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Abstract. This study aimed to illustrate how a new methodology to assess clinical trial
outcome measures using a longitudinal item response theory–based model (IRM) could serve
as an alternative to mixed model repeated measures (MMRM). Data from the EXACT
(Exacerbation of chronic pulmonary disease tool) which is used to capture frequency,
severity, and duration of exacerbations in COPD were analyzed using an IRM. The IRM
included a graded response model characterizing item parameters and functions describing
symptom-time course. Total scores were simulated (month 12) using uncertainty in parameter
estimates. The 50th (2.5th, 97.5th) percentiles of the resulting simulated differences in
average total score (drug minus placebo) represented the estimated drug effect (95%CI),
which was compared with published MMRM results. Furthermore, differences in sample size,
sensitivity, specificity, and type I and II errors between approaches were explored. Patients
received either oral danirixin 75 mg twice daily (n = 45) or placebo (n = 48) on top of
standard of care over 52 weeks. A step function best described the COPD symptoms-time
course in both trial arms. The IRM improved precision of the estimated drug effect compared
to MMRM, resulting in a sample size of 2.5 times larger for the MMRM analysis to achieve
the IRM precision. The IRM showed a higher probability of a positive predictive value
(34%) than MMRM (22%). An item model–based analysis data gave more precise estimates
of drug effect than MMRM analysis for the same endpoint in this one case study.

KEY WORDS: EXACT; Item response theory; Mixed-effects model repeated measures; Non-linear-
mixed-effects models; Power comparison.

INTRODUCTION

Confidence in clinical trial decision-making will depend
on the precision of the outcome measures. These decisions
may pan from stop/go to dose selection and usually rely on
predefined targets. While sample size and collection timing
may influence the outcome precision, the choice of the
endpoint and the analytic methodology employed certainly
is critical.

Patient-reported outcomes (PROs) are a type of clinical
endpoint measure that is increasingly used in drug develop-
ment not only to record how well a disease is managed from
the patient’s point of view but also to provide information
supporting the patient experience for inclusion within a

product licence (1). These measurements are reported
directly by the patient, without interpretation by a health
professional (2). An example of a PRO instrument in the
respiratory area is EXACT (Exacerbations of Chronic
Obstructive Pulmonary Disease [COPD] Tool) (3), which
consists of 14 questions related to COPD symptoms that are
recorded daily using an electronic diary. The E-RS:COPD
(Evaluating Respiratory Symptoms in COPD) consists of 11
items from this 14-item EXACT instrument, and it is intended
to capture information specifically related to respiratory
symptoms.

PROs collected using the EXACT and E-RS:COPD
have been used as co-primary and secondary endpoints to
assess drug effect in COPD in phase II and phase III
randomized clinical trials (4–8). For E-RS:COPD, some of
these trials (6, 7) have anticipated that a reduction of two
points or more in the total score is indicative of a clinically
meaningful improvement in symptoms. This value was
obtained after assessing the performance of E-RS:COPD in
three clinical trials (4). The first trial of clinical efficacy
(usually phase II) is often associated with a stop/go decision.
Although approaches to such decision-making may vary, the
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confidence interval (CI) of the drug effect estimate is typically
the main component, as it shows the degree of (un)certainty
related to an estimate (e.g. mean difference between treat-
ment arms) (9). Recently, different approaches under the CI
framework have been compared which can be more or less
conservative depending on the criteria used (9).

The magnitude, precision, and bias of the drug effect estimate
will depend on the statistical method used to analyze the data. In
clinical trials, in the presence of daily observations in the same
subject, the degree of correlation between observations should be
taken into account. To analyze clinical trial repeatedmeasurements
that may contain ignorable missing data (missing at random or
missing completely at random), the likelihood-based mixed model
repeated measures (MMRM) approach has been used (10). This
MMRM method has become the standard approach to analyze
longitudinal data since it shows better type I error control
compared to other methods such as analysis of covariance
(ANCOVA) using the last observation carried forward approach
to impute missing values (10, 11). MMRM analysis has been
applied to analyze EXACT PRO data from a phase II clinical trial
where the efficacy of danirixinwas assessed in patientswithCOPD.
Danirixin is a selective and reversible antagonist of the C-X-C
chemokine receptor 2 (CXCR2) (12) and demonstrated dose-
dependent inhibition of CXCL1-induced CD11b expression fol-
lowing single doses between 25 and 200 mg. Although danirixin
showed a trend for improved respiratory and health status in
patients with COPD (7), the absence of a clear efficacy benefit has
been confirmed in a larger clinical trial (13).

An item response model (IRM) is an alternative
longitudinal non-linear mixed-effects model (NLME) analysis
approach. Following item response theory (IRT), it utilizes all
components of the composite observations, which may
increase the statistical power and precision to detect a drug
effect (14). Furthermore, IRMs offer increased insight into
the scale, by relating its items to an underlying disease state
that varies among individuals and changes with time. It is
worth noting that, like other recently developed PRO tools,
the final 14-item EXACTwas derived through the application
of item analysis and Rasch analysis (15). These methods are
used to ensure that the final PRO tool measures a coherent
underlying disease concept across the range of disease
severities. Recently, an IRM in COPD patients receiving
standard of care described how to handle correlated obser-
vations by linking the IRM to a continuous-time Markov
model (16).

The performance of MMRM and NLME to assess
clinical efficacy has been already compared in the context of
simulated paediatric diabetes trials (17); however, such
comparisons have not been applied to an IRM and observed
trial data. This study aims to illustrate how a new methodol-
ogy to assess clinical trial outcome measures using a NLME
analysis based on item-level data (IRM) could potentially
replace the standard MMRM analysis of total score data.

METHODS

Data and Patients

EXACT data from a phase II, randomized, placebo-
controlled study (NCT02130193) to investigate the safety,
tolerability, pharmacokinetics (PK), pharmacodynamics, and

clinical efficacy of oral danirixin in symptomatic COPD
subjects were included in this analysis (7, 18). Patients
received either placebo or danirixin on top of the subject’s
current standard-of-care treatment for 52 weeks. To ensure a
fair comparison between IRM and MMRM, PK data were
not incorporated into the IRM analysis and only EXACT
data were analyzed. Daily records were obtained by the
completion of the EXACT tool using an electronic diary (3).
The EXACT tool is a 14-item PRO instrument designed to
capture information on the occurrence, frequency, severity,
and duration of symptoms suggestive of disease exacerbation
in patients with COPD. Nine out of 14 questions include five
ordered categorical response options, and five questions have
four categories (Table I). The total score for EXACT
(EXACT-Total) ranges from 0 to 100, with higher scores
indicating more severe symptoms. The E-RS:COPD consists
of 11 items from the 14-item EXACT instrument with a
scoring range of 0–40 (RS-Total) and captures information
related to the respiratory symptoms of COPD (breathless-
ness, cough, sputum production, chest congestion, and chest
tightness). Furthermore, three subscales assess breathlessness
(RS-Breathlessness, subscale score ranges from 0 to 17),
cough and sputum (RS-Cough and Sputum, subscale score
ranges from 0 to 11), and chest-related symptoms (RS-Chest
Symptoms, subscale score ranges from 0 to 12) (Table I). The
electronic diary did not allow patients to skip individual items
to avoid incomplete entries; however, missing days where
patients did not provide an answer for any of the items were
possible.

IRM Building

The IRM was developed by firstly determining the item
characteristic functions (ICFs) (step 1), and secondly by
developing the longitudinal model (step 2).

Item Characteristic Functions

Non-linear ICFs describing the relationship between the
unobserved patient’s disease status (e.g. COPD disease
severity), also known as a latent variable (ψ), and the
probability for giving a certain response for an item were
determined. An “independent occasion” approach (19) was
used to develop the base IRT model. This approach assumes
that measurement data (e.g. EXACT data) from each patient
and occasion (time when data were reported) are treated
independently. To do this, each measurement occasion was
treated as a separate individual (different ID values at
different occasions) assuming that ψ follows a normal
distribution with fixed mean and variance N(0,1) at baseline
and estimated mean and variance N(μ,ω2) at later occasions.

Observed data are the daily EXACT scores for an
individual i and an item j defined as yij. A logistic transfor-
mation was used to model each item (j) (Eq. 1 and Eq. 2),
where P(yij≥ k) is the probability of patient i reporting a
response (y) at or above item score k (Eq. 1) and P(yij = k) is
the probability of rating exactly score k (Eq. 2); ψi is the
latent variable of patient i, and aj and bj,k are fixed effect item
parameters representing discrimination and difficulty param-
eters for item j; more specifically, bj,k is the difficulty
parameter for the item score k.
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P yij≥k
� �

¼ e a j ψi−b j;kð Þð Þ
1þ e a j ψi−b j;kð Þð Þ ð1Þ

P yij ¼ k
� �

¼ P yij≥k
� �

−P yij≥kþ 1
� �

ð2Þ

Longitudinal Model

Since in the previous step, each time point was considered as a
separate individual to inform ICF parameters, in this step, a data
reconciliation was needed to include each individual’s time-course
data and thus develop the longitudinal model with ICF parameters
fixed from the previous step. Linear and non-linear functions were
investigated to describe changes in individual symptoms-time
course (ψi). These functions included a linear (Eq. 3), power (Eq.
4), asymptotic (Eq. 5), Weibull (Eq. 6), and step function (Eq. 7).
As the aimwas to assess the difference between the arms, different
parameters per arm (except baseline) were estimated for the
model.

ψi ¼ ψi;t¼0 þ slopei � t ð3Þ

ψi ¼ ψi;t¼0 þ slopei � tγ ð4Þ

ψi ¼ ψi;t¼0 þ RMAXi−ψi;t¼0

� �
⋅ 1−e −

ln 2ð Þ
TPROGi

⋅t
� �� �

ð5Þ

ψi ¼ ψi;t¼0 þ RMAXi � 1−e −
ln 2ð Þ
TPROGi

� t
� �γ� �� �

ð6Þ

ψi ¼
ψi;t¼0 þ RMAXi

ψi;t¼0

�
for t > TRi

for t≤TRi
ð7Þ

Model parameters such as slopei, TPROGi (disease
progression time), RMAXi (maximum response), TRi (time

of response), and ψi,t = 0 (baseline latent variable with a
mean value fixed to 0) are subject-specific parameters with
inter-individual variability (IIV) following a normal distri-
bution with a mean of 0 and variance ω2. TPROGi and TRi

were assumed to be log-normally distributed with IIV
modelled using an exponential function, whereas all other
parameters were assumed to be normally distributed with
an additive IIV model. Time is represented by t, and γ is the
gamma value that governs the steepness described by the
Weibull function.

A 14-item-specific longitudinal 4–5 state-minimal con-
tinuous-time Markov model (20) with a linear time-
dependency on mean equilibrium time (MET) was utilized
to account for the correlation between observations (16).
The first IRM with Markovian properties was described by
Germovsek et al. (16). Germovsek and colleagues used a
minimal continuous-time Markov model on an individual
item level where the next observation depended only on the
current observation (first-order MM). IIV was included on
MET using an exponential function. In the current analysis,
the same minimal continuous-time Markov model was
incorporated but MET was re-estimated with the available
data.

Software and Estimation Method

The software NONMEM (ICON Development Solu-
tions, Ellicott City, Maryland) version 7.4.4 (21) was used for
modeling and simulation together with an Intel FORTRAN
compiler and Perl-speaks-NONMEM (PsN, http://
psn.sourceforge.net) version 4.9.5 (22). R software (The R
Foundation for Statistical Computing) version 3.5.2 (23) and
R packages, such as Xpose4 (http: //xpose.sourceforge.net,
version 4.6.1) (24, 25), Piraid (version 0.4) (26), and pROC
(version 1.16.2) (27), were used for data management as well
as to perform graphical analysis, produce summary statistics,
and examine the NONMEM outputs.

For estimating ICFs (step 1), first-order conditional
es t imat ion method with Laplace approximat ion

Table I. Content of the EXACT and E-RS:COPD Scalesa (3)

Item number Item-level construct Score Symptom construct

7 Breathless today 0–4 Breathlessness
8 Breathless with activity 0–3
9 Short of breath – personal care 0–4
10 Short of breath – indoor activities 0–3
11 Short of breath – outdoor activities 0–3
2 Cough frequency 0–4 Cough and sputum
3 Mucus quantity 0–3
4 Difficulty with mucus 0–4
1 Congestion 0–4 Chest symptoms
5 Discomfort 0–4
6 Tightness 0–4
12 Tired or weak 0–4 Additional attributes
13 Sleep disturbance 0–4
14 Scared or worried 0–3

aAll 14 items are administered as a daily electronic diary; the EXACT total score uses all 14 items with logit scoring transformed to a 0 to 100
interval-level scale; E-RS:COPD scoring uses only the respiratory symptom items, with subscales for breathlessness, cough and sputum, and
chest symptoms. E-RS:COPD scores are based on summation to yield ordinal-level scales with a total score ranging from 0 to 40 (3)
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(LAPLACE) was used, whereas for the estimation of
parameters in the longitudinal model (step 2), the Monte
Carlo importance sampling (IMP) was used as, in contrast to
step 1, most parameters included random effects.

Model Discrimination and Internal Model Evaluation

In step 1, non-parametric ICF smooth plots were
developed to assess ICF fit. An agreement between observed
and simulated smooths indicates an acceptable model fit (28).

In step 2, model selection was based on parameter
plausibility and the objective function value (OFV). The
likelihood ratio test was used to compare nested models with
a significance level of 5% for selecting a more complex
model. The Akaike information criterion (AIC) was used for
non-nested models.

The predictive performance of the model was assessed
by using visual predictive check plots (VPCs), where the
2.5th, 50th, and 97.5th percentile of the observed data were
compared to the 95%CI for the 2.5th, 50th, and 97.5th
percentiles of the simulated (N = 500) data. VPCs were
produced on the individual item score level, stratified and
non-stratified by items, and on the EXACT-Total score level.
In addition, a VPC for transitions was made to evaluate the
Markov part of the model, as described previously (16). All
VPCs were stratified by treatment arm.

Simulations Propagating Parameter Uncertainty

Precision in Clinical Trial Endpoint

Precision in clinical trial endpoint was obtained by
including uncertainty in IRM parameter estimates. EXACT-
Total, RS-Total, and subscale scores at month 12, linked to
the individual patient disease status (ψi), were simulated
using the final IRM parameter estimates. The derived
relationship between disease status and EXACT-Total, RS-
Total, and subscale scores, which was used as a basis in the
simulations, is shown in Fig. S1. These stochastic (Monte
Carlo) simulations included parameter uncertainty from the
estimated asymptotic variance-covariance matrix of the
estimates by using the $PRIOR functionality in NONMEM.
Specifically, NWPRI subroutine was used where prior fixed
and random effects are assumed to be normally and inverse-
Wishart distributed, respectively. Degrees of freedom for the
inverse-Wishart distribution were calculated based on stan-
dard error (SE) of estimates (29). As illustrated in Fig. S2,
EXACT-Total, RS-Total, and subscale scores were simulated
(N = 2000) for each treatment arm, using a large population
(Nsubj = 5000 per arm), to obtain an expected difference
distribution in observed score between arms (average total
score in drug arm minus average total score in placebo arm)
that included parameter uncertainty. The median, 2.5th, and
97.5th percentiles of the resulting 2000 arm-differences in
mean score were used to represent mean drug effect
(95%CI). These IRM-derived values were compared with
those (published values) obtained at month 12 using the
MMRM analysis (18).

Sample Size and Probabilities of Correct and Incorrect Stop/
Go Decision

Sample size (N) comparison of IRM relative to
MMRM CI values was calculated considering the preci-
sion obtained from the MMRM (95%CI length -
CIMMRM) and the IRM (95%CI length - CIIRM) as the
desired margin of error (Eq. 8).

N ¼ CIMMRM

CIIRM

� �2

ð8Þ

The relative merits of the two methods were further
explored in simulations. Considering uncertainty obtained
from IRM and MMRM, the probabilities of giving a correct/
incorrect go decision (P(Correct go)/P(Incorrect go)) as
well as probabilities of correct/incorrect stop decision
(P(Correct stop)/P(Incorrect stop)), yielding a total proba-
bility of go (P(Go)) or stop (P(Stop)) decision, was
calculated conditionally on a true treatment effect ΔT (total
score in drug arm minus total score in placebo arm) as
described previously (30, 31). This true treatment effect
followed a mixture distribution assuming that 80% of the
mixture is having a point mass at zero, and the remaining
20% of the mixture follows a normal distribution centered
to a target value (TV) with a standard distribution of 1 (Fig.
S3). This TV was chosen based on a minimum clinically
important significant difference value of −2 for both
EXACT and E-RS:COPD, −1 for RS-Breathlessness, and
− 0.7 for both RS-Cough and Sputum and RS-Chest
Symptoms (6). A P(Correct go) requires that both the ΔT

and the treatment effect simulated from the IRM (ΔIRM) or
MMRM (ΔMMRM) approaches is equal or lower than the
TV, whereas a P(Correct stop) decision was defined as both
the ΔT and ΔIRM or MMRM being higher than the TV (Fig.
S3). Probabilities were calculated based on 10000 simulated
independent samples following a normal distribution with a
mean of ΔT and a standard deviation (SD) of the treatment
difference (drug minus placebo) for each approach (IRM
and MMRM) as illustrated in Fig. S3. Positive predictive
values (PPV) and negative predictive values (NPV) were
also calculated as shown in Eq. 9 and Eq. 10 (30).

PPV ¼ P Correct goð Þ
P Goð Þ ð9Þ

NPV ¼ P Correct stopð Þ
P Stopð Þ ð10Þ

Power Function and Sensitivity/Specificity of the IRM and
MMRM Analyses

A power function that gives P(Go) and P(Stop) decision
for various values of the efficacy endpoint and a receiver
operating characteristic curve (ROC) to assess the sensitivity
and specificity of each approach were developed. Equations
11 and 12 were used to calculate these P(Go) and P(Stop),
respectively. The SD of the treatment arms difference (σΔ)
for the IRM was obtained from simulations (illustrated in Fig.
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S2), whereas for the MMRM, published values (EXACT: 2.70
and E-RS:COPD: 1.74) were considered. TV is the target
value described in the paragraph above.

P Goð Þ ¼ 1−Φ
TV−Δ
σΔ

� �
ð11Þ

P Stopð Þ ¼ 1−P Goð Þ ð12Þ

For the ROC curve development, the distribution of the
EXACT-Total, RS-Total, and subscale scores per treatment
arm obtained from the IRM and MMRM analysis was
considered. For the IRM, precision was obtained from the
distribution of 2000 simulated EXACT-Total, RS-Total, and
subscale scores for drug and placebo arm (Fig. S2), and for
the MMRM, a reported mean and SE for EXACT-Total, RS-
Total, and subscale scores were used (18) (Table S3).

RESULTS

Clinical Studies and Patients

Data were available from 93 patients (mean [SD] age of
60.5 years (7.31), 73.1% smokers at study initiation) who
received either oral danirixin 75 mg twice daily (n = 45) or
placebo (n = 48) for 52 weeks (Fig. S4). Seventy-five patients
(81%) provided data at least up to week 52 with a median
(range) missing days of 9 (0–134), whereas 18 patients (19%)

stopped filling out the questionnaire after 131 (6–345) days
with 1 (0–46) missing days. Baseline characteristics are shown
in Table II.

IRM and Simulations

ICF parameters were estimated with good precision
(Table S1). Item characteristic curves showing the relation-
ship between disease status and probability of giving a certain
score for all items are shown in Fig. S5. A step function best
described the COPD symptoms-time course in both danirixin
and placebo arms, and different parameters per arm were
estimated with a median (range) relative standard error
(RSE) of 0.15 (0.06–1.09) (Table S2). This model showed a
satisfactory fit to the total score data, as seen with agreement
between observed and simulated percentiles in a VPC
(Fig. 1). VPCs on the item score level of all 14 items and
stratified by individual items are shown in Fig. 2 and Fig. S6a–
f, respectively. Typical (SE) RMAX and TR were − 0.16 (0.18)
and 54.8 days (15.6) (danirixin) and 0.18 (0.15) and 51.1 days
(18.9) (placebo), respectively. The typical MET (SE) was
3.09 days (0.41) at the end of the study (i.e. day 365), and
1.23 days (0.08) at the beginning of the study (i.e. day 0)
(Table S2). Transitions were well described by the model as is
shown in Fig. S7. The IRM model included 70 item-related
parameters (five fixed), and 14 longitudinal-related parame-
ters (one fixed) compared to 117 parameters in the MMRM.
Note that the estimation of the item-related parameters was
not performed using allocation information.

Table II. Patient Characteristics at Baseline. Values as Presented as Mean (SD) or Number (%)

Baseline characteristics Danirixin 75 mg twice daily (n=45) Placebo (n=48)

Age (years) 62.4 (6.91) 58.8 (7.32)
FVC (L) 3.28 (1.01) 3.39 (0.99)
FEV1 (L) 1.77 (0.64) 1.77 (0.52)
Male (n) 22 (49%) 23 (48%)
Smoker (n) 34 (76%) 34 (71%)
COPD GOLD disease status Mild: 9 (20%) Mild: 10 (21%)

Moderate 36 (80%) Moderate: 38 (79%)
EXACT-Total 35.6 (9.78) 36.1 (10.6)
RS-Total 11.2 (5.81) 11.4 (6.59)

FVC, forced vital capacity; FEV1, forced expiratory volume in one second; GOLD, global initiative for chronic obstructive lung disease.
EXACT-Total score based on logit transformed data (ranged from 0 to 100); RS-Total score based on summation to yield ordinal-level scales
(ranged from 0 to 40)

Fig. 1. Visual predictive check (500 simulations) for the EXACT-Total score (logit score-
transformed 0–100) in the treatment (a) and placebo (b) arms. Lines are the 2.5th, 50th, and
97.5th percentile of the observed data, and grey areas are the corresponding 95% confidence
interval from model simulations
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The IRM considerably improved the precision of the
drug effect compared to the MMRM (Fig. 3 and Table S3) in
all scales explored in this one case study. For instance, with
the E-RS:COPD scale, the mean (95%CI) difference in
average total score between arms using the IRM was −1.37
(−3.16, 0.48) compared to −1.35 (−4.77, 2.04) for the MMRM
analysis at month 12, meaning the uncertainty (CI width)
decreased from 6.81 to 3.64. Furthermore, a sample size
(obtained using Eq. 8) of 2.5 and 3.5 times larger would be
required in the MMRM analysis to achieve the precision
obtained with the IRM analysis using EXACT and E-
RS:COPD, respectively. As shown in Fig. 3, with MMRM, a
higher percentage of mean treatment differences is above 0
compared to IRM (including all scales). This means that with

MMRM, a higher percent of the time the drug effect may not
be confirmed, although it is important to highlight that none
of the methods resulted in a significant drug effect.

The P(Correct stop), P(Incorrect stop), P(Correct go),
P(Incorrect go), P(Stop), and P(Go) for both approaches
(IRM and MMRM) considering EXACT and E-RS:COPD
scales are shown in Table III. The IRM analysis gave a higher
P(Correct stop) than the MMRM analysis, and the P(Incor-
rect go) was higher in the MMRM approach compared to that
in IRM. No difference was seen in the probability of giving a
P(Incorrect stop) and P(Correct go) between approaches
using both scales (Table III).

The two approaches showed a similar performance to
estimate NPV, but differences were seen for PPV with the

Fig. 2. Visual predictive check for item scores of all 14 items in the treatment (a) and placebo (b)
arms. Lines correspond to different proportion of observations and grey areas are the 95%
confidence intervals (500 simulations)

Fig. 3. Mean (95%CI) difference in average EXACT-Total, RS-Total, and subscale scores between arms using a MMRM and IRM analysis.
For the MMRM analysis, the percentages are the proportion of mean treatment differences greater than 0 derived from the Z-score (using the
standard deviation for 95% CI equal-tailed). For the IRM, the percentages correspond to the number of simulated arm-differences with a mean
greater than zero
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IRM showing a higher probability of making a correct
decision when there is a true drug effect (34% [EXACT]
and 67% [E-RS:COPD]) compared to MMRM (22% [EX-
ACT] and 34% [E-RS:COPD]) (Table III). The P(Correct
go), P(Incorrect go), P(Correct stop), P(Incorrect stop),
P(Stop), P(Go), PPV, and NPV results obtained for E-
RS:COPD subscales are shown in Table S4.

A higher probability to detect a drug effect and, for
example, make a go decision was observed with IRM
(Fig. 4a). A power of 80% or greater was seen with a drug
effect (difference in total score between arms, drug minus
placebo) of at least −3.38 (EXACT) and − 2.78 (E-
RS:COPD) with IRM compared to −4.22 (EXACT) and −
3.43 (E-RS:COPD) with MMRM. The IRM approach also
showed a better precision around the mean EXACT-Total,
RS-Total, and subscale scores for both drug and placebo arms
(Table S3), as well as better performance at controlling true
and false positive rates with an area under the ROC curve
(AUC-ROC) [95%CI] of 92.9% [92.1–93.6] (EXACT) and
91.8% [91.0–92.6] (E-RS:COPD) compared to 73.2% [71.7–74.8]
(EXACT) and 89.6% [88.6–90.5] (E-RS:COPD) (Fig. 4b). ROC
curves for E-RS:COPD subscales are shown in Fig. S8.

Table III. Probabilities of Correct or Incorrect Positive (Go) and
Negative Decisions (Stop), and Positive/Negative Predictive Values
(PPV/NPV) for a Target Value (TV) of −2 (EXACT and E-

RS:COPD)

EXACT E-RS:COPD

IRM MMRM IRM MMRM

Decision Stop Go Stop Go Stop Go Stop Go

ΔT>TV 0.78 0.12 0.68 0.22 0.87 0.04 0.77 0.13
ΔT≤TV 0.03 0.07 0.04 0.06 0.02 0.07 0.03 0.07
Total 0.81 0.19 0.72 0.28 0.89 0.11 0.80 0.20
PPV 0.34 0.22 0.67 0.34
NPV 0.96 0.95 0.97 0.96

ΔT, true drug effect; PPV, positive predictive value; NPV, negative
predictive value. PPV and NPV values were calculated including all
available significant digits. Values in bold represent the P(Correct
stop) and P(Correct go) decisions

Fig. 4. Probabilities of stop and go decision over a range of drug effect values (a) and ROC curves (b) for the IRM and
MMRM analysis using EXACT and E-RS:COPD scales. AUC-ROC corresponds to the area under the ROC curve, and the
grey areas correspond to the 95%CI of the ROC curve
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These results show that a much smaller sample size
would have been required with the IRM to arrive to the same
conclusion as with MMRM (e.g. no significant drug effect).
Furthermore, due to its higher precision, a higher probability
of making a correct decision, hence greater confidence, can
be achieved with IRM compared to MMRM.

DISCUSSION

In this study, a NLME analysis based on item-level data
(IRM) has been proposed as an alternative to MMRM for
efficacy evaluation. Based on stochastic simulations, the IRM
improved the precision of the estimated drug effect consider-
ably compared to published MMRM analysis results. Conse-
quently, analysis with an IRM may help to take more precise
and unbiased decisions as well as significantly reduce study
sample size to show drug effect. For example, a 2.5-fold
(EXACT) or 3.5-fold (E-RS:COPD) smaller study size with
IRM compared to MMRM analysis appeared necessary. The
benefit of using a NLME to improve power in clinical trials
has been shown previously, where a 4.3-fold difference in
total size study between a NLME and t test analysis was
shown. While Karlsson et al. (32) calculated sample size based
on the hypothesis testing principle of the likelihood ratio test
in NLME, the sample size in this study was obtained
comparing the same primary endpoint (arm-difference in
total score) for the two analyses (IRM and MMRM) using
observed clinical trial data. Moreover, IRM analysis has
displayed a consistently higher power to detect a drug effect
than other methods such as least-square means analysis, with
71% fewer subjects to achieve 80% power (14). The benefit
of using IRM for decision-making in drug development
analysis has already been explored, demonstrating how IRM
may have an impact on inclusion criteria decisions. For
example, IRM can provide answers to questions related to
patient disease status linked to probability to detect a drug
effect (33).

Simulations using a NLME model can be useful not
only for power calculation but also for predicting outcome
of future trials such as probability of success or failure as
shown in this study. Furthermore, the longitudinal nature of
the NLME allows the prediction of a stop/go decision at
different time points during the clinical trial, which can be
useful in early clinical development. In this study, P(Go)
and P(Stop) decisions were simulated where the IRM
consistently showed a better performance than MMRM at
handling type I and II errors (Table III). These results are
dependent on both the assumptions considered in this study
and the chosen TV. A mixture distribution for the true
treatment effect used in this study assumes that one out of
five compounds is effective. This reflects the effect size seen
for all compounds in the pharmaceutical industry in the
recent decades (34), where 20% is often the percentage of a
new molecular entity to reach the registration phase among
those entering phase II (31).

The better precision obtained with IRM using both
scales (EXACT and E-RS:COPD) makes this approach more
informative with a higher P(Go) or P(Stop) decision when
the drug effect either goes beyond the TV or closer to zero,
respectively (Fig. 4a). For example, when the drug effect is
2.5 times higher than the TV (around −5), the P(Go) is 96%

(IRM-EXACT) compared to 87% (MMRM-EXACT) and
100% (IRM-E-RS:COPD) compared to 96% (MMRM-E-
RS:COPD). The same trend can be observed when compar-
ing scales (EXACT vs. E-RS:COPD). Here, E-RS:COPD
showed a better precision around the efficacy endpoint than
EXACT (Fig. 3) as well as lower incidence of type I and II
errors (Table III). Using EXACT, the probability of having a
go decision of 100% is not reached even though the drug
effect is 2.5 times bigger than the TV (Fig. 4a). This may
suggest that E-RS:COPD might be more informative than
EXACT scale in this particular population that includes
patients with mild or moderate COPD severity (Table II).
Although study design and endpoint selection is an important
factor, it could also be hypothesised that the better perfor-
mance of E-RS:COPD compared to EXACT is due to the
fact that the latter was designed to measure changes in
symptoms suggestive of an exacerbation, which are usually
characterized by an acute and short expression of symptoms
in the patient’s COPD, while E-RS:COPD excludes the items
related to more acute exacerbation events, although still
measures ongoing respiratory symptoms. Furthermore, an-
other explanation could be obtained by observing the
discrimination parameter values for those items that are not
included in E-RS:COPD (items 12, 13, and 14). These values
are 1.24, 0.56, and 1.05, respectively (Table S1). According to
Baker (35), a discrimination value between 0.65 and 1.34 can
be defined as moderate, whereas between 0.35 and 0.64, it can
be defined as low. This means that these three items can only
provide low/moderate differentiation between patients in this
particular population, making the EXACT scale less discrim-
inatory than E-RS:COPD.

Additionally, the ROC curves presented in this study not
only show a better sensitivity and specificity for IRM but also
show that IRM gives consistent results across scales (1%
difference in AUC-ROC between EXACT and E-
RS:COPD). While the MMRM appears more sensitive to
the scale of choice, with a difference of 16% in AUC-ROC
between EXACT and E-RS:COPD, this must be interpreted
cautiously since the ROC curve is highly dependent on the
mean difference between arms (which may vary depending
on random processes). Comparing the two scales, the
substantial higher AUC-ROC for IRM over MMRM with
the EXACT scale may be explained by the combination of
both a higher mean difference in total score (drug minus
placebo: −2.4 vs. −1.7) and an increased precision with IRM
(Table S3). Conversely, for the E-RS:COPD scale, a higher
mean difference in total score is observed with MMRM (−2.0
vs. −1.3); however, the greater precision with the IRM still
results in a slightly higher AUC-ROC (Fig. 4b).

To the best of our knowledge, only one study has compared a
NLMEmodel toMMRMbut using simulateddata set. TheNLME
analysis was shown to be more powerful than MMRM in some
(albeit not all) scenarios (17), which may be due to study design
and/or model misspecification. MMRM has been widely used to
analyze longitudinal data, and it has shown to be less biased,
particularly for handling missing data, than other methods such as
last observation carried forward (11). In the case of a NLME-IRM
analysis, item responses that are missing completely at random can
be ignored without the need for imputation, whereas missing data
on the longitudinal level can be handled in the sameway as is done
with any other NLME model, for example, by single imputation
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(substitution by median, mean, or mode value of population) or
imputing expected value based on other variable. In this study, the
nature of the electronic diary did not allow partial/incomplete
missing data, althoughmissing days were possible when patient did
not provide an answer for any of the items. It was observed, in this
study, that total score data were not influenced by the drop-outs;
therefore, a drop-out model was not deemed necessary. Although
MMRM is considered the gold standard approach, it may produce
biased results when the correlation structure is misspecified (36) or
when non-ignorable missing (missing not at random) data patterns
are presented. As such, sensitivity analysis may be required to
assess the impact that missing not at random data may have on the
estimated results (37).

While the present results are encouraging and are based
on a real clinical dataset, this analysis represents one case
study. To make stronger conclusions about the potential to
replace MMRM with IRM for the analysis of end-of-
treatment item-based data, future research work could focus
on investigating the following: (i) the accuracy of the SE’s
obtained with a model-based analysis. Clinical trial simula-
tions could be contemplated; (ii) model uncertainty and its
impact on the precision around the efficacy endpoint. It has
been already discussed that model averaging has advantages
to mitigate downward bias in model uncertainty in a NLME
model–based analysis (38, 39), and (iii) the accuracy of using
the SE from the asymptotic variance-covariance matrix in
NONMEM. The variance-covariance matrix, bootstrap, or
sampling importance resampling (SIR) (40) may lead to
different uncertainty estimates, and it is difficult to know
which method is the most adequate in a given case. The
authors acknowledge that assumptions are made about the
uncertainty distribution with the variance-covariance matrix;
however, the comparison between methods and the impact of
the different SE applied in the simulations was not in the
scope of this analysis.

The use of a NLME model–based approach in drug
development and the positive impact of using model simula-
tions in decision-making process have been already discussed
(41–43). This one case study not only shows the advantage of
using a NLME model over a standard approach used today in
drug development (MMRM) for the same endpoint but also
exemplifies how it may help in predicting future trial
outcomes (P(Go) and P(Stop) decisions). Specifically, the
IRM in this study provided a considerably more informed
basis for assessing the drug effect and it may improve
decision-making in phase II of drug development; however,
further analysis should be performed to confirm these
findings.
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