peaks with a tolerance of 0.5 Da for CID data and 0.05 Da for HCD
data. Thereby the ions and hence cleavage sites which were not
represented in each spectrum were identified and peaks that could
not be matched to a fragment ion were classified as noise. For clar-
ity, noise was also considered in its proportion to peptide peaks
[15]. When low intensity noise peaks were found not to affect per-
formance, only those above the median of the distribution of noise
peaks were included. A median normalised noise intensity value of
approximately 7.2e-3 was observed for the CID data and a median
of approximately 2.1e-2 for the HCD data. The number of noise
peaks above this threshold was recorded for each spectrum. The
noise factor was then defined as the number of high intensity noise
peaks divided by the number of peptide peaks in each spectrum
(#NoisePeaks/ #PeptidePeaks).

2.3. Algorithms

DeepNovo was downloaded from https://github.com/nh2tran/
DeepNovo. Two models were then trained, one for CID data and
one for HCD data. These two models used the parameters specified
for low resolution and high resolution data in the original paper
respectively [21]. The models were also trained using the same
data as the original paper found at ftp://massive.ucsd.edu/MS
V000081382/. The algorithm was then run through a linux termi-
nal using Python 2.7.17. Novor was operated through the Den-
ovoGUI interface [39] in CID or HCD mode depending on the
data. Precursor precision and fragmentation tolerance were kept
the same as DeepNovo for a fair comparison. Both algorithms were
set to consider carbamidomethylation of cysteine as a fixed modi-
fication and oxidation of methionine as a variable modification.

2.4. Metrics

2.4.1. Amino acid match
For the CID data, two amino acids are considered a match if the

prefix mass of the peptide before the prediction is correct to within
0.5 Da and the masses of the amino acids predicted are within
0.1 Da. For HCD data, the tolerance is lowered with an amino acid
match requiring the prefix mass of the peptide before the predic-
tion to be correct within 0.05 Da and the masses of the amino acids
predicted to be within 0.01 Da.

2.4.2. AA recall
Amino acid recall is defined as the number of amino acids

matched divided by the total number of amino acids in the data-
base assigned peptide.

2.4.3. Peptide accuracy
Peptide accuracy corresponds to the number of peptide predic-

tions that correctly match those assigned to the spectra divided by
the total number of spectra.
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2.4.4. Peak recall
We compare the cumulative masses generated by the amino

acids in the PSM’s peptide sequence and the predicted peptide
sequence which are akin to the position of cleavage sites along
the peptide. For CID data a predicted fragmentation cleavage is
considered correctly matched if its mass differs by less than
0.5 Da from the corresponding true peptide cleavage. We also com-
pare if the true peptide’s cleavage sites are represented with a b or
y ion in the spectrum with a tolerance of 0.5 Da. For HCD data the
tolerance for both matches is reduced to 0.05 Da.
2.5. Confirmatory analysis

High scoring spectra and artificial spectra were also used in a
complementary analysis to confirm the trends observed when
evaluating the algorithms with respect to all of the real data.

For high scoring spectra, de novo peptides above an acceptable
score were extracted for both algorithms separately. High scoring
spectra are defined as those with scores above a threshold which
gives 90% amino acid recall. This standard was used by Tran et al.
(2019) when using DeepNovo for antigen identification. Also, sim-
ilar levels of peptide accuracy or higher amino acid recall were not
possible for both algorithms. 90% amino acid recall was achieved in
CID data with a score threshold of 0.89 (2740 peptides) and 0.74
(10295 peptides) for Novor and DeepNovo respectively. The
thresholds for Novor and DeepNovo in HCD data were 0.67
(13493 peptides) and 0.73 (16898 peptides) respectively.

Artificial data were created to match the distribution of pep-
tides found in the real data. Prosit was downloaded fromhttps://
github.com/kusterlab/prosit. A trained HCD Prosit model was then
downloaded fromhttps://figshare.com/projects/Prosit/35582. The
overlapping HCD peptides matched by both database algorithms
were extracted and artificial spectra were created for each using
this Prosit model. CID peptides were not considered as there was
no available model.

The artificial data were duplicated four more times with each
duplicate given a different level of noise. Therefore, for each dupli-
cate each spectra was given additional random noise peaks corre-
sponding to the respective noise factor of that duplicate. Noise
factors of 0,4,8,12 and 16 were considered.
3. Results

3.1. Missing fragmentation cleavage sites are prevalent in mass spectra

It can be difficult to evaluate de novo algorithms as there is no
such thing as real data that is 100% correctly labelled. Instead we
use the results of two database search algorithms that agree at a
1% FDR. We evaluate two state of the art de novo algorithms by
comparing the database PSMs to their de novo predictions. Given
the assigned peptide from the database search, we establish which
peaks in the spectrum are fragment ions. Those that cannot be
attributed to the peptide are classified as noise. We can then quan-
tify what fragmentation cleavage sites are present and how many
are missing from the spectrum. Models are also available to create
high quality artificial data [40,41], although they only predict
peaks at precise locations directly derived from the peptide
sequences. They also do not include noise peaks, which affect per-
formance when present in large volumes. We also evaluate the
algorithms using these artificial data with additional random noise
as a complementary analysis to provide a deeper insight into their
performance.

De novo sequencing relies solely on the individual spectrum to
identify the peptide that produced it. In contrast to database
searching that can match peaks independently, de novo algorithms
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must predict and recreate each cleavage, even if no peaks from it
exist in the spectrum. When available, many different fragment
ions from one cleavage site serve as stronger evidence for that par-
ticular fragment as being correct. When no fragment ions from a
cleavage site are present there is no direct evidence for the adja-
cent amino acids in the spectrum and so these are more difficult
to determine.

Fig. 1 shows the distribution of fragmentation cleavage sites
present for all peptide lengths in both CID and HCD data. For both
data types, shorter peptides matched by the database search are
more likely to have a fragment ion from each cleavage in the spec-
trum. As the length of the peptide increases the mean number of
fragmentation cleavages in the spectra (blue line) deviates from
the maximum number possible (red line). The variance, indicated
by the box plots, also increases as peptide length increases. This
effect is more evident in HCD data. HCD provides higher resolution
peaks and the ability to use smaller fragment mass tolerance for
the database search. This means random matches are less likely
and so fewer matching peaks are needed by the database search
algorithms for a significant match.

Both Novor and DeepNovo look for b and y ions, as well as
peaks created from their neutral losses of both ammonia and
water, to identify peptides. Using chains of fragment ions they
can identify amino acids through their mass differences. For both
the CID and HCD data, we consider the frequency with which
spectra contain any fragment ion from the possible cleavage
positions along the peptide backbone. Fig. 2 shows how likely
each cleavage position in a peptide of length 20 identified
through database search is to be represented by an ion in the
spectra.

Length 20 was chosen as it revealed some interesting patterns
with other peptide lengths available in Supplementary (Supp.
Figs. 1–3). Just 2% of CID spectra and 6% of HCD spectra of pep-
tides of length 20 had an ion from the first fragmentation cleav-
age site. The first cleavage site also had a below average rate of
occurrence in other length peptides (Supp. Figs. 1–3). For pep-
tides of length 14, the median peptide length, fragment ions
from the first cleavage appeared in 37% of CID spectra and 33%
of HCD spectra (Supp. Fig. 2). While 74% of HCD spectra of
length 20 peptides had at least one ion from the last (19th)
cleavage site, this number fell to 18% for CID spectra. Fragmen-
tation cleavage sites closer to the centre of the peptides had a
much better chance of being represented in the spectra. This
trend was shared among all peptide lengths (Supp. Figs. 1–3).
For both CID and HCD peptides of length 20, each cleavage site
from position 3 to 18 and 2 to 19 respectively, was represented
over 74% of the time.

3.2. Noise peaks outnumber peptide peaks

Further complicating the identification process is the abun-
dance of peaks in the spectrum which do not belong to the peptide
and are classified as noise [42].

The distribution of all peaks in the data is shown in Fig. 3. Each
point represents the mass-to-charge ratio (m/z) and normalised
intensity values of a peak in the data. A random selection of 1%
of all peaks were used to make the plot readable. The peaks are cat-
egorised by those that can be explained by the assigned peptide
(peptide peaks) and those that cannot (noise). Both distributions
are skewed to the right with very few peaks greater than
1500 m/z. This trend is still observed even when controlling for
peptide mass. Noise peaks outnumber those from the peptide
approximately 15:1 in the CID data with the ratio being approxi-
mately 7:1 in the HCD data. While higher intensity ions are gener-
ally seen as more likely to come from a peptide, Fig. 3 shows how
this alone is insufficient evidence. The quantity of noise peaks is
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Fig. 1. Number of cleavage sites present in the spectra. Box plots show the numbers of fragmentation cleavage sites present in the spectra for peptides of length 6 to 30. The
combined results of all the CID spectra from this study are shown in A, with the HCD spectra from this study shown in B. The relative numbers of spectra per length are
indicated by the blue dots, and the mean number of fragmentation cleavage sites present is shown by the blue line. The mode of each peptide length is highlighted by the
green bar and the maximum number that could be present (peptide length – 1) is shown by the red line.

Fig. 2. Fraction of spectra with one or more ions at each cleavage position. The figure shows the fraction of spectra, for length 20 peptides, that contain one or more ions at
each fragmentation cleavage site. A contains all peptides of length 20 from the four CID datasets used in this study with B containing all peptides of length 20 from the four
HCD datasets. Numbers on top of the bars indicate their relative frequency.

Fig. 3. Scatter plot of noise and peptide peaks. Scatter plot of the distribution of peak m/z and normalised intensities for both the four CID (A) and four HCD (B) datasets.
Peaks attributable to each peptide are shown in blue with noise peaks shown in orange.
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equal to or above the quantity of peptide peaks at all intensity
levels (Supp. Fig. 4).

Only 6.3% of peaks in the CID data were attributable to the pep-
tide assigned by the database search. Although this number more
than doubled to 13% for HCD data as the number of noise peaks
reduced, the noise peaks that were present were of a higher aver-
age intensity.
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3.3. De Novo algorithm performance exponentially decreases with
increasing peptide length

Fig. 4A shows the peptide length distribution of the total CID
dataset, the number of peptides that had each fragmentation
cleavage site represented in the spectrum and the number of
peptides that each algorithm predicted correctly. In total, Novor



Fig. 4. Correct peptide prediction distribution. Distribution of the correct peptide predictions of both algorithms for the four CID (A) and four HCD (B) datasets. The total
number of peptides in the data of each length is shown in blue, with the number containing a fragment ion from each cleavage site shown by the hatching. Numbers of correct
Novor predictions are shown in magenta with correct DeepNovo predictions shown in green.
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predicted 5768 (24%) of the 23821 peptides correctly while
DeepNovo managed 7870 (33%). DeepNovo performed better
than Novor for all peptide lengths. Of the 2798 CID peptides of
length 11, the most common length, DeepNovo correctly pre-
dicted 1243 (44%), while Novor correctly predicted 929 (33%).
For length 8 peptides, the shortest peptides in the data, Novor
correctly predicted 68% of the peptide sequences correctly while
DeepNovo correctly predicted 76%. Novor successfully predicted
just 5 peptides of length greater than 20 and none greater than
24. DeepNovo predicted 175 peptides with length greater than
20 and 37 greater than 24.

The same distributions are shown for HCD data in Fig. 4B.
DeepNovo predicted more peptides than Novor correctly for
almost all peptide lengths. Novor did perform better for lengths
6 and 29, but due to the small sample size at these lengths this
cannot be considered as significant. Of the 25007 HCD peptides,
DeepNovo predicted 11705 (47%) correctly whereas Novor pre-
dicted 9710 (39%) correctly. The accuracy of both algorithms
was greater across all peptide lengths compared to the CID data,
highlighting how technological advances directly impact on algo-
rithm performance. There were 2262 HCD peptides of length 11,
again the most common length, of which DeepNovo correctly
predicted 1305 (60%) and Novor correctly predicted 1202
(53%). DeepNovo and Novor correctly predicted 1564 (85%) and
1485 (81%) of the 1844 length 8 peptides respectively. The rela-
tive frequency of correct peptides across the different peptide
lengths is shown in Supp. Fig. 5. Here an exponential decrease
in peptide accuracy for both fragmentation types is observed
as the peptide length increases.

The trends shown in Fig. 4 are not only the result of the
decreased prevalence of fragmentation cleavage sites as peptide
length increases. As the number of amino acids in a peptide
sets the upper limit on the number of cleavages that can be
missing, the two variables are correlated. However, when con-
trolling for the number of missing cleavages, increased peptide
length still negatively impacts performance. When the number
of fragmentation cleavage sites that are missing is held con-
stant, both algorithms show a linear decrease in peptide accu-
racy as peptide length increases for both data types (Supp.
Fig. 6). For HCD data, Novor correctly predicted 86% of peptides
of length 8 when no fragmentation cleavages were missing. It
only predicted 36% of peptides of length 16 for the same crite-
rion. DeepNovo’s accuracy dropped from 91% to 69% over the
same interval when there were no missing fragmentation
cleavages.
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3.4. Increasing number of missing fragmentation cleavage sites
exponentially decreases de novo peptide algorithm accuracy

Peptide ion peaks may be missing in the MS spectra for a variety
of reasons. These include the random nature of the fragmentation
collisions, the cut-off of the mass spectrometer or how unfavour-
able fragmentation at a cleavage site is given the amino acid
sequence of the peptide [43,41].

As shown in Fig. 5, the majority of the correctly identified pep-
tides had at most one fragmentation cleavage site missing from the
spectrum. Fewer than 3.6% of CID peptides correctly identified by
Novor and 10% of CID peptides correctly identified by DeepNovo
had more than one fragmentation cleavage missing. Novor did
not predict any peptide correctly with more than 5 cleavage sites
missing. CID spectra with more than one missing fragmentation
cleavage account for over 36% of the total number of spectra. For
HCD data, spectra with more than one missing fragmentation
cleavage accounted for 11% of Novor’s correct predictions and
12% of DeepNovo’s. HCD spectra with more than one cleavage site
missing account for 40% of the total.

To more easily compare the performance of the algorithms we
also evaluate them using the relative frequency of the correct pep-
tides. Fig. 6 shows the peptide accuracy and amino acid recall for
the data bins shown in Fig. 5. For both CID and HCD data, there
is an exponential decrease in the peptide accuracy of the algo-
rithms as the number of missing fragmentation cleavage sites
increases. DeepNovo consistently outperformed Novor in peptide
accuracy for both fragmentation types and all numbers of missing
cleavage sites. For CID data with 0 missing fragmentation cleav-
ages, DeepNovo predicted 61% of the peptides correctly while
Novor only predicted 51% correctly. Neither algorithm predicted
any CID peptide with 9 or more missing fragmentation cleavages
correctly. The accuracy of both algorithms was higher for HCD
data. DeepNovo predicted 83% of peptides correctly while Novor
predicted just 71% when no fragmentation cleavages were missing.
For 3 missing cleavages the accuracy was 13% and 11% respec-
tively. Once the number of fragmentation cleavage sites that are
missing exceeded 3 in CID data, the probability of either algorithm
correctly predicting a peptide fell below 4.3% with Novor fairing
significantly worse. With HCD data, the peptide accuracy of Deep-
Novo fell below 7.9% and Novor below 5.0% when more than 3 frag-
mentation cleavage sites were missing and continued to decrease
for greater numbers of missing cleavages.

To further evaluate the performance of the models, we also
compare them using amino acid recall. While related to peptide



Fig. 5. Algorithm performance for increasing numbers of missing fragmentation cleavage sites. Bar plot showing the total number of spectra (blue), the total number of
peptides correctly predicted by Novor (magenta) and the total number of peptides correctly predicted by DeepNovo (green) for each number of missing fragmentation
cleavage sites. The combined CID data are shown in A with the combined HCD data shown in B.

Fig. 6. Peptide accuracy and amino acid recall. Plots show both algorithms for the different fragmentation types; CID (A) and HCD (B). Peptide accuracy is shown by solid
lines with amino acid (AA) recall shown by dotted lines. 95% confidence intervals surround each point with some too small to see.

K. McDonnell, E. Howley and F. Abram Computational and Structural Biotechnology Journal 20 (2022) 1402–1412
accuracy, amino acid recall gives a finer resolution view of how the
algorithms are dealing with missing fragmentation cleavage sites.
This is particularly useful for spectra where there are manymissing
cleavages and peptide accuracy is extremely low.

A clear correlation can be seen in Fig. 6 between the amino acid
recall of both algorithms and the number of fragmentation cleav-
age sites that are missing. The amino acid recall of both algorithms
decreases almost continuously for both fragmentation types as the
number of missing cleavages increases.

When no cleavage sites were missing, DeepNovo had an amino
acid recall of 84% in CID data and 94% in HCD data. For the same
data, Novor had amino acid recalls of 80% and 91% respectively.
When there are 4 or fewer missing fragmentation cleavages, Deep-
Novo outperforms Novor with a greater amino acid recall for both
fragmentation types. In contrast, when 5 or more cleavage sites
were missing Novor was found to perform best. For spectra with
8 missing fragmentation cleavages, Novor correctly recalled 17%
and 37% of the amino acids in CID and HCD data respectively.
DeepNovo only recalled 15% and 31% of the amino acids correctly
for the same respective data.

When these algorithms are used by researchers, only high-
scoring peptides are included in the analysis. Therefore, we also
performed a brief analysis using only these high scoring de novo
peptides. We extracted all peptides above a threshold that gives
90% amino acid recall. The distribution of missing fragmentation
cleavage sites in these peptides (Supp. Fig. 7) does not match that
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of the complete data (Fig. 5) as both algorithms favour peptides
with fewer missing cleavages. Just 1.2% and 11% of Novor’s high
scoring peptides in CID and HCD data respectively had more than
1 missing fragmentation cleavage site while 9.7% and 18% of Deep-
Novo’s high scoring peptides had more than 1 missing cleavage site
for the respective fragmentation types.

To eliminate interactions between features, a further comple-
mentary analysis was carried out on artificial HCD data. The distri-
bution of missing fragmentation cleavages in the data is shown in
Supp. Fig. 8. Novor correctly predicted 8792 (88%) out of the 9839
artificial peptides with no missing cleavage site. DeepNovo cor-
rectly predicted 9342 (95%) of these peptides. Differences in the
performance of the algorithms between artificial data and real data
may be due to both the more accurate peak placement and lack of
noise in the artificial data. It is difficult to give accurate predictions
of peptide accuracy when more than 3 fragmentation cleavages are
missing due to the lack of artificial spectra fitting this description.
3.5. Impact of noise changes with the number of fragmentation
cleavages that are missing

The effect of noise on the accuracy of de novo peptide sequenc-
ing algorithms is sometimes difficult to elucidate. When viewed
alone, the amount of noise in a spectrum did not show a clear neg-
ative correlation to performance. This is due to the much stronger
influence of the number of missing fragmentation cleavages on
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algorithm accuracy. Also, much of the noise is at such low intensi-
ties that it does not affect the performance of the algorithms. To
account for this, in the following analysis we only consider noise
above a specific threshold, determined as the median of the noise
distribution. We then define the noise factor as the ratio of these
high intensity non-peptide noise peaks to peptide peaks. For exam-
ple, a noise factor of 10 means there are 10 times as many noise
peaks as peptide peaks in the spectrum.

Fig. 7 shows amino acid recall as a function of both the number
of fragmentation cleavage sites that are missing and the noise fac-
tor for both algorithms and both fragmentation types. Amino acid
recall was chosen over peptide accuracy as correct peptides were
concentrated to where only zero or one fragmentation cleavage
was missing (Fig. 5). Supp. Fig. 9 shows a similar plot for peptide
accuracy. In Fig. 7 the number of missing cleavage sites increases
from top to bottom while the noise factor increases from left to
right. As expected, both algorithms perform best when there are
very few missing fragmentation cleavages and the noise factor is
low.

The distribution of the number of spectra in Fig. 7 is not uniform.
Data points toward the extreme right and bottom of the graph have
fewer and fewer spectra in them as these combinations of missing
fragmentation cleavages and noise factor are less likely following
the database search. White squares are data points where no spec-
tra meet that particular combination. A few outliers near the white
squares exhibit unusually high recall, inconsistent with the rest of
the graph. These are data points where sample sizes are small and
so do not reflect the trends seen in the rest of Fig. 7.

The relationship between noise and amino acid recall is linked
with the absence of fragmentation cleavage sites. As the number
of missing cleavage sites increases, fewer and fewer amino acids
are correctly recalled from spectra with high noise factors. Perfor-
mance decreases from where noise peaks and missing fragmenta-
tion cleavages are few (top left) to where both noise and missing
fragmentation cleavages are more prevalent (bottom right) for
Fig. 7. Amino Acid recall as a function of the number of missing fragmentation cleav
lower recall shown in cyan. Performance of Novor across the two fragmentation types are
(B and D). CID data are shown on top (A and B) with HCD data shown on the bottom (C

1409
each algorithm and fragmentation type. For both fragmentation
types, DeepNovo is less affected by noise than Novor. Amino acid
recall does not fall as sharply as with Novor as the noise factor
increases. As seen in Supp Fig. 9, the peptide accuracy of Novor also
decreases rapidly as the noise factor increases for both CID and
HCD data. The effect is less acute for DeepNovo but still present.
The trend is also much stronger for both algorithms in HCD data
where the noise considered is of a higher average intensity and
so has a much stronger influence on algorithm prediction.

To isolate the effect of noise from missing fragmentation cleav-
ages we also analysed artificial data with additional noise peaks. To
eliminate confounding factors, the artificial data were duplicated
and each spectrum in a duplicate was given the same factor of ran-
dom noise. Supp. Fig. 8B shows the linear decrease in performance
as the noise factor was increased. Again, Deepnovo was less
affected than Novor by the increased noise.

3.6. De novo algorithms can correctly predict amino acids missing
from spectra

Earlier analyses showed the ability of both algorithms to cor-
rectly predict peptides when fragmentation cleavage sites are
missing from the spectra (see Fig. 6). Although the performance
of the algorithms is severely affected as the number of missing
fragmentation cleavages increases, the algorithms are still able to
make some accurate predictions. When one fragmentation cleav-
age is missing Novor had a CID peptide accuracy of 22% and a
HCD peptide accuracy of 46%, while DeepNovo had a CID peptide
accuracy of 35% and HCD peptide accuracy of 56%. To investigate
how algorithms deal with missing fragmentation cleavages we
compared how often each cleavage site was represented by a frag-
ment ion in the spectra to how often it was correctly identified by
the de novo algorithms (Fig. 8).

As can be seen in Fig. 8A, CID peptides of length 20 are more
likely to be missing a fragmentation cleavage site nearer the end
age sites and the Noise Factor. Higher amino acid (AA) recall is shown in pink, with
shown on the left (A and C) with the performance of DeepNovo shown on the right
and D).



Fig. 8. Algorithm cleavage site predictions compared to missing cleavage sites. The hatched blue bars represent the fraction of spectra that contain an ion from that
cleavage site in the peptide. The magenta (Novor) and green (DeepNovo) bars show the fraction of peptides predicted by each algorithm that contained that same cleavage
site. Numbers on top of the bars indicate their value.
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of the peptide. This peptide length was selected as it highlights
some interesting characteristics of the two algorithms. Other
peptide lengths can be found in Supplementary (Supp. Figs. 1–3).
As mentioned previously, only 2% of peptides of length 20 in CID
data have an ion from the first cleavage position (b1 or y19) in
the spectrum. However, both algorithms account for this fragmen-
tation cleavage with their predicted peptides far more often than it
appears in the data. Novor correctly identifies this cleavage posi-
tion 29% of the time whereas DeepNovo correctly identifies it
27% of the time. Novor correctly predicted the 19th cleavage posi-
tion in 63% of the peptides while DeepNovo predicted it correctly
in 61%. This cleavage site was represented in only 18% of CID pep-
tides of length 20. Even though both algorithms appear to perform
similarly in Fig. 8A, DeepNovo predicted more than three times as
many length 20 CID peptides correctly, when compared to Novor.

The corresponding graph for HCD data is shown in Fig. 8B. The
first cleavage site is only present in 6% of spectra. Yet, Novor
accounts for this site in 40% of the data and DeepNovo in 32%.
Novor performs better than DeepNovo on the first and last cleav-
age sites in both HCD and CID data despite DeepNovo performing
better overall. DeepNovo’s correct predictions are less evenly
spread than Novor among all the peptides with a small subset con-
taining most of the recalled amino acids. Other peptide lengths can
be found in Supplementary for which similar trends were observed
(Supp. Figs. 1–3).
4. Discussion

De novo peptide sequencing is a growing field with machine
learning fuelling its development. Historically, effective design of
de novo algorithms was difficult with previous methods relying
on human expert knowledge. Including this knowledge in the
design of machine learning algorithms is not straightforward as
it is difficult to capture and may significantly increase the com-
plexity of the corresponding algorithms [20]. In fact, most of the
fragmentation rules identified by researchers are not included in
proteomics identification tools [31]. Machine learning may allow
algorithms to learn these features automatically as they uncover
patterns in the data. However, the design of algorithm architec-
tures that would facilitate this learning is non-trivial and requires
a deep understanding of the data and fragmentation process.

As shown in our analysis and others [15], the performance of
modern algorithms on artificial data far exceeds that of real data.
Not only does this mean that analysis of algorithms on artificial
data is not directly applicable to real data but it also highlights
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how the current bottlenecks lie with features of the data and the
algorithms’ inability to cope with them. To elucidate some of these
data features and show how they might be addressed, we evalu-
ated two state of the art de novo sequencing algorithms on both
real and artificial MS/MS data. We determined both the prevalence
and effects of missing fragmentation cleavages and noise on de
novo sequencing algorithms. We also investigated how the state
of the art algorithms overcome these features.

We firstly analysed the performance of DeepNovo and Novor
with respect to peptide length to ensure it did not confound later
observations. Like in previous studies [32,15], an increase in pep-
tide length was found to negatively affect performance. Further-
more, we demonstrate the peptide accuracy exponentially
decreases in response to an increase in length. This is likely due
to the fact that de novo algorithms must predict each amino acid,
meaning the likelihood of at least one incorrect prediction
increases with the number of amino acids.

Missing fragmentation cleavages were found to be the main
problem with the data which de novo sequencing algorithms must
overcome. The vast majority of peptides correctly identified come
from spectra with zero or one missing fragmentation cleavages
(Fig. 5). As the number of missing cleavage sites increases, identi-
fication becomes more difficult with correct peptides from both
algorithms becoming non-existent. Consequently, almost all of
the peptides scored highly by the de novo algorithms have zero
or one missing fragmentation cleavage sites (Supp. Fig. 7). Frag-
mentation cleavages were found to be more likely to be missing
for longer peptides with larger mass values (Supp. Fig. 3) and
toward the ends of the peptide.

Similar to other studies [32], we found amino acid recall tended
to be better toward the middle of the peptide. Fig. 8 shows that the
reduced cleavage prediction accuracy is a result of the reduced
prevalence of fragment ions from those cleavages. This in turn
leads to reduced amino acid recall. A clear relationship can be seen
between the presence of a fragmentation cleavage in the spectra
and the presence of that cleavage in the predicted peptide. These
missing cleavages explain the equal mass multi-amino acid substi-
tutions observed by these studies [32,15]. A missing cleavage
leaves a mass-gap in the chain of peptide fragments which can
be filled by a number of equal mass amino acid sequences.

Noise has historically been seen as a major problem in de novo
peptide sequencing [44]. For graph based methods in particular it
also increases the complexity of the de novo sequencing problem
exponentially by increasing the number of nodes and edges [45].
These additional peaks only become a major problem when pre-
sent in large quantities and if of high intensity. We found that
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DeepNovo is better able to deal with high intensity noise compared
to Novor in both real and artificial data.

Novor and DeepNovo employ a range of techniques including
machine learning and dynamic programming as they attempt to
overcome these challenges.

Both algorithms step through the spectrum one amino acid at a
time. Using machine learning they try to learn what function of the
features at that particular point distinguish peptide peaks from
non-peptide peaks. The success of this approach is seen in their
effectiveness against noise. Also, DeepNovo only considers nearby
peaks when making each amino acid prediction, meaning many of
the noise peaks are inconsequential. Similarly, Novor scores each
peak independently thus limiting the effect of noise. Unlike Deep-
Novo however, Novor creates a graph of all peaks. As with all graph
based de novo algorithms, this increases the complexity of the solu-
tion space. The difference in approaches is highlighted by DeepNo-
vo’s greater performance with respect to noise.

A major strength of Novor’s graph based approach is its amino
acid recall when many fragmentation cleavages are missing, where
it outperforms DeepNovo. When many cleavage sites are missing,
it is almost guaranteed that the highest scoring path in the graph
does not reflect the correct peptide. This is shown by Novor’s low
peptide accuracy in this range. However, the algorithm still man-
ages to incorporate short subsequences of fragment ions that are
present into the highest scoring path. While the complete path
may not be present, these short subsequences will still be scored
highly by the algorithm and so are likely to appear in the highest
scoring path giving rise to a partially correct peptide. DeepNovo,
on the other hand, has no means of rejoining the correct path once
an incorrect step is made and so has more complete matches but
fewer partial matches than Novor for this type of data. This is the
reason DeepNovo maintains a higher peptide accuracy than Novor
while having a lower amino acid recall at greater numbers of miss-
ing fragmentation cleavages.

The independent scoring of graph nodes means Novor cannot
encapsulate the long range relationships of peptide fragmentation.
Tiwary et al. (2019) showed that the entire peptide composition
will have an impact on the peak intensity of each fragment ion
[41]. Therefore accurate amino acid prediction will require the con-
sideration of fragment ions from the entire peptide. DeepNovo uses
an LSTM to keep track of fragment ions already encountered. It can
then take advantage of their encodings for aiding the prediction of
amino acids further along the peptide. This is particularly useful
when DeepNovo is presented with a mass-gap caused by missing
fragmentation cleavages. It can leverage the information encoded
from the spectrum it has already encountered to replace the
absence of peaks in its current position and make accurate predic-
tions. The largest mass-gap correctly traversed by DeepNovo in this
research spanned seven cleavage sites compared to a maximum of
three for Novor. DeepNovo also uses dynamic programming, simi-
lar to the knapsack problem, to make up for the fact it can only see
as much as one amino acid ahead at a time. As the true mass of the
correct peptide is known, DeepNovo limits the number of amino
acids to consider at each step by only allowing those that are pos-
sible given the remaining mass of the peptide. This is particularly
useful at the end of the peptide where the number of options will
be significantly reduced.

While algorithms are improving, our analysis has uncovered
some limitations in their approaches. Unlike their database counter-
parts, the performance of the algorithms is not independent of the
peptide length as both algorithms build the peptides up from indi-
vidual components. Step-by-step predictions and independent peak
scoring simply do not encapsulate all the necessary information
from the fragment process. The whole of the peptide, and hence
thewhole of the spectrum is needed for exact amino acid prediction
[41]. DeepNovo does incorporate some long range interactions, but
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only for the final amino acids predicted and only if those already
predicted are correct. Graphs are the most suitable way to capture
all the complex interactions but Novor’s machine learning is not
applied over the graph but only on the peak scores. Thus, complete
spectrum encoding would encapsulate the complex nature of pep-
tide fragmentation leading to more accurate predictions. The com-
bination of the strengths of these two aforementioned models can
be harnessed using graph neural networks (GNNs) [46]. In GNNs,
features of each node, such as its m/z value and intensity, can be
encoded with a neural network and passed along the edges of the
graph to other nodes. Through this mechanism, peaks from one
end of the graph could influence the prediction of amino acids at
the other. Similar applications have been shown such as the
Graph2Seq model [47]. This model was shown to be extremely
effective in tasks such as path finding, where an optimal sequence
is predicted from a complex graph. This is similar to de novo
sequencing where the sequence would be the peptide. Graph2Seq
uses a GNN to encode the graph before an attention based LSTM is
used to predict each element in a sequence. While each node will
share information with its neighbours, the use of attention means
the model can focus on multiple relevant parts of the graph at one
time. In that way, a de novo peptide model could learn to focus on
those peaks shown to be related to the sequence [41].

De novo algorithms may also benefit from a pre-processing step
that removes noise peaks. Previous noise removal algorithms focus
on a peak’s intensity and its rank among the other peaks [42,48]. As
shown in Fig. 3, intensity alone is an insufficient discriminator and
peak interactions must be considered. Denoising spectra needs the
same long range interactions, amino acid predictions does. Both
tasks are essentially trying to find a function that distinguishes
between peptide peaks and non-peptide peaks. Machine learning
can learn such functions as shown by the performance of both
algorithms. However, the noise peaks causing the problems for
these algorithms are still scored highly and their removal requires
more intelligent systems. The incorporation of long range interac-
tions into a noise removal model would provide increased resolu-
tion, which in turn should improve the de novo algorithms’
performance in their current state.
5. Conclusion

The availability of large datasets and the addition of machine
learning has led to notable advances in de novo peptide sequencing
algorithms. Real data analyses revealed that noise peaks are far
more abundant than peptide peaks while most peptides have miss-
ing fragmentation cleavages. DeepNovo was found to perform best
overall with Novor surpassing it only for amino acid recall when
many cleavages were missing. Missing fragmentation cleavages
were found to be the biggest obstacle for both algorithms with
both peptide length and noise also affecting performance. DeepNo-
vo’s recurrent neural network helped counteract the effect of miss-
ing fragmentation cleavages. Future de novo algorithms may
benefit from a complete spectrum encoding that encapsulates the
long range dependencies of peptide fragmentation. While the qual-
ity of data is increasing, improvements in de novo peptide identifi-
cation algorithms could allow new insights from past research.
Future de novo algorithms will also benefit from the advances in
the field of machine learning. Recently developedmachine learning
algorithms, such as graph neural networks, may help better cap-
ture the intricate relationships of peptide fragmentation thereby
advancing performance in this space.
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