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Abstract

In this study, we used high-dimensional pattern regression methods based on structural (gray and white matter; GM
and WM) and functional (positron emission tomography of regional cerebral blood flow; PET) brain data to identify
cross-sectional imaging biomarkers of cognitive performance in cognitively normal older adults from the Baltimore
Longitudinal Study of Aging (BLSA). We focused on specific components of executive and memory domains known
to decline with aging, including manipulation, semantic retrieval, long-term memory (LTM), and short-term memory
(STM). For each imaging modality, brain regions associated with each cognitive domain were generated by adaptive
regional clustering. A relevance vector machine was adopted to model the nonlinear continuous relationship between
brain regions and cognitive performance, with cross-validation to select the most informative brain regions (using
recursive feature elimination) as imaging biomarkers and optimize model parameters. Predicted cognitive scores
using our regression algorithm based on the resulting brain regions correlated well with actual performance. Also,
regression models obtained using combined GM, WM, and PET imaging modalities outperformed models based on
single modalities. Imaging biomarkers related to memory performance included the orbito-frontal and medial temporal
cortical regions with LTM showing stronger correlation with the temporal lobe than STM. Brain regions predicting
executive performance included orbito-frontal, and occipito-temporal areas. The PET modality had higher contribution
to most cognitive domains except manipulation, which had higher WM contribution from the superior longitudinal
fasciculus and the genu of the corpus callosum. These findings based on machine-learning methods demonstrate the
importance of combining structural and functional imaging data in understanding complex cognitive mechanisms and
also their potential usage as biomarkers that predict cognitive status.
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Introduction

Aging is associated with declines in neurocognitive functions
often characterized by degeneration of brain tissue, changes in
brain function, and accelerated cognitive decline, particularly in
clinical cases such as Alzheimer's disease (AD). However,
despite the connection with neural changes, diagnosis of
clinical cognitive impairment to date still primarily depends on
cognitive changes measured by neuropsychological
assessments. Neuroimaging studies have shown that structural
and functional brain changes often precede clinical symptoms
of cognitive impairment [1], which resulted in the revision of

clinical diagnostic criteria for mild cognitive impairment (MCI)
and AD [2]. Thus, neuroimaging analysis based on machine
learning techniques provide an important means to understand
the nature of brain-cognition associations and identify the most
diagnostic imaging biomarkers for early detection of individuals
at risk for cognitive impairment.

Finding specific brain regions involved in a cognitive process
has been a recurrent goal in functional neuroimaging in the last
two decades [3-5]. In these studies, univariate generalized
linear modeling (GLM) has been widely used to create
statistical maps of voxels sensitive to a cognitive task above
some particular threshold [6-8]. Apart from voxel-based GLM
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analysis, some studies also examine relationships between
predefined regions of interest (ROIs) and cognitive task
performance [4,5]. However, these univariate and ROI-based
methods lack sufficient sensitivity and specificity for effective
analysis of complex neurocognitive phenomena, which might
involve covariation of activities between networks of brain
regions that have yet to be defined a priori. As such,
characterizations of brain changes in normal or clinical aging
have had specific and limited scopes within each study and
have been relatively unwieldy in the context of the multi-faceted
nature of the issue.

To overcome the limitations of univariate and ROI-based
approaches, machine learning-based pattern analysis methods
have been widely adopted to automatically derive distinctive
brain regions related to a hypothesis or a given study objective
[9]. The majority of pattern analysis studies focused on
categorically classifying individuals as either healthy or
diseased [1,10-14]. More recently, pattern regression methods
have addressed the need for measuring continuous and
graded stages of brain markers associated with disease
development and cognitive performance [15-20]. These
methods not only capture the general nature of disease
development, they also take into account individual variance in
brain tissue changes, and are thus able to provide diagnostic or
prognostic imaging biomarkers to detect people in pre-clinical
stages of brain disease, so that early treatment intervention
can begin. These advanced pattern analysis methods can also
be readily applied on combined imaging data modalities to
improve the detection of changes in brain structure and
function before any measurable cognitive changes using
neuropsychological assessments [1,2]. Whereas a single
imaging modality provides only partial information (e.g. only
structural volumes), multiple imaging modalities (e.g. structural
and functional brain images) provide richer and complementary
information to discovering brain regions associated with a
particular brain disease [21,22]. Although multiple-modality-
based analysis has been widely used to support clinical
disease diagnosis [23-25], few studies have applied them to
quantify the brain changes associated with cognitive domains
in normal aging. This present study aims to evaluate imaging
biomarkers showing brain differences related to continuous and
subtle cognitive performance differences across normal
individuals by using combined imaging modalities.

We extended a previous single-modality pattern regression
method [19] to multi-modal imaging data to identify structural
and functional imaging biomarkers of cognitive ability, which
was represented by continuous cognitive scores. We focused
on two cognitive domains known to decline with aging:
memory, specifically long-term and short-term memory, and
executive processing, specifically semantic retrieval and
manipulation [26,27]. While details of our pattern regression
method have been reported in our previous study [19], there
are some important features worth highlighting briefly here.
First, by adopting adaptive feature extraction and sparse
relevance vector machine (RVM) regression algorithms, our
machine learning methodology has good generalizability to
characterize various relationships between brain images and
clinical variables, including different measures of cognition.

Notably, whereas classical statistical methods focus more on
parameter significance to make conclusions regarding a priori
hypotheses [28], machine learning based models such as ours
are validated directly by their predictive performance with
respect to the target variable. Second, we use voxel clustering
and recursive feature elimination (RFE) algorithms on all
imaging modalities to adaptively select brain regions that
contribute the most distinctive information that are then used to
train and optimize our relevance vector regression (RVR)
model. Third, the use of RVR analysis on brain data provides a
continuous diagnostic/prognostic score rather than a
categorical classification to estimate individual cognitive
performance on a given cognitive function [19,29]. Finally, our
method also enables us to directly compare differential
contributions of gray and white matter structural MRI images
and PET images of regional cerebral blood flow (rCBF) to
memory and executive functions having obtained the optimal
RVR model for each case. We expected that multi-modal
imaging data should be more informative than single-modalities
in accounting for cognitive performance. Moreover, different
brain regions would show dissociable contributions to specific
cognitive domains, reflecting differential importance of each
brain region in a process-specific manner [30].

Materials and Methods

Participants
The present study used baseline MRI and PET-rCBF scans

from 132 older adult participants (baseline mean age (SD) =
69.59 (7.75) yrs; male/female: 78/54) from the Baltimore
Longitudinal Study of Aging (BLSA) neuroimaging sub-study
[31,32] who remained cognitively normal throughout the
ongoing longitudinal study. The BLSA neuroimaging study is a
prospective study investigating structural, functional, and
cognitive changes associated with normal aging and cognitive
impairment [32]. Annual or semi-annual longitudinal imaging
and clinical evaluations were acquired, but only baseline scans
and baseline cognitive performances of participants were
applied in this present work. Cognitive status was determined
using consensus diagnosis after each follow-up session using
the Diagnostic and Statistical Manual of Mental Disorders Third
Edition, Revised (1987) for dementia, and the National Institute
of Neurological and Communication Disorders and Stroke-
Alzheimer’s Disease and Related Disorders Association criteria
[33], using the longitudinal neuropsychological tests and clinical
data obtained in the BLSA [34]. We highlight that the extensive
longitudinal nature of cognitive assessments in the BLSA
provides higher confidence that a participant is indeed normal
as opposed to having undetected incipient cognitive
impairment, which would compromise the interpretation of
findings. More details about data sharing to researchers can be
found in the BLSA study website (http://www.blsa.nih.gov/
researchers).

Imaging protocol
Details of our image acquisition parameters have been

described in [32]. Briefly, the BLSA protocol included an axial
T1-weighted volumetric spoiled gradient recalled (SPGR)
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series (axial acquisition, TR = 35 ms, TE = 5 ms, flip angle =
45°, voxel dimensions of 0.94 * 0.94 * 1.5mm slice thickness).
Regional cerebral blood flow was measured using PET with a
bolus injection for each scan of 75 mCi of [15O] water. The
images were obtained on a GE 4096 scanner, during a resting
state scan with eyes open [35]. After the brain radioactivity
concentration reached a threshold, one 60-second image was
acquired that included 15 slices of 6.5 mm in thickness.
Attenuation correction was performed using a transmission
scan acquired prior to the emission scans.

Image pre-processing
All MR images used in this study were pre-processed using a

mass-preserving shape transformation method [36]. Gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF)
were segmented from each skull-stripped MR brain image [37].
Each segmented brain tissue image was spatially normalized
to a brain atlas (template) that was aligned with the MNI
coordinate space [21,38] via HAMMER registration [39]. Then,
regional volumetric maps, named RAVENS maps were
generated using tissue preserving image warping [36].
Individual intracranial volume (ICV) normalization was applied
on RAVENS maps to adjust global differences in intracranial
size. Last, normalized RAVENS maps were down-sampled and
smoothed to incorporate neighborhood information using an
8mm FWHM Gaussian filter.

[15O] PET-CBF image pre-processing included normalization
for global activity, removal of extraneous signal scatter by
thresholding the image intensity at 80% of the gray matter
mean, and removal of activity in the skull, nasal sinuses, and
cerebellum. PET-CBF images were rigidly registered to the
corresponding participants’ MR image then deformed to the
same template space based on the spatial normalization
transformation parameters determined from the MRI. After
registration, PET-CBF images were smoothed using a 12mm
Gaussian filter.

Components of cognitive domains and
neuropsychological test battery

During each neuroimaging visit, participants completed a
battery of neuropsychological tests, which were used to
measure various cognitive processing abilities. Here, we focus
on executive and memory processes, which are often affected
early in the development of cognitive impairment and
Alzheimer’s disease [26,32,40]. Table 1 lists four specific
components of executive and memory function evaluated in
this study, which were derived by combining the associated
tests to form composite scores [26]. Specifically, composite
scores were computed as the mean normalized score across
each of the associated tests for each component, for each
individual. Higher scores indicated better performance.

Memory was defined as the ability to store and retrieve
episodic information. Under this broad domain, short-term
memory refers to storage of episodic information over brief
periods of time (approximately 1-10 minutes) and was
measured as a composite of short-delay free recall, first recall
of list A, and total recall over five learning trials in the California
Verbal Learning Test (CVLT) [27]. Long-term memory is the

ability to store episodic information over longer time periods
(approximately 20 minutes or more) and was measured as the
composite score of long-delay free recall, the difference
between long-delay free recall and free recall on the fifth trial,
and the difference between long-delay free recall and short-
delay free recall in the CVLT [27]. Executive processing refers
to a set of control-level processes that involves searching,
selecting and organizing information. Under this domain,
semantic retrieval refers to the ability to recall information from
semantic memory based on semantic cues, which was
measured by a composite of Category Fluency Tests and the
Boston Naming Test [41]. Manipulation, measured by a
composite of Alpha Span and Digit Span Backwards
performance, is the ability to rearrange item information in mind
[42].

There were some participants for whom either the
neuroimaging data or the performance for a specific cognitive
component was not available. Thus, there were a different
number of samples from each cognitive domain, Nc, but there
was still substantial overlap of participants and comparable
gender ratio and age range across the four sample groups
used in the regression models (Table 2).

Table 1. Components of cognitive domains and the
involved neuropsychological tests.

Broad Domains Components Combined Tests
Memory Long-Term Memory CVLT Long Free Recall
  CVLT Long Free vs List 5
  CVLT Long Free vs Short Free
 Short-Term Memory CVLT Short Free Recall
  CVLT List A1
  CVLT Total Recall

Executive Semantic Retrieval Boston Naming Test
  Category Fluency Total No. of Words
 Manipulation Alpha Span
  Digit Backwards

doi: 10.1371/journal.pone.0085460.t001

Table 2. Characteristics of participants for four components
of cognitive domains.

Domain Nc Male/Female  
Mean age in yrs
(SD) Age range in yrs

LTM 80 46/34 69.3 (7.5) 56.2 - 85.9

STM 85 51/34 70.0 (7.8) 57.5 - 85.9

Semantic
Retrieval

75 46/29 70.2 (7.3) 56.0 - 85.9

Manipulation 80 48/32 69.7 (7.7) 56.0 - 85.9

doi: 10.1371/journal.pone.0085460.t002
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Multi-modality pattern regression method
The current work builds on our previous pattern regression

study of structural MRIs, which is a methodology to measure
the association between brain images and continuous variables
(e.g., clinical or cognitive behavioral measures) across
individuals [19]. Here, we briefly outline the three basic steps of
the method, which were applied separately for each cognitive
domain, and point the reader to more in-depth explanations
available in the previous study [19]. Note that we implemented
a leave-k-out cross-validation scheme that repeated steps 1
and 2 below over all permutations of the sample for each
cognitive domain with 10% of full sample size (kc = 0.1*Nc)
used to estimate modeling errors.

For each leave-k-out case, step 1 involved feature
generation and ranking to reduce high dimensional image voxel
data to a set of brain regions (features), thereby reducing
computational load. Specifically, we first used a watershed
algorithm, along with spatial consistency constraints, to
segment the brain RAVENS maps into a number of regional
voxel clusters that present similar correlations with the
cognitive variable being considered. The watershed
segmentation algorithm is traditionally an image segmentation
approach for partitioning images into different regions
according to local tissue density similarity [43]. It is able to
automatically determine the number of clusters from the data,
resulting in a completely unsupervised approach [44]. In
addition, the watershed algorithm is known for its effective
handling of boundary situations of different areas, which is
advantageous for generating morphologically consistent brain
regions. By adapting this process to PET images as well, a
whole set of features were generated for the structural and
functional modalities for each cognitive domain. Next, as in our
previous study [19], we determined the correlation of each
feature with cognitive performance and chose the top 3*(Nc -
kc) ranking features, based on their correlation power, as the
set of initial brain regions that were fed into the next step. The
use of top-ranked feature sets also helped the subsequent
feature selection method achieve convergence with reasonable
computation cost. In step 2, we used the RVR-RFE method to
optimize prediction accuracy through feature selection and
model training [19]. Specifically, we used a backward selection
method that removed a feature each iteration if the mean
squared error (MSE) of the RVR model without that feature
(applied on the kc left-out validating samples) was smaller than
that of the full model and was smallest amongst all other
possible cases of left-out features in that iteration. Backward
selection proceeded until the MSE no longer reduced with
further feature removal. Next, to avoid missing informative
features whose rank was low, but which performed well jointly
with the top ranked features for regression, a forward feature
selection method was applied that added one feature back at a
time using the same MSE criteria as in backward selection.
Thus, RVR-RFE integrated feature selection with RVR model
building by choosing a subset of top-ranked features that
optimized the performance of the RVR regressors. We highlight
that, although this is essentially a sequential algorithm, the use
of backward and then forward selection procedure avoids
suboptimal performance, local maxima issues, and also

improves computational time. To interpret the resulting RVR
model within the framework of the original image modalities, we
used a discriminative direction method that computes the brain
region contributions based on the model that moves the
predicted cognitive score closer to the actual score while
minimally changing the input feature vector of the model (see
45 for more details). In this way, we computed spatial
difference maps indicating the degree to which each brain
region contributes to the regression prediction [19]. Thus, for
each leave-k-out case of the cross-validation, a regression
model was built with the optimal feature set, performance
prediction and the corresponding spatial difference map that
were then submitted to step 3.

For step 3 of each cognitive domain, a summary map of
brain region contributions to cognitive score prediction was
obtained by averaging the spatial difference maps from all
leave-k-out cases. To facilitate comparison of contribution
maps across the optimized models using single or combined
imaging modalities, we then normalized the contribution levels
to a range from 0 to 1, indexing lowest to highest predictive
contributions respectively. The predicted cognitive scores were
also based on averaged optimal predicted scores across all
leave-k-out cases for each cognitive domain. Overall, we
performed three RVR computations for each of the four
cognitive domains: one RVR using MRI (white and gray matter
structure) alone, one using [15O] PET-CBF alone, and one
using both MRI and PET. To evaluate model performances, we
examined the MSEs and correlation coefficients indexing the
strength of agreement between the actual cognitive scores and
scores predicted by the models. Since MSEs and correlation
coefficients are not normally distributed, differences in cognitive
score predictions between models were statistically compared
using non-parametric random permutation testing [46], which
were also the simultaneous tests for model differences in
prediction accuracy. Specifically, the permutation tests
assessed the probability of obtaining the difference between
predicted scores from two models (out of 10,000 iterations),
given the predicted scores from the RVR-RFE procedures.

Ethics Statement
The study was approved by the local Institutional Review

Board of the University of Pennsylvania and the National
Institute on Aging. Written informed consent was obtained from
all participants at each visit.

Results

Predictive ability of multi-modality pattern regression
model

MSEs were used to describe the performance of machine
learning-based regression models (Table 3 top). As expected,
the prediction accuracies (indicated by lower MSE) of
regressions combining structural and functional imaging
modalities were all higher than either alone. Model
performances were also indexed using the correlation
coefficients between the observed cognitive scores and the
predicted scores based on imaging data (Table 3 bottom).
Combined models generally achieved higher correlation
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coefficients than single modality models across all four
cognitive components with all correlations being significantly
greater than zero except for functional imaging with
manipulation). Except for manipulation, correlations between
multi-modal imaging predicted scores and actual scores were
all greater than 0.4, and the correlations for functional imaging
always greater than for structural imaging. For manipulation,
the correlation with structural MRI alone was greater than
functional imaging alone, but the combination of both structural
and functional imaging modalities still improved prediction
(MSE of 0.79 for structural MRI to 0.78 for both imaging
modalities corresponding with correlations of 0.32 to 0.35).
Importantly, statistical comparisons using non-parametric
random permutation testing revealed significantly greater
predictive strength of combined relative to single imaging
models (p(Combined > Structural): LTM = .011, STM = .024,
Semantic Retrieval = 0.013; p(Combined > Functional): LTM = .
035, Semantic Retrieval = .032, Manipulation = .022) with the
exception of functional imaging for STM (p(Combined >
Functional) = .053) and structural imaging for manipulation
(p(Combined > Structural) = .064). The latter two exceptions
are consistent with the smaller correlation differences in terms
of effect sizes between combined and single imaging model
prediction (STM: 0.38 for functional, 0.45 for combined;
Manipulation: 0.32 for structural, 0.35 for combined). Overall,
the results demonstrate that models that combined modalities
were more accurate than models using single imaging
modalities at predicting actual cognitive performance.

Table 3. Mean squared errors and correlation coefficients
between the predicted and measured cognitive scores by
using different imaging modalities for each cognitive
component; age correlation with the measured cognitive
score.

 
Structural
imaging

Functional
imaging Combined Age

Cognition
component

Mean Squared Errors: Mean ± std (95% confidence interval)

LTM
1.75 ± 0.798
(1.17 - 2.31)

1.90 ± 1.514
(0.80 - 2.97)

0.89 ± 0.462
(0.55 - 1.20)

/

STM
1.36 ± 0.547
(0.95 - 1.81)

0.85 ± 0.239
(0.68 - 1.05)

0.76 ± 0.212
(0.60 - 0.95)

/

Semantic
Retrieval

1.74 ± 0.666
(0.71 - 1.74)

1.24 ± 0.786
(1.11 - 2.32)

0.62 ± 0.228
(0.35 - 0.71)

/

Manipulation
0.79 ± 0.421
(0.49 - 1.09)

1.75 ± 0.742
(1.22 - 2.78)

0.78 ± 0.373
(0.51 - 1.04)

/

 Correlation Coefficients (p-value)

LTM 0.26 (0.0194) 0.31 (0.0061) 0.41 (0.002)
-0.26
(0.02)

STM 0.29 (0.0063) 0.38 (0.0003) 0.45 (0.0000)
-0.19
(0.08)

Semantic
Retrieval

0.29 (0.0107) 0.32 (0.0045) 0.46 (0.0000)
-0.32
(0.048)

Manipulation 0.32 (0.048) 0.13 (0.2520) 0.35 (0.0016)
-0.26
(0.018)

doi: 10.1371/journal.pone.0085460.t003

For visualization, Figure 1 showed scatterplots of measured
and predicted cognitive scores based on the combination of
MRI & PET modalities for each cognitive component. Overall,
these findings indicate that our high-dimensional pattern
regression method can reliably predict performance in a given
cognitive domain based on information from specific brain
regions, and also multiple imaging modalities provide more
predictive information to build brain-cognition regression
models compared to single modalities.

Relationship of cognitive performance with age
We additionally evaluated whether the detected imaging

biomarkers were more effective predictors of cognitive
performance than another important factor related to cognitive
decline, age. For comparison, Table 3 also lists the correlations
between age and the measured scores for each cognitive
domain in the last column. The machine learning-based pattern
regression method showed higher correlation strengths than
age in each cognitive component, supporting the notion that
the combination of brain structure and function is more
informative than age in accounting for cognitive performance.

Cognition-relevant imaging biomarkers
The top panels of Figures 2 and 3 show spatial difference

maps indicating the combined contribution levels of brain
regions identified by pattern regression analysis for each
component of memory and executive functions, respectively.
We highlight that maps were normalized to unit interval, with
increasing degrees of contribution coded as cooler to warmer
colors correspondingly. A cutoff value of 0.2 was used for the
overlay maps for better visualization of the brain region
contributions, however, brain regions with contribution values
less than 0.2 were also used in regression modeling. In
addition, the bottom panels of Figures 2 and 3 consist of
categorical color maps indicating the imaging modality with the
maximum contribution during pattern regression analysis for
each brain region (GM: red; WM: orange; PET: white).

As shown in Figure 2A brain regions that contributed to LTM
performance prediction included the left medial orbitofrontal,
and right middle frontal areas, bilateral temporal regions with
extensions to the lateral occipitotemporal area, and right
hippocampus and amygdala. The maximum contributions
across these regions were predominantly from PET data,
particularly in the medial orbitofrontal, temporal, and medial
temporal areas.

Several brain regions predicting LTM were also involved in
STM (Figure 2B). Specifically, STM performance was also
associated with predictive contributions from medial
orbitofrontal and right middle frontal regions, as well as bilateral
temporal areas. Additional predictive contributions were
observed in the left middle frontal and lateral orbitofrontal
areas, bilateral insula, posterior cingulate, and right inferior
parietal regions. Interestingly, as with LTM, maximum
contributions to STM were again predominantly from PET data.

For semantic retrieval, predictive brain regions included left
occipital-temporal, bilateral inferior frontal, insula, medial and
lateral orbitofrontal areas, as well as right superior longitudinal
fasciculus and periventricular areas (Figure 3A). Maximum

Imaging-Based Biomarkers of Cognitive Performance

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e85460



contributions in the superior longitudinal fasciculus and inferior
frontal regions were based on WM, but based on PET in the
medial orbitofrontal area. GM was the maximum contributor in
the periventricular and lateral orbitofrontal areas.

For manipulation, predictive contributions were observed in
the right inferior frontal, and insula regions, left precentral and
middle frontal regions, bilateral anterior cingulate and temporal
areas, as well as the left uncinate fasciculus and genu of the
corpus callosum (Figure 3B). Maximum contributions in the
corpus callosum, right inferior frontal region/insula were based
on WM. Both WM and GM were the maximum contributors
across various temporal regions. PET was the maximum
contributor in the anterior cingulate region.

Comparison to GLM analysis
To validate the performance of our multi-modality pattern

regression method, we also applied conventional GLM analysis
with the same cognitive components. The GLM analyses
revealed positive correlations between GM/WM/PET and
cognitive performance, as shown in Figures 4 and 5. Note that
unlike the contribution maps above, the color bar for GLM
maps indicates both the strength and directions of the
correlation with blue for high negative correlations, red for high
positive correlations, and grey for zero correlation. Memory
performances were strongly positively associated with the PET
modality, especially for STM, which had higher and more
extensive correlations than LTM (see bottom of Figure 4).
These results are consistent with the multi-modality pattern
regression findings that detected the greater contribution of the
PET modality in comparison to WM and GM for the prediction
of memory performance (Figure 2).

The GLM analysis also showed that manipulation was
significantly associated with WM volumes across several
regions. Similarly, the majority of brain regions detected by
multi-modality pattern regression were from structural MRI,
especially WM, which had the highest contribution to
manipulation performance (Figure 3). However, neither GLM
nor pattern regression method detected an appreciable
relationship between PET and manipulation (bottom right panel
in Figure 5).

We highlight that GLM maps indicate the directions of
associations separately between each imaging modality and
each cognitive domain. By contrast, the contribution maps
obtained from pattern regression shows the combined power of
multi-modality imaging with no sign of association. Thus, the
combined associations are less restricted and show
simultaneous contributions across imaging modalities that
could be due to a positive brain-behavior association in one
modality but a negative association in another. In addition,
direct comparison of the contributions across modalities is not
meaningful with the GLM maps but relatively straightforward
with the contribution indices used in our pattern regression
method.

Discussion

This study applied a multi-modality pattern regression
method to investigate the brain imaging biomarkers related to
memory and executive functions. Combined regression models
for LTM, STM and semantic retrieval had similar prediction
power, with regression rates of 0.41, 0.45 and 0.46 respectively
(Table 3). Although these rates of around 0.45 are modest,

Figure 1.  Regression results for LTM, STM, semantic retrieval and manipulation performance.  The vertical axis indicates the
predicted cognitive scores based on MRI and PET data, and the horizontal axis refers to the measured cognitive scores.
doi: 10.1371/journal.pone.0085460.g001
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they are in fact quite remarkable given the relatively small
sample size and the large proportion of variance unaccounted
for in single score measures of complex cognitive processes,
which adds to prediction difficulty.

Our finding that LTM and STM involved middle and medial
frontal regions, along with temporal regions and the
hippocampus and amygdala (for LTM) is consistent with the
existing literature on brain regions involved in episodic

Figure 2.  Identified brain regions related to memory functions overlaid on the template image.  Contribution maps are
displayed in radiological convention. A) LTM; B) STM.
doi: 10.1371/journal.pone.0085460.g002
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memory. Episodic memory tasks generally involve accessing
the representations of the test items including contextual
information about when and where the items were

encountered. Many studies have shown that the hippocampus
is an important region that forms and stores such item-context
associations (e.g. [47,48]; see reviews in [49-52]). Moreover,

Figure 3.  Identified brain regions related to executive processes overlaid on the template image.  Contribution maps are
displayed in radiological convention. A) Semantic Retrieval; B) Manipulation.
doi: 10.1371/journal.pone.0085460.g003
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episodic memories that are formed with hippocampal
associative processes tend to be more robust over time than
information encoded with rote memorization without associative
tags [53]. This may account for why greater hippocampal/
amygdala functional activity and structural integrity were
associated with better episodic memory representations, in
particular when accessing memories that may have
deteriorated over time in the LTM test. For STM, it is plausible
that at shorter time lags, memory traces had not deteriorated
and other retrieval processes in other regions play a more
important role in accounting for performance. Specifically,
studies have also shown that episodic memory retrieval also
involves frontal regions such as the middle and medial frontal
areas observed in our study [54]. These frontal regions are
involved in selecting and monitoring the contents of active
memory or stored memory content in the medial temporal
regions. Thus, greater activity or structural integrity in frontal
regions may have accounted for better STM performance. We
note that our STM and LTM measures may reflect largely
overlapping processes involved in episodic memory, so that
these two domains are not mutually exclusive. Nevertheless,
these two measures may still also be sensitive to slightly
different aspects of episodic memory. This has previously been
evaluated in [26], which showed that STM and LTM
performance is correlated across individuals, but still show

slightly distinct relationships with other cognitive abilities,
reflecting their differential sensitivity to episodic retrieval at
different time scales. This notion is consistent with our finding
of several overlapping regions involved in these domains along
with some uniquely contributing regions.

For executive processes, we found that the inferior frontal/
insula regions (around the uncinate fasciculus), superior
longitudinal fasciculus and genu were associated with semantic
retrieval and manipulation performance, with the maximum
contribution from white-matter images. Other studies have
similarly found that these white-matter regions show structural
declines with age that are associated with poorer performance
in tests of executive function and working memory [55-57].
These findings suggest that for the executive processes
evaluated here, white-matter connectivity was of particular
importance over and above gray matter volume and functional
activity. Again, while there is substantial overlap, semantic
retrieval may involve more rapid communication between
fronto-parietal attention and control processes and other
storage and representational systems in the temporal lobe.
Specifically, semantic retrieval requires participants to search,
select, and match as many words as possible based on
semantic cues. Thus, neural connections between the frontal
and temporal cortex (uncinate fasciculus), and between frontal
and parietal cortex (superior longitudinal Fasciculus) are

Figure 4.  Examples of brain regions correlating with performance in the memory measures by GLM.  Contribution maps are
displayed in radiological convention. A) LTM; B) STM.
doi: 10.1371/journal.pone.0085460.g004
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important for semantic retrieval. With manipulation, participants
have to hold stimulus information in mind and, critically, apply
some re-organization to the information. Thus, communication
between different frontal regions might be more critical rather
than searching or selecting from storage, and the white-matter
connection across contralateral frontal regions (genu) might be
more important.

This present study focused on modeling the continuous
cross-sectional distribution of cognitive performance across
individuals instead of individual longitudinal performance
changes over time. It is plausible that longitudinal data may
capture distinct important regional contributions toward
cognitive performance [30,58]. We note as well that the use of
a single 60 s PET scan may be a less than optimal
measurement of regional cerebral blood flow in the present
cross-sectional analysis. Thus, future work is necessary to
validate our methodology for predicting individual changes
based on longitudinal brain and behavioral trajectories. In
addition, we note that the contribution of each neuroimaging
modality to cognitive performance appears small relative to
observations based on clinical samples in other studies. This is
not surprising as the goal here is to derive useful information
based on pre-clinical samples, rather than to replicate the more
obvious differences typically observed with clinical-based
samples. Nevertheless, recent directions, such as the impetus
to identify early biomarkers of AD, point to the importance of
combining multiple sources of diagnostic information to
improve classification accuracy. Our findings thus provide
further comprehensive validation of the present machine-
learning methodology as a platform for developing more

enhanced ways to obtain multi-modal imaging biomarkers of
pre-clinical human behavioral performance.

Conclusion and Future Work

We investigated the utility of multi-modality high-dimensional
pattern regression for detecting imaging-based biomarkers of
cognitive ability in a cohort of cognitively normal older adults.
Our findings show that this machine learning-based pattern
regression method is able to detect specific brain regions
associated with different cognitive processes, while
simultaneously assessing the contribution of different imaging
modalities. Moreover, the combination of PET and MRI was
better than each modality alone. Critically, our results suggest
that functional imaging provided slightly better predictive ability
than structural MRIs for memory functions, but WM modality
outperformed PET when predicting executive functions. The
predicted cognitive scores using our methodology could be
used to identify individuals with risk of future cognitive decline
from baseline images, such as in the case of when the
predicted score deviate from the normal range. Future studies
will evaluate imaging biomarkers of additional aspects of
memory and executive function as well as the predictive ability
with respect to longitudinal performance.
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