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Purpose of review

Hypertension is a multifactorial disorder involving perturbations of the vasculature, the kidney, and the
central nervous system. Hypertension represents a major risk factor for stroke, myocardial infarction, and
heart failure. Despite treatment with multiple drugs, 37% of hypertensive patients remain hypertensive,
likely due to the mechanisms contributing to blood pressure elevation that are not affected by current
treatments. This review focuses on recently described novel role of mitochondrial deacetylase Sirt3 in
vascular dysfunction and hypertension.

Recent findings

In the past several years, we have shown that the mitochondria are dysfunctional in hypertension; however,
the role of mitochondria in the pathogenesis of hypertension remains elusive. We recently showed that
patients with essential hypertension have decreased levels of the mitochondrial deacetylase Sirt3 leading to
hyperacetylation of mitochondrial proteins. There is likely a causative role. Indeed, genetic deletion of Sirt3
in mice promotes vascular dysfunction and hypertension. Sirt3 depletion promotes endothelial dysfunction,
increases smooth muscle cell hypertrophy, instigates vascular inflammation, and induces age-dependent
hypertension.

Summary

Sirt3 is critical for vascular cell homeostasis, however, multiple risk factors impair Sirt3 leading to
mitochondrial dysfunction and vascular dysregulation which contribute to hypertension and end-organ
injury. Targeting Sirt3 may represent novel therapeutic approach to improve treatment of vascular
dysfunction and reduce hypertension.
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INTRODUCTION

Despite significant progress in the treatment of
hypertension, it represents a significant health bur-
den worldwide. Based on the recent guidelines,
nearly half of adult population has hypertension
and 37% of hypertensive patients remain hyperten-
sive even though treated with multiple drugs [1].
Hypertension is linked to vascular dysfunction
which contributes to end-organ-damage in this dis-
ease. There is an urgent need for new therapies to
improve the treatment of vascular dysfunction and
hypertension. Targeting molecular mechanisms
that are not affected by current medications can
be beneficial for treatment of hypertension. Meta-
bolic disorders and oxidative stress contribute to
pathogenesis of vascular dysfunction and hyperten-
sion. Meanwhile, common antioxidants like ascor-
bate and vitamine E are ineffective in hypertension.
Furthermore, current strategies to improve the
uthor(s). Published by Wolters Kluwe
sytemic hypercholesterolemia and hyperglycemia
does not address the cellular metabolic dysregula-
tions. Mitochondria plays a critical role in regulation
of cellular metabolism and oxidative stress; however,
the role of mitochondria in hypertension is still
obscue. It is important to note that mitochondria
are not just an ‘ATP cow’ [2]. Mitochondria perform
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KEY POINTS

� Hypertension is associated with reduced expression
and diminished activity of mitochondrial deacetylase
Sirt3 resulting in hyperacetylation of
mitochondrial proteins.

� Cardiovascular disease risk factors, such as aging,
smoking, inflammation, and metabolic conditions
causes Sirt3 impairment which contributes to
development of vascular dysfunction and hypertension.

� Future clinical studies must be directed to determine the
therapeutic potential for targeting Sirt3 in vascular
dysfunction, essential hypertension, and hypertensive
end-organ-damage using novel Sirt3 agonists and
mitochondria-targeted strategies.

Pathophysiology of hypertension
wide range of physiological metabolic and synthetic
reactions, they regulate genome expression, cellular
metabolic processes, cell homeostasis and cell death
[3]. In the past decade, the role of mitochondrial
dysfunction has been recognized as a contributing
factor in cardiovascular pathological conditions
[4,5

&&

], however, specific mitochondrial defects in
hypertension are not characterized. Our group dis-
covered that hypertension is associated with
impairment of mitochondrial mitochondrial deace-
tylase Sirt3 (silent mating type information regula-
tion 2 homolog 3). Sirt3 is critical in regulation of
metabolic and antioxidant functions such as fatty
acid b-oxidation and superoxide dismutase activity
[6,7]. Unfortunately, the role of Sirt3 has been largely
ignored. In this paper, we will discuss the Sirt3 alter-
ations in vascular dysfunction and hypertension and
discuss the therapeutic potential of mitochondria-
targeted treatments in hypertension.
PHYSIOLOGICAL ROLE OF
MITOCHONDRIAL DEACETYLASE SIRT3

The human Sirt3 protein deacetylase is expressed in
the nuclei as 37 kDa precursor and transported into
mitochondrial matrix where it is exclusively resid-
ing following truncation to 29 kDa protein [8].
Acetylation of protein lysine residues is a predomi-
nant posttranslational modification of mitochon-
drial proteins affecting enzymatic activity, stability,
and complex formation because it changes the posi-
tively charged lysine residue to uncharged bulky
lipophilic state. Sirt3 acts as a sensor of energy
and redox metabolism because it requires NADþ
(nicotinamide adenine dinucleotide) and is regu-
lated by Acetyl-CoA abundance [9]. Sirt3 mediated
deacetylation is critical for regulation of Krebs cycle,
fatty acid b-oxidation, superoxide dismutase 2
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(SOD2), and mitochondrial electron transfer chain.
Diet and nutrient availability dramatically affect
Sirt3 levels and activity, for example, chronic high
fat diet reduces Sirt3 expression, whereas calorie
restriction increases Sirt3 levels [10]. Overall, Sirt3
function plays an important role in cellular homeo-
stasis by regulation of mitochondrial metabolic
pathways, activity of the antioxidant enzymes,
and diminishing cellular inflammation [11,12].
IMPAIRMENT OF SIRT3 IN PATHOLOGICAL
CONDITIONS

Clinical studies have shown that cardiovascular dis-
ease risk factors reduce Sirt3 level and Sirt3 declines
with age [13], paralleling the increased incidence of
cardiovascular disease and hypertension [14]. We
have recently shown that patients with essential
hypertension have decreased levels of the mito-
chondrial deacetylase Sirt3 leading to hyperacetyla-
tion of mitochondrial proteins [15]. There is likely a
causative role. Indeed, genetic deletion of Sirt3 in
mice increases vascular hypertrophy, promotes
endothelial dysfunction, and increases hyperten-
sion while increased Sirt3 expression reduces vascu-
lar dysfunction and attenuates hypertension [16

&&

].
Longevity, risk factors and Sirt3 expression

Variable number tandem repeats in enhancer is
associated with increased Sirt3 expression and
human longevity, [17] whereas metabolic condi-
tions, sedentary lifestyle, aging, smoking, and acti-
vation of renin-angiotensin II pathway reduce Sirt3
levels [13]. The role of Sirt3 in longevity is also
supported by the reduced live span in the Sirt3
knockout mice and that increased Sirt3 expression
reduces markers of cell-senescence and diminishes
age-dependent cellular alterations [18]. These data
suggest a potential role of Sirt3 decline in the age-
associated vascular dysfunction and hypertension.
Sirt3 inactivation

Clinical studies show that cardiovascular disease risk
factors are associated with reduced Sirt3 level [13]
and activity [19]; however, specific mechanisms of
Sirt3 impairment in human conditions have not
been defined. Our human and animal studies
showed 30% reduction in Sirt3 level and three-fold
decrease in Sirt3 activity in hypertension implicat-
ing both reduced Sirt3 expression and Sirt3 inacti-
vation in Sirt3 impairment [15,16

&&

]. There are
several mechanisms which can reduce Sirt3 activity.
First, NADþ depletion inhibits activity of NADþ-
dependent Sirt3 which can be rescued by
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supplementation with NADþ precursor nicotin-
amide riboside [20]. Indeed, animal and clinical
studies showed potential benefits of nicotinamide
riboside supplementation [21]. Second, Sirt3 is
inactivated by S-glutathionylation of cysteine resi-
due in the catalytic region while scavenging of mito-
chondrial H2O2 in mCAT mice diminishes Sirt3 S-
glutathionylation and reduces hypertension [15].
Third, oxidative stress leads to formation of highly
reactive and cytotoxic lipid oxidation products, iso-
levuglandins (isoLGs), which covalently adduct to
proteins and inhibit Sirt3 activity [22]. To test the
pathological role of mitochondrial isolevuglandins
we developed mitochondria-targeted scavenger of
isoLGs, mito2HOBA. It was found that mito2HOBA
reduces protein-isolevuglandins adducts, improves
deacetylation of mitochondrial proteins, improves
mitochondrial and endothelial functions, and
reduces hypertension [23

&&

]. We propose that meta-
bolic conditions downregulate Sirt3 activity due to
decrease in NADþ and increase in Acetyl-CoA while
oxidative stress causes redox inactivation of Sirt3.
Therefore, Sirt3 inactivation may represent a new
convergent mechanism underling the interplay of
major cardiovascular risk factors (Fig. 1).
Oxidative stress and Sirt3 impairment

Hypertension is associated with oxidative stress and
inactivation of key antioxidant enzyme SOD2 due to
reduced Sirt3 activity and SOD2 acetylation [15]. This
results in imbalance between mitochondrial superoxide
FIGURE 1. Multiple risk factors for hypertension, such as aging,
Sirt3 expression and activity which contributes to vascular dysfunc
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production and SOD2-mediated superoxide dismuta-
tionleadingtoincreasedsuperoxidelevelsandoxidative
damage of mitochondria. We proposed that increased
Sirt3 expression reduces SOD2 acetylation and prevents
SOD2inactivation. Indeed, Sirt3overexpression inmice
prevents SOD2 hyperacetylation and inhibits vascular
oxidative stress. Furthermore, increasedSirt3expression
attenuatesdevelopmentofhypertension inangiotensin
II and DOCA-salt models [16

&&

].
In recent studies, we proposed that oxidative

stress can directly contribute to Sirt3 inactivation
due to formation of harmful lipid peroxidation
products, isolevuglandins, in mitochondria. We dis-
covered 250% increase in mitochondrial isolevu-
glandins in arterioles isolated from patients with
essential hypertension [23

&&

]. Interestingly, scaven-
ger of mitochondrial isolevuglandins, mito2HOBA,
protects Sirt3 activity, improves SOD2 deacetylation
and inhibits endothelial oxidative stress. We pro-
pose a feed-forward cycle between Sirt3 inactivation
and mitochondrial isolevuglandins, and mito2-
HOBA breaks this cycle, improves vascular function,
and reduces hypertension (Fig. 2).
Metabolic dysfunction – oxidative stress
crosstalk

Patients with metabolic disorders are at greater risk for
endothelial dysfunction and hypertension [24,25],
and metabolic alterations are critical in the pathogen-
esis of cardiovascular disease. Mitochondria play a key
role in the cellular metabolism; however, specific role
metabolic conditions, smoking, and sedentary lifestyle reduce
tion and hypertension.
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FIGURE 2. Crosstalk between metabolic dysfunction and mitochondrial oxidative stress contributes to end-organ dysfunction
and hypertension.

Pathophysiology of hypertension
of impaired mitochondrial metabolism in endothelial
dysfunction is still elusive. Sirt3 is essential for mito-
chondrial fatty acid b-oxidation and mitochondrial
electron transfer because Sirt3 activates long-chain
acyl coenzyme A dehydrogenase, complexes I and V
by deacetylation of specific lysine residues [26]. Oxi-
dative stress promotes metabolic dysregulation,
whereas metabolic conditions increase theproduction
of reactive oxygen species [27,28]. This results in cross-
talk between metabolic disorders and oxidative stress
[29

&

]. Sirt3 is one of the key nodes regulating both
cellular metabolism and oxidative stress; therefore,
targeting Sirt3 can break this viscous cycle and
improve vascular function (Fig. 2).
Sirt3 depletion and inflammation

Activation of immune cells, increased production
of inflammatory cytokines, and stimulation of
FIGURE 3. Targeting Sirt3 in hypertension. Hypertension is asso
can be improved by Sirt3 agonists diet and exercise increasing S
mitoTEMPO can attenuate Sirt3 inactivation and inhibit the mitoch
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proinflammatory pathways in nonimmune cells have
been recognized as critical drivers of hypertension and
vascular dysfunction [30]. Interestingly, Sirt3 deple-
tion promotes vascular inflammation while increased
Sirt3 expression and activity inhibits expression of
inflammatory markers and reduces inflammatory
cytokine levels [12,16

&&

]. It has been proposed that
targeting modifiable risk factors to improve Sirt3 activ-
ity by calorie restrictions, exercise, and smoking ces-
sation can reduce vascular inflammation.
TARGETING SIRT3 IN HYPERTENSION

The studies described above support the pathogenic
role of Sirt3 impairment in vascular dysfunction and
hypertension suggesting therapeutic potential of
targeting Sirt3 in these pathological conditions
(Fig. 3). Several clinical and preclinical studies sup-
port this idea.
ciated with reduced Sirt3 expression and Sirt3 inhibition. This
irt3 protein levels, whereas mito2HOBA, NAD donors, and
ondrial oxidative stress.
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NADR donors

There are several NADþ donors tested, including
niacin, nicotinamide mononucleotide, nicotin-
amide riboside which can increase the Sirtuins
activity; however, the results are widely varying
[31

&

], and we need a better understanding of the
therapeutic role of NADþ precursors in human dis-
eases.
Calorie restriction and Sirt3 expression

Calorie restriction is known for antiaging, anti-
inflammatory, renoprotection, and antihyperten-
sive effects which are linked to Sirt1 and Sirt3 upre-
gulation and Sirt3 depletion voids protective effect
of calorie restriction [32,33].
Sirt3 agonists inducing Sirt3 expression

Several polyphenols including natural compound
honokiol and its derivative hexafluoro honokiol
are able to increase Sirt3 expression and activity
[34]. Chronic treatment of spontaneously hyperten-
sive rats with honokiol decreases blood pressure and
vascular hypertrophy [35].
CONCLUSION

There is a clear evidence for Sirt3 impairment in
cardiovascular disease and hypertension. Sirt3 may
represent a novel target in these pathological con-
ditions. Animal studies support the pathophysiolog-
ical role of Sirt3 dysfunction; however, therapeutic
potential for Sirt3 targeting requires further preclin-
ical and clinical studies using Sirt3 agonists, NADþ
donors and other approaches.
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